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Abstract By a gel we mean a system of crosslinked polymer chains mixed together with
a low molecular weight liquid. The polymer and liquid components mix in definite propor-
tions as determined primarily by entropic and enthalpic effects. Swollen gels in equilibrium
with a surrounding fluid bath in the absence of mechanical load are often described by a
generalized Flory-Huggins equation. In this paper we consider the connection between such
a treatment and the broader hyperelastic theory that treats the effect of mechanical loading in
deforming the gel. A change in the mechanical loading will generally alter the proportion of
liquid in the mixture, leading to either fluid loss (swelling reduction) or fluid gain (swelling
increase). In such a case the gel reestablishes equilibrium only when the relative motion of
the liquid through the polymer has ceased and processes have come to rest. Such processes
are inherently dissipative. Our objective is to study how such reestablished equilibria de-
pend upon mechanical load. For quasi-static loadings that give fluid gain, we then consider
a situation in which the amount of available fluid is limited. In this case, increasing quasi-
static loading may reach a point at which no additional fluid is available for uptake into the
gel system. The associated equilibrium then transitions from a state of liquid saturation to a
state in which the gel is no longer saturated. We first consider this quasi-static transition in
the context of homogeneous deformation where an appropriate hyperelastic analysis shows
that the equilibrium mechanical response is inherently stiffer after loss of saturation. We
then consider such a transition in the context of inhomogeneous deformation by studying
the boundary value problem of an everted tube subject to an axial load. Loss of saturation
again leads to an inherently stiffer quasi-static response.
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1 Introduction

Gels are high molecular weight crosslinked polymer networks immersed in a low molecular
weight liquid. When water is the liquid, then these are typically referred to as hydrogels. The
liquid can also be organic in nature as for example discussed in Chapter 7 of Treloar’s well
known treatise The Physics of Rubber Elasticity [20]. Although hydrogels would generally
be much softer than a rubbery material infused with an organic liquid, both are regarded as
gels for the purpose of this paper, and we shall use the term gel throughout in this broad
sense.

When the polymer component of the gel is placed in a liquid bath, the amount of liquid
taken up into the gel is in a definite proportion to the amount of polymer. This proportion can
change on the basis of temperature, chemistry of the fluid bath, mechanical loading, elec-
trical field, and light exposure. An increase or decrease in liquid proportion gives swelling
and shrinking, respectively. In such a case the gel reestablishes equilibrium only when the
relative motion of the liquid through the polymer has ceased and processes have come to
rest. Such processes are inherently dissipative.

Free swelling is swelling that takes place in the absence of mechanical load, including
reactive loads supplied by physical constraint. For isotropic gels, such free swelling is purely
volumetric. The equilibrium volume of freely swollen polymers that are not crosslinked is
often described in terms of the Flory-Huggins equation [5, 6, 12]. The effect of crosslinking
introduces additional terms into this equation. This extended Flory-Huggins equation then
contains a number of constitutive parameters. By allowing these parameters to depend upon
temperature, fluid chemistry, electrical field and light exposure, this framework can be used
to describe free swelling equilibrium deformation in a variety of circumstances.

Mechanical loads that promote volume increase generally cause fluid uptake while loads
that promote volume decrease generally cause fluid egress. A suitable generalization of the
Flory-Huggins framework as given by Flory and Rehner [7] can treat the effect of bound-
ary displacements and external loads upon equilibrium. For example, Treloar [20] describes
experiments on swelling of strained rubber in terms of such a generalized framework. This
framework also extends to inhomogeneous deformation in which case the stress equations of
equilibrium must be satisfied. In this context, Treloar shows how such a Flory-Rehner frame-
work predicts that quasi-static torsional loading of a cylinder leads to fluid loss and hence
swelling reduction [19]. Mechanical constraint can also lead to inhomogeneous swelling
deformation as studied by Treloar in [21]. In a similar fashion, Rajagopal, Wineman and
collaborators analyze the quasi-static fluid redistribution in a porous elastomer where the re-
distribution occurs on the basis of either inhomogeneous quasi-static torsional deformation
[9] or inhomogeneous quasi-static twisting deformation [23].

The treatments [9, 19, 21, 23] describe equilibrium situations in which both the fluid
component and the polymer matrix component of the system are at rest. In particular, each
material point in the gel is regarded as a two component mixture of polymer matrix and
interpenetrating liquid. Once equilibrium has been attained there is no relative motion be-
tween the fluid and matrix components so it is not necessary to invoke the broader contin-
uum mechanical framework that specifically deals with separate mechanical balance prin-
ciples for each component. This broader framework is known by a number of names, in-
cluding: the theory of interacting continua, and large deformation mixture theory [15]. Of
course, such broader frameworks can also be used to analyze equilibrium in which case the
lack of relative motion between the fluid and matrix simplifies the resulting treatment (viz.
[9, 23]). Alternatively, the equilibrium can be analyzed directly without invoking the full
mixture theory framework [19, 21], which has the additional advantage of making for a
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more straight forward specification of boundary conditions. On the other hand, a framework
such as mixture theory is required during the time that dissipative processes are operative
prior to equilibrium. Examples of mixture theory type treatments for describing the dynam-
ical process of time dependent swelling include [1, 8, 16] where a major focus is on how the
liquid component diffuses within the elastomeric matrix.

Our exclusive focus in this paper is on equilibrium states. Thus any reference to loading
in this paper is to be understood in a quasi-static sense. To describe real loadings in this
way thus requires that the system is close to equilibrium at all times. We further assume
that there is negligible hysteresis in the equilibrium mechanical response.1 This permits
a hyperelastic treatment in which there is an underlying notion of energy minimization.
Such an assumption by itself amounts to placing certain requirements on the nature of the
dissipative processes that govern the approach to any reestablished equilibrium [14].

Here we consider equilibrium states associated with quasi-static mechanical loadings
that can lead to both fluid loss (swelling reduction) and fluid gain (swelling increase). For
loadings that give fluid gain, a gradually increasing load draws an ever increasing amount of
fluid into the gel. If the total amount of available fluid is limited, then it will eventually be the
case that no additional fluid is available for uptake into the gel system. From this point on,
the overall fluid content of the gel system remains fixed at a value below that associated with
liquid saturation. We shall refer to such gels as being nonsaturated.2 Thus in such a case the
system transitions from a state of saturation to a state of nonsaturation at a particular point
on the quasi-static load path. It is the object of this paper to discuss various aspects of the
hyperelastic modeling of such an equilibrium transition.

In extending the original Flory-Huggins framework so as to incorporate the effect of
polymer network elasticity and mechanical loading, one must supply a constitutive model
for the hyperelastic properties of the polymer matrix component of the gel system. Moti-
vated by the previous works [9, 19, 21, 23], we develop examples where this aspect of the
constitutive model is supplied by the well known Mooney-Rivlin form. Both the polymer
matrix component and the fluid component of the gel system are regarded as individually
incompressible when isolated from the other component. However the equilibrium response
of the overall gel system, so long as it is saturated, can then be described in terms of a hy-
perelastic framework in which the gel system is nominally compressible. This is because
a fixed amount of polymer component can be regarded as defining a gel “element”. The
amount of fluid component within such a gel element is not fixed, so that fluid flowing in or
out of the gel element causes a change in its volume. In other words, compressibility arises
as a consequence of the open nature of the gel element. This is in keeping with Treloar’s
treatment. He writes in [20] that if a rubber that is incompressible in the absence of a liquid
swelling agent is subsequently swollen, then the

. . . swollen rubber in continuous equilibrium with a surrounding liquid may be re-
garded, from the purely formal standpoint, as having mechanical properties equivalent
to those of a compressible material.3

In particular, since the rubber that is referred to in the above quote is regarded as being
in contact with a liquid bath, the situation refers to a state of liquid saturation. Thus the

1There would certainly be hysteresis in the time dependent non-equilibrium response.
2Alternatively, we could could say that such gels are unsaturated, however we refer to such gels as nonsatu-
rated in this paper (with the exception of the title).
3A longer extract from [20] containing this prescient quote is given in [15].
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saturated equilibrium response is formally described by a single stored energy density func-
tion. This stored energy function has a Flory-Huggins contribution (which only depends on
volume change) and a contribution that reflects the elastic properties of the polymer matrix
(which, as mentioned above, we take to be of Mooney-Rivlin form). The saturated Cauchy
stress tensor then follows from this stored energy density as in compressible hyperelasticity.
The local volume change in the deformation then directly correlates to the local change in
fluid content.

We first consider load induced transition between liquid saturation and lack of liquid
saturation in the context of homogeneous deformation. The relevant stress vs. stretch quasi-
static response with liquid saturation is examined for the separate cases of uniaxial loading,
equibiaxial loading and equitriaxial loading. For some of these standard loadings, certain
choices of the constitutive parameters give rise to nonmonotone relations among: the vari-
ous stress components, the stretches, and the volume change. This may point to the need to
consider alternative constitutive forms in the modeling of any specific gel system. For our
purposes, however, this wide range of phenomena exposes a variety of qualitative mechani-
cal responses which may be of interest.

These quasi-static loadings generate changes in the gel volume due to a changing fluid
content, and we consider the transition to a nonsaturated response in the event that the gel
volume reaches a threshold value determined on the basis of the amount of available fluid.
No further overall volume increase may take place once the threshold has been attained.
This volume constraint gives rise to an overall confining pressure. Continued quasi-static
loading may allow the now fixed amount of fluid in the gel to redistribute spatially, so long
as the overall volume is conserved. For the fluid distribution to vary spatially, it is necessary
for the stresses to vary spatially.

For homogeneous deformation the amount of fluid is the same everywhere. For homoge-
neous deformation after such a loss of saturation, the spatially constant local fluid content is
completely determined on the basis of the amount of originally available fluid. Thus, echoing
Treloar, the nonsaturated quasi-static mechanical properties of the gel under homogeneous
deformation are, from the purely formal standpoint, equivalent to those of an incompressible
material where the fixed local volume is the specific threshold volume.4 Stress vs. stretch
quasi-static response curves for nonsaturation can be calculated for any desired value of
the threshold volume. Any such nonsaturated response curve can be regarded as branching
off of the original saturated response curve. Hence the saturated response curve serves as
a “backbone” curve such that the various nonsaturated response curves then branch off of
this backbone curve. The nonsaturated response is inherently stiffer than the saturated re-
sponse. In particular, the nonsaturated stress–stretch response curves have greater slope than
the saturated response curves at the branching points.

Similar considerations govern inhomogeneous deformation, in which case it is neces-
sary to construct solutions to relevant boundary value problems. For saturated response, the
treatment remains formally identical to the conventional hyperelastic theory as was the case
in the equilibrium problems considered in [19, 21]. Here we wish to consider a boundary
value problem generating inhomogeneous deformation such that the overall volume of the
gel increases as some loading parameter increases. In this way, we can consider the tran-
sition from saturation to nonsaturation in the context of inhomogeneous deformation. For

4By specific threshold volume we mean the threshold volume divided by the polymer volume. It is also
important to note that the analogy with incompressible material behavior does not hold for nonsaturated
response under inhomogeneous deformation because the local volume may then vary spatially.
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this purpose, we consider a cylinder with annular cross section that is first everted and then
extended axially.

The simple eversion deformation (turning a cylinder inside-out in such a way that cylin-
drical surfaces are mapped to cylindrical surfaces) has been studied extensively in hyperelas-
ticity beginning with Rivlin [17]. For the Mooney-Rivlin constitutive law, he found that the
simple eversion deformation was not consistent with conditions of zero-traction boundary
conditions at the two ends, which motivated him to employ zero end resultant load condi-
tions instead. This is consistent with turning a small piece of rubber tubing inside-out and
then letting it go. If the tube remains inside-out upon release, one observes that the ends typ-
ically flare out a bit. This indicates that some departure from a simple eversion is necessary
to meet a zero traction condition. Varga [22] gives experimental examples for the eversion
of different cylinders with free ends, and discusses the extent to which the conditions for a
simple eversion deformation are met in the region away from the two ends. Analytical study
of the eversion deformation in the context of compressible hyperelasticity is given in [3, 10,
11].

For the eversion of a gel cylinder, the boundary value problem when the cylinder is satu-
rated is formulated as in conventional compressible hyperelasticity. Since we are here deal-
ing with a form for the stored energy density that involves both a Flory-Huggins contribution
and a Mooney-Rivlin contribution, one finds that the eversion problem must be solved nu-
merically. As one would anticipate, the numerical solution shows that stretching the cylinder
by increasing the axial load causes an increase in the total volume of the everted cylinder.
Transition from a saturated condition to a not saturated condition takes place if the amount
of fluid for intake into the cylinder is limited. The boundary value problem for a cylinder
that is not saturated is formulated with the constraint that the total volume of the cylinder is
fixed. This is a global constraint and not a pointwise constraint. As such the associated con-
straint pressure does not vary spatially. The mathematical character of the boundary value
problem does not change significantly after the transition from saturation to nonsaturation.
In particular, the governing equations of equilibrium remain the same, since the constraint
pressure term in the Cauchy stress is spatially constant and so vanishes upon differentiation.
The constraint pressure does however enter into the boundary conditions, and this provides
the additional freedom to meet the global volume constraint.

We find that the physical character of the nonsaturated solution to the eversion problem
differs from that of the particular saturated solution that would obtain if sufficient fluid had
been present. As in the case of homogeneous deformation, it is found that the nonsaturated
quasi-static response is inherently stiffer than a continued saturated response. Since the total
volume remains fixed after a transition from saturation to nonsaturation, the total fluid con-
tent also remains fixed. However it is found that this fixed amount of fluid can redistribute
within the everted cylinder as the quasi-static loading proceeds.

2 The Flory-Huggins Equation for the Determination of Free Swelling

The most basic description of large strain effects in elastomeric gels concerns the determi-
nation of the amount of fluid that perfuses a polymer matrix when it is placed in a liquid
bath. Let ν denote the volume fraction of polymer matrix so that 1 − ν is the volume frac-
tion of the fluid component. A standard development proceeds by taking molecular chain
arguments for configurational entropy of crosslinked macromolecules within a liquid bath,
and coupling these to a phenomenological description of enthalpy of mixing [18, 20]. The
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requirement of a stationary free energy then leads to the equation

M
[

ln(1 − νf s) + νf s + χν2
f s

]

︸ ︷︷ ︸
dilution

+ μν
1/3
f s︸ ︷︷ ︸

crosslinking

= 0 (1)

for the equilibrium free-swelling value of ν which, as indicated above, will be denoted by
νf s . Here M > 0, χ and μ > 0 are constitutive parameters that may vary with temperature,
pH, fluid chemistry, and other environmental factors. As indicated in (1), two separate effects
can be identified, that associated with dilution and that associated with crosslinking. In the
absence of crosslinking, the equation reduces to that for the effect of dilution alone, and this
is the equation that is usually referred to as the Flory-Huggins equation [20]. The dilution
term itself models the two effects of mixing entropy and mixing enthalpy. The term con-
taining χ models the latter and is positive for the standard case wherein polymer–polymer
and liquid–liquid grouping is favored over polymer–liquid grouping. In particular, larger χ

favors polymer–polymer aggregation so that νf s increases with χ . The remaining part of the
dilution term models the entropy contribution of polymer–liquid mixing to the free energy.
In particular, the parameter M is identified as the product of the ideal gas constant and the
absolute temperature divided by the molar volume of the liquid.

The utility of a theory that delivers (1) is due in no small part to the fact that (1) has a
unique solution νf s that takes values on the physically relevant interval 0 < νf s < 1. This
solution is here referred to as the free swelling polymer volume fraction. It is completely de-
termined by χ and the ratio μ/M . Thus one may then write νf s = ν̂f s(χ,μ/M). Increasing
either χ or μ/M favors a more tightly bound gel and so increases ν̂f s(χ,μ/M).

Additional thermodynamic quantities that are then derived from this framework, such
as the relative vapor pressure of the liquid swelling agent [20], show good agreement with
experiment and so validate the basic soundness of the theoretical assumptions. It must how-
ever be remembered that the specific functional form in (1) is the result of geometrical and
statistical arguments involving crosslinked macromolecular chains. For example, as is evi-
dent from the development given by Doi [4], the term in (1) that arises from configurational
entropy considerations, i.e. M(ln(1 − νf s) + νf s), is ultimately based on a counting argu-
ment which is itself simplified by neglecting certain terms that can be regarded as small so
long as the polymer is composed of very many chain segments. Similarly, the term aris-
ing from crosslinking, μν

1/3
f s , involves assumptions on the geometry and statistics of the

crosslink network. Different assumptions with regard to microstructural effects (the nature
of the crosslinking, the interaction enthalpy, the overall chain extensibility, etc.) or different
analysis of the microstructural effects (self-avoiding chains, etc.) would in general lead to
modification of (1). Nevertheless the basic idea remains, energy minimization determines
the free swelling volume fraction so that the specific form of the energy to be minimized
is the central ingredient in the description. The situation is analogous to that of conven-
tional hyperelasticity wherein a well known microstructural argument makes plausible the
neo-Hookean strain energy density function (viz. [20]), whereas different arguments lead to
other forms, all of which can be used to analyze the deformation of rubbery materials.

The connection between free swelling and hyperelasticity follows by introducing the
deformation mapping that takes the polymer component from its original unswollen location
X to its stressed, swollen location y. Let J = det F where F = ∂y/∂X is the deformation
gradient of the mapping y(X). Correspondence between J and ν is immediate if both the
polymer component and the fluid component are individually incompressible since simple
mixing then gives the identification J = 1/ν. Thus J is the volumetric swelling of the gel as
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measured with respect to the polymer component before liquid was present. It is therefore
required that

J ≥ 1. (2)

Historically, the original development leading to (1) employed a notion of physical vari-
ations. In particular, rather than using physical arguments to obtain an explicit energy to
minimize, the original papers of Flory and Treloar employ an argument which requires that
there is no change in the free energy of the system in the event that a single fluid particle is
transfered between the gel and the pure liquid which surrounds the gel. Although the free
swelling volume fraction appears in (1), the original arguments leading to this equation ac-
tually depend more on the concept of occupied volume rather than the related concept of
volume fraction. The connection between occupied volume and volume fraction then fol-
lows from J = 1/ν. The argument involving fluid particle transfer can thus be viewed as a
variation with respect to J . Accordingly, the energy that is formally minimized can be found
by substituting νf s → 1/J in (1), integrating the resulting expression with respect to J , and,
if desired, returning to the original volume fraction variable via J → 1/νf s . Hence (1) is
equivalent to determining the free-swelling value of J as the root of

d

dJ

(
H(J ) + Ψ (J )

) = 0, (3)

with

H(J ) = M
(
(J − 1) ln(1 − J−1) + χ(1 − J−1)

)
, (4)

and

Ψ (J ) = 3μ

2
J 2/3. (5)

Here H + Ψ is the overall free energy, the former accounting for polymer-fluid interac-
tion (mixing entropy and mixing enthalpy), the latter accounting for elastomeric deforma-
tion of the crosslinking network. The limiting case μ → 0 corresponds to the absence of
crosslinking and hence no elastic effect. Equation (3) then reduces to h(J ) = 0 where we
have introduced the notation

h(J ) ≡ ∂H

∂J
. (6)

It is to be remarked that (2) and (3) can be regarded as a general framework, which retrieves
the well known equation (1) once the specific mathematical forms (4) and (5) are invoked.
Thus statements involving the functions H and Ψ need not be tied to (4) and (5) unless
specifically indicated. Similarly, (6) is a definition for h that is not tied to any constitutive
form. For the specific constitutive function (4), h is given by

h(J ) = M
[
ln(1 − J−1) + J−1 + χJ−2

]
. (7)

The basic behavior of this framework with the usual forms (4) and (5) is sensitive to whether
χ < 1/2 or χ > 1/2 as described next.

If (4) and (5) hold and χ > 0.5 then there is a unique value of J > 1 that causes h to
vanish. This value of J corresponds to free swelling in the absence of crosslinking and we
denote this value by Jncl where the subscript refers to no crosslinking. Thus h(Jncl) = 0
and Jncl = 1/ν̂f s(χ,0). Moreover h(J ) < 0 for 1 < J < Jncl and h(J ) > 0 for J > Jncl .
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Fig. 1 The constitutive function h(J ) in (7) for various χ . Vaues of J giving h(J ) = 0 model gel dilation
on the basis of mixing entropy and mixing enthalpy, but do not account for the elastic effect of polymer
crosslinking

Fig. 2 The constitutive expression h(J ) + μJ−1/3 for various χ when μ = 0.01M . The new term μJ−1/3

describes the effect of crosslinks. Values of J giving h(J ) + μJ−1/3 = 0 describe free swelling

Consequently Jncl provides a local minima of H . One also finds that Jncl < 2χ/(2χ − 1)

and that Jncl → ∞ as χ → 0.5.
If (4) and (5) hold and χ < 0.5 then there are no solutions to h(J ) = 0 because h(J ) < 0

for all J > 1. Hence for χ < 0.5 the infimum of H is achieved as J → ∞. Since h(J ) → 0
as J → ∞ it is convenient to formally define Jncl ≡ ∞ for χ < 0.5. The derivative h′(J ) > 0
for all J > 1. These qualitative features are summarized in Fig. 1.

Accounting for elastic interconnection (μ > 0), (3)–(5) become h(J ) + μJ−1/3 = 0. In
conjunction with (7) this recovers (1) for the free swelling value Jf s ≡ 1/νf s . There is a
unique finite Jf s solution to (3)–(5) for all χ whenever μ > 0, which is formally given by
Jf s = 1/ν̂f s(χ,μ/M). This solution obeys the inequality Jf s < Jncl as would be expected
since the crosslinking inhibits swelling. Further h(J ) + μJ−1/3 is respectively positive or
negative as J is respectively greater than or less than Jf s . Figure 2 indicates these relations.

A simple interpretation concerns polymer that has some original volume, say Vp , when
free of liquid. Placing this nominally dry polymer into a liquid bath causes it to swell by
uptake of fluid. The resulting gel occupies new volume JVp where J minimizes the free
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energy H(J ) + Ψ (J ). For the energy forms (4) and (5) this free energy involves the three
previously mentioned effects, one of which favors swelling (the configurational entropy),
one of which opposes it (crosslinking), and one of which could go either way (mixing en-
thalpy) although it opposes swelling in the standard case χ > 0. In all cases, crosslinking
(μ > 0) ensures that the swollen volume remains finite. If crosslinks are not present (μ = 0)
then the mixing enthalpy must sufficiently favor same phase agglomeration (χ > 0.5) for
the swollen volume to remain finite. However if crosslinking is not present and the mixture
enthalpy is not sufficiently conducive to this same phase agglomeration (μ = 0 and χ < 0.5)
then J → ∞ and the polymer goes into solution, dispersing itself throughout the fluid bath.

Implicit in the above discussion is a requirement that sufficient liquid is available for
saturation of polymer with the liquid. This requires that

JVp ≤ Vp + Vf , (8)

where Vf is the original fluid volume prior to introduction of polymer. If (8) holds then the
gel swells to its energetically favored saturation value. However if J as determined on the
basis of (3) is larger than that permitted by (8) then the swelling is limited by the availability
of fluid to the value

J∗ ≡ 1 + Vf /Vp (9)

which is less than the free swelling value Jf s determined on the basis of (3). The gel is then
no longer saturated. In what follows the use of a subscript ∗ or a superscript ∗ will denote a
value that demarcates a transition between saturation and nonsaturation.

3 Hyperelastic Constitutive Theory

In free swelling, the deformation gradient of the mapping y(X) is F = J
1/3
f s I where I is the

identity tensor. In order to treat more general deformations due to the effect of mechanical
loading, we now consider a hyperelastic framework. Let B = FFT and C = FT F and let I1,
I2 and I3 be the associated principal scalar invariants

I1 = Trace B, I2 = 1

2
(I 2

1 − Trace(B2)), I3 = det B = J 2.

The overall stored energy density will be expressed as the sum of elastic free energy of the
polymer network Φ and a mixing free energy H

W(F) = Φ(I1, I2, J ) + H(J ). (10)

The mixing energy H is the same as that discussed in the previous section and its derivative
will continue to be denoted by h (viz. (6)). The specific Flory-Huggins form (4) for H will
be used in the examples that follow.

3.1 Free Swelling

In the absence of mechanical loading, the associated free swelling is determined by mini-
mizing W in the class of simple volumetric expansions F = J 1/3I so that I1 = 3J 2/3 and
I2 = 3J 4/3. Thus J is determined on the basis of

d

dJ

(
Φ(3J 2/3,3J 4/3, J ) + H(J )

) = 0.
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Comparison with (3) indicates that correspondence with the free swelling framework de-
scribed in the previous section will follow provided that

Φ(3J 2/3,3J 4/3, J ) = Ψ (J ) + constant.

Correspondence with the particular Flory-Huggins form (5) will obtain if

Φ(3J 2/3,3J 4/3, J ) = 3μ

2
J 2/3 + constant.

In what follows we shall use the Mooney-Rivlin form for the elastic energy Φ of the polymer
network

Φ = Φ(I1, I2) = μ

2

[
(1 − ξ)(I1 − 3) + ξ(I2 − 3)

]
, (0 ≤ ξ ≤ 1). (11)

The case ξ = 0 gives the neo-Hookean specialization. For any ξ obeying 0 ≤ ξ ≤ 1 in (11),
one finds that

Φ(3J 2/3,3J 4/3, J ) = 3μ

2

(
(1 − ξ)J 2/3 + ξJ 4/3 − 1

)

so that the special neo-Hookean case of ξ = 0 retrieves the original equation (1) upon taking
J = Jf s = 1/νf s . For the more general Mooney-Rivlin form with ξ > 0 equation (1) is
augmented so as to contain an additional term and so becomes

M
[
ln(1 − νf s) + νf s + χν2

f s

] + μ
[
(1 − ξ)ν

1/3
f s + 2ξν

−1/3
f s

] = 0. (12)

Introduce the free swelling stretch ratio

ζ ≡ J
1/3
f s = ν

−1/3
f s , (13)

where νf s is the root of (12). This root now depends upon ξ in addition to χ and μ/M .
As such, the free swelling behavior under (12) is not as simply described as was the case
for (1). Some indication of the effect of the new constitutive parameter ξ upon νf s can be
obtained by taking representative values for χ and μ/M . To this end we follow [23] where
the equivalent of a neo-Hookean Φ is considered for the modeling of a vulcanized rubber
in contact with toluene as considered by Paul and Ebra-Lima in [13]. The following values
are taken in [23]: M = 2.379 × 108 dyne/cm2, χ = 0.425 and μ = 2.375 × 106 dyne/cm2.
Note for these values that the dimensionless parameter M̄ = M/μ = 100.17 ≈ 100. The
value of the free swelling stretch ratio ζ as a function of ξ for various M̄ and χ are shown
in Fig. 3. The dotted curves in Fig. 3(a) and Fig. 3(b) are respectively associated with the
above parameters M̄ = 100 and χ = 0.425.

3.2 Stress

Let T and σ give the first Piola-Kirchhoff and Cauchy stress tensors, respectively. They are
connected by

σ = 1

J
TFT . (14)

Mechanical equilibrium is governed by the usual equations

Div T = 0 on ΩX ⇔ divσ = 0 on Ωy, (15)
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Fig. 3 The free swelling stretch ratio ζ as given by (12) and (13) is a function of M̄ , χ and ξ . The dependence
of ζ on ξ is shown for various M̄ and various χ

where ΩX and Ωy denote the gel domain in the reference and deformed configuration, re-
spectively. We continue to let Vp and Vf be the volume of polymer and fluid respectively.
In particular

Vp =
∫

ΩX

dVX. (16)

After mixing the local gel volume is J so that the overall gel volume is

V ≡
∫

ΩX

J dVX. (17)

The maximum overall gel volume is Vp + Vf corresponding to uptake of all fluid into the
gel. So long as this does not occur the gel is able to saturate. The system is not saturated
only if V = Vp + Vf . Together this gives the global constraint

∫

ΩX

(J − 1) dVX ≤ Vf . (18)

If the system is saturated then the first Piola-Kirchhoff stress tensor is given by T =
∂W/∂F and the saturated Cauchy stress tensor is

σ = 2

J
F

∂Φ

∂C
FT + h(J )I, (saturated), (19)

where the first term on the right hand side follows exactly as from conventional hyperelas-
ticity and the second term on the right hand side follows upon recalling that ∂J/∂F = JF−T .

If, however, the material is not saturated, then a constant reaction stress −pI is generated
so as to enforce the constraint (18). This gives the nonsaturated Cauchy stress tensor

σ = 2

J
F

∂Φ

∂C
FT + h(J )I − pI, (not saturated). (20)
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Thus, as in incompressible hyperelasticity, there is a pressure contribution to the Cauchy
stress tensor that is not determined by the deformation.

Here, however, it is important to emphasize that the constraint (18) is a global one. This
is in contrast to the situation in conventional incompressible hyperelasticity in which the
constraint det F = 1 is a local one. The pointwise constraint in incompressible hyperelastic-
ity gives rise to a reactive pressure that can vary spatially. In contrast, the pressure p in (20)
takes the same value at every point in the nonsaturated gel. In particular, since p in (20) is
constant, a condition of spatially varying J does not generally permit the last two terms in
(20) to be consolidated into a single term with redefined p.

Evaluating ∂Ψ/∂C in terms of the dependence on I1, I2, J gives

σ = − 2

J

∂Φ

∂I2
B2 + 2

J

(
∂Φ

∂I1
+ I1

∂Φ

∂I2

)
B +

(
∂Φ

∂J
+ h(J )

)
I, (saturated), (21)

while the nonsaturated Cauchy stress tensor becomes

σ = − 2

J

∂Φ

∂I2
B2 + 2

J

(
∂Φ

∂I1
+ I1

∂Φ

∂I2

)
B +

(
∂Φ

∂J
+ h(J ) − p

)
I, (not saturated). (22)

4 Homogeneous Deformation Response

We now consider the homogeneous deformation response using the constitutive forms (11)
and (4) in (10). Since J is a constant for homogeneous deformation, condition (18) reduces
to the same condition as in free swelling, namely (8). This in turn is equivalent to the condi-
tion J ≤ J∗ where J∗ is defined in (9). The Cauchy stress tensor then follows from (21) and
(22) as

σ = μ

J
[(1 − ξ + ξI1)B − ξB2] + h(J )I, (1 ≤ J < J∗), (23)

σ = μ

J∗
[(1 − ξ + ξI1)B − ξB2] + (h(J∗) − p)I, (J = J∗). (24)

Since the term (h(J∗) − p) in (24) involves constant h(J∗) and an arbitrary constant p, it
follows that h(J∗) can be absorbed into p. However later, when inhomogeneous deformation
is considered, it will be necessary to retain h(J ) in the nonsaturated Cauchy stress tensor.

We now consider in turn: equibiaxial loading, uniaxial loading, and equitriaxial loading.
Each is referred to a coordinate system with mutually orthogonal unit vectors e1, e2, e3.

4.1 Equibiaxial Stress

This is the specialization σ = σ(e1 ⊗ e1 + e2 ⊗ e2) and we restrict attention to deformations
that preserve the loading symmetry so that F = λ(e1 ⊗ e1 + e2 ⊗ e2) + (J/λ2)e3 ⊗ e3. For a
saturated material it follows from (23) that

μ

[
λ2

J
+ ξ

(
λ2

J
(λ2 − 1) + J

λ2

)]
+ h(J ) = σ, (saturated), (25)

and

μ

[
J

λ4
+ ξ

(
J

λ4
(2λ2 − 1)

)]
+ h(J ) = 0, (saturated). (26)
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Fig. 4 Stress–stretch behavior and volume–stretch behavior for equibiaxial loading of a saturated gel with
M̄ = 100 and χ = 0.425 showing the effect of different ξ

The second equation provides the relation between J and λ whereupon the first equation
provides σ in terms of either λ or J . The graph of stress vs. stretch passes through the point
(λ,σ ) = (ζ,0) which corresponds to the state of free swelling. Recalling the requirement
that J ≥ 1 consider the limit J → 1 in (25) and (26). For h in (26) given by (7) this limit
gives

λ ∼
{

(− M
μ(1−ξ)

ln (1 − J−1))−1/4, if 0 ≤ ξ < 1,

(− M
2μ

ln (1 − J−1))−1/2, if ξ = 1,
(27)

so that, in all cases, J → 1 as λ → 0. According to (25) this requires σ → −∞ as follows:

σ ∼ h(J ) ∼ M ln (1 − J−1) ∼
{−μ(1 − ξ)λ−4, if 0 ≤ ξ < 1,

−2μλ−2, if ξ = 1.
(28)

Thus the limit σ → −∞ forces all of the liquid out of the gel, and in this limit λ → 0.
Returning to the overall stress behavior, we find for M = 100μ and χ = 0.425 that J

is monotone in λ for all 0 ≤ ξ ≤ 1. The graph of σ vs. λ is also found to be monotone for
these parameters (Fig. 4). Thus increasing stretch corresponds to both increasing stress and
increasing fluid content. This situation holds so long as J < J∗.

A transition from a state of saturation to a state of nonsaturation occurs when J = J∗.
This occurs at a unique value of λ, say λ∗

eqbi , and a unique value of stress, say σ ∗
eqbi . For

λ ≥ λ∗
eqbi the value of J remains fixed at J∗ and the relation between stress and stretch is

now determined on the basis of (24). This gives F = λ(e1 ⊗ ê1 + e2 ⊗ e2) + (J∗/λ2)e3 ⊗ e3

and

σ = μ

[
(1 − ξ)

(
λ2

J∗
− J∗

λ4

)
+ ξ

(
λ4

J∗
− J∗

λ2

)]
, (not saturated). (29)

It is to be remarked that the nonsaturated response does not depend upon h(J ).
The solid curve in Fig. 5 shows the saturated backbone curve σ vs. λ for ξ = 0. The

transition stretch λ∗
eqbi can take on any value as determined by J∗, and three values of λ∗

eqbi

are taken as examples. At each such λ∗
eqbi there is a transition from saturated to nonsaturated
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Fig. 5 Stress–stretch behavior for equibiaxial loading with M̄ = 100, χ = 0.425, and ξ = 0. Three non-
saturated response curves are depicted. Each nonsaturated response branches off of the saturated response
“backbone curve”

response, and the associated nonsaturated response curve that branches off of the backbone
curve does so in a continuous but nonsmooth fashion. The nonsaturated response involves
an abrupt stiffening as evidenced by the greater slope of the nonsaturated curve at the branch
point. To be specific, suppose λ ≥ λ∗

eqbi so that the gel is not saturated because insufficient
liquid is available. Consider the difference in the value of stress for the nonsaturated re-
sponse and the value of stress for a hypothetical saturated response had sufficient liquid
been available. This difference is

σnon − σsat =
[
μ(1 − ξ)λ2

(
1

J∗
− 1

J

)]
+

[
μ(1 − ξ)

λ4
(J − J∗)

]

+
[
μξλ4

(
1

J∗
− 1

J

)]
+

[
μξ

λ2
(J − J∗)

]
, (30)

where J in the above expression is the saturation value. Since J > J∗ if λ > λ∗
eqbi it follows

that each of the four separate bracketed terms in the above expression is positive after loss
of saturation. One therefore formally verifies that σnon > σsat if λ > λ∗

eqbi . In addition, by
differentiating the expression in (30) with respect to λ and then evaluating the result at
λ = λ∗

eqbi and J = J∗, one obtains the slope difference at the location where a nonsaturated
response curve branches off of the saturation response curve. This calculation gives

d

dλ
(σnon −σsat)

∣∣
∣∣
λ=λ∗

eqbi

= μ

[
(1 − ξ)

(
λ2

J 2∗
+ 1

λ4

)
+ ξ

(
λ4

J 2∗
+ 1

λ2

)]∣∣
∣∣
λ=λ∗

eqbi

dJ

dλ

∣∣
∣∣
λ=λ∗

eqbi

. (31)

Noting that the bracketed term in the above expression is positive, it follows that the sign
of the above expression is determined by the sign of the derivative dJ/dλ. Since, as re-
marked above, J increases with λ it follows that the slope difference is strictly positive, thus
quantifying the abrupt stiffening.
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Returning to Fig. 5 it is observed that two of the three nonsaturated response curves
depicted in this figure involve values of J∗ that give σ ∗

eqbi > 0. For these two J∗ there is
sufficient liquid for free swelling and the resulting loss of saturation occurs once σ increases
to σ ∗

eqbi > 0. The third nonsaturated response curve depicted in Fig. 5 involves a value J∗
that gives σ ∗

eqbi < 0. In this case there is insufficient liquid for free swelling to proceed to its
saturated value. Thus the value σ = 0 occurs on a nonsaturated response curve. A biaxial
compressive stress will, in this case, give a response that proceeds down the nonsaturated
curve until it joins the saturated backbone curve. The resulting transition from nonsaturated
to saturated response now involves an abrupt softening in the Cauchy stress response.

4.2 Uniaxial Stress

This is the specialization σ = σe1 ⊗ e1 and we again restrict attention to deformations that
preserve the loading symmetry so that F = λe1 ⊗ e1 + √

J/λ(e2 ⊗ e2 + e3 ⊗ e3). For a
saturated gel it follows from (23) that

μ

[
(1 − ξ)

λ2

J
+ 2ξλ

]
+ h(J ) = σ, (saturated), (32)

and

μ

[
(1 − ξ)

1

λ
+ ξ

(
λ + J

λ2

)]
+ h(J ) = 0, (saturated). (33)

The latter provides the kinematic relation between J and λ (Fig. 6b) while the former
then gives the relation between uniaxial stress σ and stretch ratio λ (Fig. 6a). The graph
of stress vs. stretch again passes through the free swelling point (λ,σ ) = (ζ,0). The pre-
dicted behavior associated with the possibility of squeezing out all of the liquid in uniaxial
stress again requires the consideration of J → 1. For h given by (7) it is again found that
λ → 0 as J → 1. In particular, one finds that λ ∼ O([ln ((J − 1)−1)]−1/2) if 0 < ξ ≤ 1,
while λ ∼ O([ln ((J − 1)−1)]−1) if ξ = 0. In all cases σ → −∞ as λ → 0. As regards the
overall stress behavior, we find that σ is monotonically increasing with λ when M = 100μ

and χ = 0.425 for all 0 ≤ ξ ≤ 1.
For ξ = 0 it is found that the volume increases monotonically with axial stretch (viz.

Fig. 6b). Thus, as in the case of equibiaxial stress, there will be a loss of saturation when
J = J∗. The stress vs. stretch response must then be determined using (24). This gives

σ = μ

(
λ2

J∗
− 1

λ

)(
1 − ξ + ξ

J∗
λ

)
, (not saturated). (34)

Even though we are currently considering the case ξ = 0 we have, for the sake of later
discussion, given the more general expression in the above equation. Returning again to the
case ξ = 0, the associated nonsaturated response curve can again be regarded as branching
off of the backbone saturated response curve. As shown in Fig. 7, each nonsaturated response
curve is well separated from the backbone curve. Indeed as λ → ∞ the ξ = 0 specialization
of (32) and (33) give

J ∼
(

M̄

(
1

2
− χ

))1/2

λ1/2 + 1

3 − 6χ
+ O(λ−1/2), (ξ = 0, saturated), (35)
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Fig. 6 Stress–stretch behavior and volume–stretch behavior for uniaxial loading of a saturated gel with
M̄ = 100 and χ = 0.425 showing the effect of different ξ

and

σ ∼ μ

(M̄( 1
2 − χ))1/2

λ3/2 − 2

3M̄(1 − 2χ)2
λ + O(λ1/2), (ξ = 0, saturated). (36)

Specifically, the Cauchy stress for the saturated gel is O(λ3/2) as λ → ∞. In contrast, (34)
indicates that the Cauchy stress for the nonsaturated gel is O(λ2), which accounts for the
increasing separation between the response curves in Fig. 7.

It is useful to note that the separation between the saturated and nonsaturated stress re-
sponse for the ξ = 0 gel is not present in the corresponding first Piola-Kirchhoff stress.
Recalling (14) it follows that this stress is T = T e1 ⊗ e1 with T = σJ/λ. It then follows
from (32) and (33) that the large stretch Piola-Kirchhoff stress response of the saturated
ξ = 0 gel is

T ∼ μλ − μ

(
M̄

(
1

2
− χ

))1/2

λ−3/2 + O(λ−2), (ξ = 0, saturated). (37)

Turning to the first Piola-Kirchhoff stress response of a ξ = 0 gel that is not saturated, it is
immediate from (34) that

T = μλ − μ
J∗
λ2

, (ξ = 0, not saturated). (38)

Thus the saturated and nonsaturated Piola-Kirchhoff stress response have the same leading
order behavior as λ → ∞. Moreover, the separation between the saturated and nonsatu-
rated Piola-Kirchhoff stress response curves is O(λ−3/2) as the stretch increases, and hence
vanishingly small. Since first Piola-Kirchhoff stress directly scales with applied load in a
standard testing device, it follows that such a testing device may have difficulty distinguish-
ing between saturated response and nonsaturated response.

The situation is even more complicated for 0 < ξ ≤ 1 since we find for this case that J

exhibits a local maximum, say Jmax , at a finite value of uniaxial stretch. If Jmax < J∗ then
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Fig. 7 Stress–stretch behavior for uniaxial loading with M̄ = 100, χ = 0.425, and ξ = 0. Three nonsaturated
response curves are depicted

there is always sufficient liquid for the gel to remain saturated. However if Jmax > J∗ then the
saturation value of J will be greater than J∗ on a finite interval of stretch, say λ∗

uni−A < λ <

λ∗
uni−B where the endpoint values λ∗

uni−A, λ∗
uni−B correspond to J = J∗ in uniaxial loading.

On this interval the nonsaturated response is given by (34). The nonsaturated response curve
therefore branches off of the backbone curve at λ∗

uni−A and rejoins the backbone curve at
λ∗

uni−B . This is shown in Fig. 8, where it is to be remarked that the separation between the
ξ = 1 saturated and nonsaturated stress response is difficult to distinguish (unlike the ξ = 0
case shown in Fig. 7).

By a development parallel to that giving (30) one may show that any nonsaturated uniax-
ial response curve is above the backbone saturated uniaxial response curve. The change in
slope where a nonsaturated response curve connects to a saturated response curve can also
be found by the type of development that led to (31) for the equibiaxial case. The corre-
sponding result for uniaxial stress is

d

dλ
(σnon − σsat)

∣
∣∣
∣
λ=λ∗

uni

= μ

[
(1 − ξ)

λ2

J∗
+ ξ

λ2

]∣
∣∣
∣
λ=λ∗

uni

dJ

dλ

∣
∣∣
∣
λ=λ∗

uni

. (39)

The sign of this expression is again determined by the derivative term dJ/dλ. This deriv-
ative is positive at λ∗

uni−A and negative at λ∗
uni−B . Thus, under increasing stretch, an abrupt

stiffening occurs in the Cauchy stress for both the loss of saturation transition at λ∗
uni−A and

for the regain of saturation transition at λ∗
uni−B .

4.3 Equitriaxial Stress

This is the specialization σ = σ I with F = J 1/3I. The relation between σ and J then follows
from (23 and (7) as

σ = μ
[
(1 − ξ)J−1/3 + 2ξJ 1/3

] + M
[
J−1 + χJ−2 + ln(1 − J−1)

]
. (40)
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Fig. 8 The dependence of volume and stress on uniaxial stretch for M̄ = 100, χ = 0.425, and ξ = 1. Three
nonsaturated examples are shown corresponding to loss of saturation at λ∗

uni−A
= 1.5,1.6 and 1.7

Fig. 9 Stress–stretch behavior for equitriaxial loading of a saturated gel with M̄ = 100 and χ = 0.425
showing the effect of different ξ . For ξ > 0.038 the graphs are monotonic. For 0 < ξ < 0.038 the graphs
are decreasing on a finite interval in ξ

Thus (40) with σ = 0 and J = 1/νf s retrieves (12). As one would anticipate, σ > 0 implies
J > 1/νf s and vice-versa. Consider again M̄ = 100 and χ = 0.425. The graph of σ vs.
λ = J 1/3 is then found to be monotonically increasing provided ξ > 0.038. However if
ξ < 0.038 we find that the graph of σ vs. λ exhibits a stress maximum (Fig. 9). For 0 <

ξ < 0.038 the stress maximum is followed by stress minimum, after which the stress is once
again monotonically increasing. For ξ = 0 the stress is monotonically decreasing to zero as
λ → ∞.

Similar behavior occurs for values of M̄ = M/μ and χ that are close to (M̄,χ) =
(100,0.425). Specifically, it is found that the graph of σ vs. λ = J 1/3 is monotonically
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Fig. 10 Critical value ξcrit for the existence of a local stress maximum in the equitriaxial stress response.
For ξ > ξcrit the response is monotonic

increasing for all λ only if ξ is greater than a critical value ξcrit . This critical value varies
with both M̄ and χ (see Fig. 10). For certain values of M̄ and χ it is found that ξcrit = 1
meaning that there always exists a local maximum in the stress response for equitriaxial
loading. This occurs for example if M̄ = 100 and χ ≥ 0.752 as can be seen from Fig. 10b.

As is well known in hyperelasticity in general, nonmonotone stress response behavior
of the type encountered here when M̄ = 100, χ = 0.425, and 0 ≤ ξ < 0.038 is implicated
in various loss of stability phenomena. Such issues are beyond the scope of this article. In
contrast, for M̄ = 100, χ = 0.425, and ξ > 0.038 no such issues arise. Then, J increases
with σ and loss of saturation occurs at the constraining value J = J∗ when σ = σ ∗

eqtri ≡
μ[(1 − ξ)J

−1/3
∗ + 2ξJ

1/3
∗ ] + M[J−1∗ + χJ−2∗ + ln(1 − J−1∗ )]. For σ ≥ σ ∗

eqtri no additional

expansion is possible, and the deformation gradient is therefore stalled at F = J
1/3
∗ I. The

reactive pressure −p in (24) then renders the equitriaxial stress σ as formally indeterminant
for J = J∗ (see dashed curves in Fig. 11).

4.4 Some Energy Considerations

We close this section on homogeneous deformation with some remarks upon the energetic
aspects of saturated response vs. nonsaturated response. A standard expectation would be
that a saturated response would minimize an appropriate energy with respect to all nonsatu-
rated responses, since the former is able to take on any value of J . We consider this issue in
the context of uniaxial response, since that case offered the intriguing behavior such that, for
certain ξ , there could be a load induced loss-of-saturation followed later by a load induced
regain-of-saturation. Following the previous development in Sect. 4.2, we again restrict at-
tention to deformations that preserve uniaxial symmetry and we also assume that there is
sufficient liquid for a saturated free swelling.

Consider a unit cube that is oriented with respect to (e1, e2, e3) prior to swelling and prior
to the application of load. After free swelling, let the two sides with normal e1 be subject
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Fig. 11 Stress–stretch behavior for equitriaxial loading with M̄ = 100, χ = 0.425, and ξ = 0.5 showing
three examples of nonsaturated response. Since the stretch λ = J 1/3, no additional stretch is possible after
loss of saturation

to a uniform normal traction with resultant normal force P and let the four remaining sides
be traction free. The cube is deformed into a rectangular parallelepiped with stretch ratios
λ1 = λ and λ2 = λ3 = √

J/λ. One may distinguish between either a hard loading device or
a soft loading device. In the hard device, λ is regarded as given. For the soft loading device,
P is regarded as given.

The energy to be minimized for the hard device is simply the stored energy density as
given by the integral of W(F) over the reference configuration. Since the reference configu-
ration is the unit cube, it follows from (10) that

Ehard = Ēhard(λ, J ) ≡ Φ(λ2 + 2J/λ,2λJ + J 2/λ2, J ) + H(J ). (41)

For Φ given by (11) the expression for Ēhard is

Ēhard(λ, J ) = μ

2

[
(1 − ξ)

(
λ2 + 2J

λ
− 3

)
+ ξ

(
2Jλ + J 2

λ2
− 3

)]
+ H(J ). (42)

For the hard device, one minimizes Ēhard(λ, J ) with respect to J at fixed λ. Formally, the
first step in the minimization involves seeking solutions to

∂

∂J
Ēhard = 0, (43)

which gives an equation for J provided that J obeys J ≤ J∗. Notice that (43) with (42)
retrieves (33).

The soft device energy expression differs from the hard device expression by subtracting
the work that is done on the gel by the loading device. This represents the change in potential
energy of a conservative loading device so that the system under consideration involves both
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gel and loading device. The work of the load P on the unit cube is P (λ − 1) so that

Esoft = Ēsoft(λ, J,P ) ≡ Ēhard(λ, J ) − P (λ − 1). (44)

For the soft device, one minimizes Ēsoft(λ, J,P ) with respect to both J and λ at fixed P .
Formally, the first step in the minimization involves seeking solutions to

∂

∂J
Ēsoft = 0, and

∂

∂λ
Ēsoft = 0. (45)

Using Ēsoft = Ēhard − P (λ − 1) it follows that (45) is equivalent to

∂

∂J
Ēhard = 0, and

∂

∂λ
Ēhard − P = 0. (46)

Since P = σλ2λ3 = σJ/λ one verifies for Φ given by the Mooney-Rivlin form (11) that
(46) is the same as (32) and (33).

Thus both the hard and soft device analysis retrieves the saturation relation (33) between
λ and J for uniaxial stress. This is a standard type of argument in hyperelasticity, although
in the present context of a saturated gel it permits the determination of the fluid fraction
(1 − 1/J ). In addition, the soft device analysis gives the load that is necessary to support
this deformation. These relations hold so long as J ≤ J∗. If, however, the solution to the
above equations require that J > J∗ then the minimization is found to be given by taking
J = J∗. In this case the gel is not saturated. Viewed in this fashion, the nonsaturated mini-
mization occurs on the boundary of the minimization domain. It follows that a nonsaturated
solution can never provide a lower minimum than that of the saturated solution, since the
saturated minimization is able to explore a larger space of J values. Such considerations
arise generally if a hyperelastic material is composed of a mixture of substances where one
or more of them (here the liquid) is in limited supply.5

For specified λ, let the solution to (43) be J = J̄sat(λ). Figure 12a displays Ēhard(λ, J̄sat(λ))

vs. λ for the standard constitutive forms (4) and (11) with ξ = 1. This is the hard device en-
ergy associated with liquid saturation in uniaxial stress. This panel also displays the nonsat-
urated hard device energies Ēhard(λ, J∗) that are associated with the transitions previously
displayed in Fig. 8. The nonsaturated gels involve more energy than the saturated gel, al-
though it is a small effect in the figures. The saturated hard device energy Ēhard(λ, J̄sat(λ))

takes on its smallest value at λ = ζ which corresponds to free swelling.
In this context it is instructive to consider the graph of uniaxial load P as a function of

λ for both saturated and nonsaturated response, again using the constitutive forms (4) and
(11). The relation between P and λ for saturated response follows from (32) and (33) using
P = σJ/λ. The graph of this relation now supplies a backbone curve. The corresponding
relation between P and λ for nonsaturated response follows from (34) using P = σJ∗/λ.
Since the reference area of the unit cube is unity, it follows that the load P is simply the first
Piola-Kirchhoff stress T , which we recall appeared previously in (37) and (38) for the case
of the ξ = 0 gel. For general ξ it follows on the basis of the above considerations that

Pnon − Psat = μ(J − J∗)
[
(1 − ξ)

1

λ2
+ ξ

(
J∗ + J

λ3
− 1

)]
. (47)

5See e.g., [2] for a such a consideration when the substances in the elastic mixture are capable of chemical
reaction.
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Fig. 12 Comparison of a saturated and a nonsaturated gel under uniaxial load. On the left is a comparison
of the hard device energy expression. On the right is the resultant force as a function of stretch. As in Fig. 8
the constitutive parameters are given by M̄ = 100, χ = 0.425 and ξ = 1. The transitions are taken to occur at
λ = 1.5,1.6 and 1.7

Here J = J (λ) follows from (33), and so is given by the function J = J̄sat(λ) as defined
above.

Consider again the case that is associated with Fig. 12 in which the nonsaturated response
is confined to the interval λ∗

uni−A ≤ λ ≤ λ∗
uni−B where λ∗

uni−A and λ∗
uni−B depend upon J∗.

The graph of the P vs. λ saturated backbone curve is depicted in Fig. 12b along with the
nonsaturated P vs. λ curves on the finite intervals of nonsaturation. The nonsaturated curves
depart and rejoin the backbone curve at λ∗

uni−A and λ∗
uni−B . It is noted however that there is

an intermediate value of λ at which each nonsaturated curve crosses the backbone saturation
curve. The nonsaturated response is first above the saturated response and then below the
saturated response. It follows from (47) that the crossing value of λ is a root to (1 − ξ)/λ2 +
ξ((J∗ + J )/λ3 − 1) = 0. This crossing value of λ depends on J∗ and we find that it occurs
before the value of λ that gives Jmax for saturated response.

Here it is useful to note that the ordinary derivative of Ēhard(λ, J̄sat(λ)) with respect to λ

gives, after use of the chain rule and application of both results from (46), that

P = d

dλ
Ēhard(λ, J̄sat(λ)), (saturated). (48)

The corresponding result for the nonsaturated force–stretch response at any fixed value J∗
is given by

P = d

dλ
Ēhard(λ, J∗), (not saturated). (49)

Combining (48) and (49) gives a generalization of (47) in the form

Pnon − Psat = d

dλ

(
Ēhard(λ, J∗) − Ēhard(λ, J̄sat(λ))

)
. (50)

We may use (50) to show that the crossing exhibited in Fig. 12b is not tied to the particular
constitutive forms (4) and (11). Consider any H(J ) and Φ(I1, I2, J ) such that the saturated
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uniaxial response gives a local maximum in the relation between J and λ. In such a case,
if J∗ as given in (9) is somewhat6 less than the maximum value of J , then there will be an
interval of nonsaturation which will again be denoted by λ∗

uni−A ≤ λ ≤ λ∗
uni−B . In particular,

J̄sat(λ
∗
uni−A) = J̄sat(λ

∗
uni−B) = J∗. Integration of (50) now gives

∫ λ∗
uni−B

λ∗
uni−A

(Pnon − Psat) dλ =
(
Ēhard(λ, J∗) − Ēhard(λ, J̄sat(λ)

)∣
∣∣
λ∗

uni−B

λ∗
uni−A

= 0 − 0 = 0. (51)

It thus follows that there is zero net area between the saturated force curve and each nonsat-
urated force curve on the finite interval of nonsaturation. Thus crossing of the saturated and
nonsaturated force–stretch response curves must occur within the finite interval of nonsatu-
ration.

5 The Inhomogeneous Deformation of an Everted Tube under Axial Load

For inhomogeneous deformation, the spatially varying stress field must satisfy the equa-
tions of equilibrium (15). For the constitutive forms (4) and (11) the Cauchy stress tensor
is given by either (21) or (22) depending on whether the material is saturated or not satu-
rated. The only difference between these two formulae is due to the presence of p in the
nonsaturated Cauchy stress (22). Recalling that this p does not vary with location, it follows
that div(−pI) = −∇p = 0. Thus the equilibrium equations divσ = 0 are the same whether
the gel is saturated or not saturated. The distinction in mechanical response is due to the
requirement (18) which causes the gel to obey the constraint V = Vp + Vf (viz. (16), (17))
when it is no longer saturated. In the formal mathematical procedure, this constraint is met
by the presence of p in the boundary conditions. These issues will be demonstrated for the
inhomogeneous deformation of an everted tube subject to axial load. We shall continue to
use the Flory-Huggins constitutive form (4) for H and the Mooney-Rivlin constitutive form
(11) for Φ .

5.1 Formulation of the Everted Tube Problem

Consider a hollow circular cylinder using polar coordinates in the reference configuration
ΩX with

Ri ≤ R ≤ Ro, 0 ≤ Θ < 2π, 0 ≤ Z ≤ L, (Ro > Ri > 0). (52)

Let it then be immersed in the fluid. In the absence of external tractions the gel undergoes
free swelling. Provided that sufficient liquid is available for saturation, the deformation of
the freely swollen gel cylinder is described in polar coordinates (r̂, θ̂ , ẑ) as

r̂ = ζR, θ̂ = Θ, ẑ = ζZ. (53)

Here ζ is again the free swelling stretch ratio as defined in (13).
Next, the swollen cylinder is everted (turned inside-out). The resulting deformation is

described with respect to polar coordinates (r, θ, z) obeying ri ≤ r ≤ ro, 0 ≤ θ < 2π by

r = f (r̂), θ = θ̂ , z = −λ̂zẑ, (λ̂z > 0). (54)

6To be more precise, there will be a neighborhood for J∗ whose upper limit is the maximum value of J and
whose lower limit is dependent on the details of the local maximum.
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Combining (53) and (54) gives the transformation from the unswollen state (R,Θ,Z) to the
swollen everted state (r, θ, z):

r = f (ζR) = r(R), θ = θ̂ = Θ, z = −λzZ, (55)

with

ri ≤ r ≤ ro, 0 ≤ θ < 2π, −l ≤ z ≤ 0, (56)

where λz = λ̂zζ > 0 and l = λzL. The presence of the minus sign in the expression for z

in (54) gives rise to the eversion, and we seek solutions such that f ′ < 0 so that r ′ < 0. In
particular, it follows that

r(Ri) = ro, r(Ro) = ri . (57)

For now, λz is regarded as a free parameter. It will ultimately be associated with the axial
load on the ends z = −l and z = 0.

The deformation gradient tensor associated with the mapping (55) is F = r ′er ⊗ eR +
(r/R)eθ ⊗ eΘ − λzez ⊗ eZ where er , eθ , ez and eR, eΘ, eZ are respectively the cylindrical
polar unit basis vectors in the deformed and reference configurations, and r ′ = dr/dR. It
then follows that

I1 = r ′2 +
(

r

R

)2

+ λ2
z, I2 =

(
r ′r
R

)2

+ (
r ′λz

)2 +
(

r

R
λz

)2

, J = − r ′r
R

λz. (58)

For the constitutive relations (11) and (4) it follows from (21) that, for saturated response,
there are no shear stresses and that the normal stresses are given by

σrr = −μ
Rr ′

λzr

[
(1 − ξ) + ξ

(
r

R

)2

+ ξλ2
z

]
+ M

[ −R

λzrr ′ + χ

(
R

λzrr ′

)2

+ ln

(
1 + R

λzrr ′

)]
,

(59)

σθθ = −μ
r

λzRr ′
[
(1 − ξ) + ξλ2

z + ξr ′2] + M

[ −R

λzrr ′ + χ

(
R

λzrr ′

)2

+ ln

(
1 + R

λzrr ′

)]
,

(60)

σzz = −μ
Rλz

rr ′

[
(1 − ξ) + ξr ′2 + ξ

(
r

R

)2]
+ M

[ −R

λzrr ′ + χ

(
R

λzrr ′

)2

+ ln

(
1 + R

λzrr ′

)]
.

(61)

For nonsaturated response a common constant p is to be subtracted from these normal stress
expressions.

With the above stresses, the equilibrium equations associated with the θ and z directions
are satisfied identically. The equilibrium equation associated with the r direction is

d

dr

{
−μ

Rr ′

λzr

[
(1 − ξ) + ξ

(
r

R

)2

+ ξλ2
z

]
+ M

[ −R

rr ′λz

+ χ

(
R

rr ′λz

)2

+ ln

(
1 + R

rr ′λz

)]}

− μR

λzr2r ′
[
(1 − ξ) + ξλ2

z

]
[
r ′2 −

(
r

R

)2]
= 0. (62)
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The lateral surfaces of the everted tube are taken to be free of external tractions so that

σrr (ri) = 0, σrr (ro) = 0. (63)

Rearrangement of (62) yields a second order ODE for r(R) in the form

r ′′ = −2ξ rr ′2
R3 (r ′R − r) + r ′

r
[(1 − ξ) + ξλ2

z][r ′2 − ( r
R
)2] + λz(

r ′2
R

− rr ′
R2 )F (R, r, r ′, λz)

2r ′[(1 − ξ) + ξ( r2

R2 + λ2
z)] + λzr

R
F (R, r, r ′, λz)

(64)
where the function F(R, r, r ′, λz) is defined by

F(R, r, r ′, λz) = r ′2[(1 − ξ) + ξ( r2

R2 + λ2
z)]

J
− M

μ

(
1

J (J − 1)
− 2χ

J 2

)
(65)

and J is given by (58)3. Thus (64) with (63) provides an apparently well posed problem
for r(R). The solution describes an everted cylinder of saturated material so long as the
condition (18) is met. The solution is dependent upon constitutive parameters: μ, M , χ , ξ ,
and upon the stretch parameter λz.

The solution to this problem will generally give a radially varying σzz. In particular, a
condition of σzz being identically zero is not anticipated for any combination of parameters.
This is connected to the observed behavior in eversion type deformations on rubbery mate-
rials mentioned in the Introduction. Namely, some flaring out of the top and bottom of an
everted cylinder are observed in the absence of any tractions on the top and bottom surfaces.
Thus the observed traction free deformations are not in accord with the simple eversion de-
formation (54). This suggests that tractions on the top and bottom surface caps would be
necessary to sustain the simple eversion deformation. The deformation constructed on the
basis of (64) with (63) is consistent with these expectations.

The normal stress σzz generates an overall axial force on the everted cylinder. Normaliz-
ing this axial force by the original surface area of the caps gives

Pcap ≡ 2π

π(R2
o − R2

i )

∫ ro

ri

rσzzdr. (66)

It is to be noted that ri and ro defined in (57) are unknown before the solution is obtained.
For fixed material parameters, Pcap will depend upon λz. The force-stretch relation Pcap vs.
λz is analogous to the homogeneous deformation relation in uniaxial stress between P and
λ discussed in the previous section. Recall that this is given in general by (48), where the
specialization to the Mooney-Rivlin constitutive form uses (42). In particular, one may then
compare the relation between P and λ obtained from (48), to the relation between Pcap and
λz obtained on the basis of (66) after the solution of (63) and (64). The former gives the
force–stretch relation for the cylinder before it is everted so long as it remains saturated.
The latter gives the force–stretch relation for the cylinder after it is everted so long as it too
remains saturated.

5.2 Numerical Results for a Saturated System

We have integrated the differential equation (64) after suitable nondimensionalization
by means of a fourth order Runge-Kutta method using the same material parameters:
χ = 0.425, M̄ = M/μ = 100 that were employed in the homogeneous deformation study.
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A shooting procedure was used to meet the two point boundary conditions. The unswollen
configuration was taken to involve Ro/Ri = 2. Calculations were performed for different
values of ξ and hence different values of the free swelling stretch ζ . For each such ξ , the
problem was solved numerically for a sequence of λ̂z, which it is recalled is the mechanical
portion of the mechanical stretch ratio that appears in (54).

Radial deformation of the everted cylinder is shown in Fig. 13(a) and (c) for the re-
spective cases ξ = 0 and ξ = 1. Here the horizontal axis represents dimensionless radial
coordinates R̄ ≡ R/Ri in the reference configuration while the vertical axis gives the di-

mensionless radial coordinates r̄ ≡ r/(ζRi) in the deformed configuration. As λ̂z increases,
it is found that both the deformed inner and outer radii decrease, which is consistent with
the expectation of a transverse contraction under axial extension. Figure 13(b) and (d) shows
the radial variation of J (normalized by ζ 3) which gives the gel’s local volume change and
hence the amount of fluid absorbed into the cylinder. It is to be noticed in panels (b) and (d)
that the horizontal axis represents the deformed radial coordinate r̄ and so the curves start
and end at different locations on the horizontal axis. For each value of mechanical stretch λ̂z,
the volume change is relatively greater near the outer periphery, indicating that the volume
fraction of liquid increases with radius in the everted cylinder.

Graphs of the normal stresses are displayed in Fig. 14 for both ξ = 0 and ξ = 1 at a
variety of mechanical stretches λ̂z. Note that σrr < 0 in the interior of the everted cylinder.
The hoop stress σθθ is found to be compressive in the inner portion of the cylinder and tensile
in the outer portion (which is broadly consistent with the notion that the liquid is “squeezed”
toward the outer portion). The axial stress σzz also exhibits radial variation and correlates
with stretch λ̂z in the anticipated fashion. The qualitative form for all of the curves is shown
to be quite sensitive to the value of ξ .

The relation between λ̂z and Pcap as defined in (66) is shown by the solid curves in
Fig. 15(a) and Fig. 15(c) for ξ = 0 and ξ = 1, respectively. These are compared with the
uniaxial loading (without eversion) as represented by the dashed curves in the same panels.
For the neo-Hookean type gel (ξ = 0), the everted cylinder undergoes greater elongation
at a given load than does the uneverted cylinder. However, the opposite occurs for ξ = 1.
Panels (b) and (d) of Fig. 15 show how the total cylinder volume varies with mechanical
stretch, again for the respective cases ξ = 0 and ξ = 1. Specifically, the total volume as
given by (17) is normalized by the free swelling volume (solid curve), and compared to
the normalized volume of the uneverted cylinder (dashed curve). The total volume of the
uneverted cylinder is determined by the value of J in the homogeneous deformation for
uniaxial stress. This value of J was previously displayed (vs. overall stretch) in Fig. 6(b)
using the now standard constitutive parameters M̄ = 100 and χ = 0.425. Recall for uniaxial
stress that the relation between J and stretch was not monotonic for ξ > 0. Thus the dashed
curve in Fig. 15(d) is not monotonic. It is to be observed from panel (b) of Fig. 15 that the
everted cylinder for ξ = 0 preserves the monotonic relation between volume and stretch that
was found in the uneverted cylinder. Similarly, panel (d) of Fig. 15 shows that the everted
cylinder for ξ = 1 gives a relation between volume and stretch that is not monotonic as was
the case for the uneverted cylinder with ξ = 1. It is also interesting to note for both ξ = 0 and
ξ = 1 that the total volume of the everted cylinder is less than that of an uneverted cylinder
at the same value of stretch. Thus for both ξ = 0 and ξ = 1 the everted cylinder holds less
fluid than the corresponding uneverted cylinder.

The form of the volume vs. stretch curves in panels (b) and (d) of Fig. 15 have immediate
consequences as regards the possibility of loss of saturation. The results mirror the corre-
sponding results for the uneverted cylinder, since the everted and uneverted curves in each
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Fig. 13 Radial deformation (r̄ = r/(ζRi)) and local volume change ratio as a function of radial position. As
in previous figures, M̄ = 100 and χ = 0.425. The cylinder geometry is such that Ro = 2Ri

panel display the same qualitative form. In general, the saturated solution holds provided
that

πλzL(r2
o − r2

i ) ≤ πL(R2
o − R2

i ) + Vf , (67)

where it is recalled that λz = λ̂zζ . We now consider differences that occur for the respective
cases ξ = 0 and ξ = 1 which stem from the different qualitative forms of the curves in panels
(b) and (d) of Fig. 15.

Consider first the material with ξ = 0. The monotone curve for the everted cylinder in
Fig. 15b then indicates that an everted cylinder of the ξ = 0 material will be saturated if λ̂z is
less than a critical value. Conversely, the everted cylinder will not be saturated if λ̂z exceeds
the critical value. The critical value of mechanical stretch is dependent upon the amount of
available fluid, and can be directly determined with the aid of Fig. 15b. It is to be noted from
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(a) σrr versus r̄ for ξ = 0 (b) σθθ versus r̄ for ξ = 0

(c) σzz versus r̄ for ξ = 0 (d) σrr versus r̄ for ξ = 1

(e) σθθ versus r̄ for ξ = 1 (f) σzz versus r̄ for ξ = 1

Fig. 14 Radial distribution of normal stresses for the everted cylinder with Ro = 2Ri using the same material
parameters as in Fig. 13
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Fig. 15 Resultant axial force as a function of mechanical stretch and total volume as a function of mechanical
stretch for both the everted cylinder and the uneverted cylinder using the same material parameters as in
Fig. 13. For the everted cylinder, the reference geometry is again such that Ro = 2Ri

this figure that, for a given amount of fluid, the transition value of mechanical stretch for the
everted cylinder exceeds the transition mechanical stretch value for the uneverted cylinder.

Consider now the material with ξ = 1. Then the graphs of volume vs. stretch for both the
everted cylinder and the uneverted cylinder each have a local maximum. Consequences for
the uneverted cylinder were discussed in Sect. 4.27 and similar considerations apply to the
everted cylinder. Thus the everted cylinder will be saturated for all values of stretch if the
amount of available fluid exceeds that associated with the value of the local maximum. If
less than this amount of fluid is available, then there will be an interval of stretch for which
the everted cylinder is not saturated. It is to be noted from Fig. 15d that the value of the
local maximum for the uneverted cylinder gives V > Vf s where Vf s is the free swelling

7See the paragraph between (38) and (39).
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Fig. 16 Total volume after eversion as a function of mechanical stretch, and resultant force as a function of
mechanical stretch, for various values of ξ , again using M̄ = 100, χ = 0.425 and Ro = 2Ri

volume of the cylinder before eversion. Conversely, the value of the local maximum for the
everted cylinder gives V < Vf s . Consider therefore two identical cylinders, each of which is
removed from its liquid bath after free swelling so that the amount of fluid is fixed at the free
swelling value. Let one of the two cylinders now suffer an eversion. This everted cylinder
will remain saturated for any value of axial stretch. In comparison, the uneverted cylinder
will immediately lose saturation if it is stretched a small amount. However, if the stretch of
the uneverted cylinder becomes sufficiently large, then it too will regain saturation.

The above interpretation for a ξ = 1 gel is a consequence of the inequality V < Vf s

holding for all values of stretch in the everted cylinder. More generally, for ξ > 0 we find
that the graph of stretch vs. overall volume continues to exhibit a local maximum. However,
as shown in Fig. 16a, the value of V at the local maximum is found to be greater than the
free swelling volume provided that this positive ξ is sufficiently small. For these materials
it follows that a quantity of liquid just sufficient for free swelling gives rise to an everted
cylinder that loses saturation on a finite interval of stretch. The relation between force and
mechanical stretch for a saturated everted cylinder using the same values of ξ as in panel
(a) of Fig. 16 is shown in panel (b) of this same figure. These serve as backbone curves for
any nonsaturated response. In order to display force vs. stretch curves associated with loss
of saturation it is necessary to solve the boundary value problem for an everted cylinder that
is not saturated. We consider this issue in the next section.

6 The Everted Cylinder that is not Saturated

We now consider the consequences of a limited fluid supply for the eversion deformation.
Specifically, if the total volume of a saturated, everted cylinder is calculated to be greater
than Vp + Vf then there is insufficient fluid for the cylinder to be saturated. The resulting
nonsaturated solution obeys

λz(r
2
o − r2

i ) = (R2
o − R2

i ) + Vf

πL
, (68)



Equilibrium States of Mechanically Loaded Polymer Gels 69

(a) r̄ versus R̄ (b) J/ξ3 versus r̄

(c) σrr versus r̄ (d) σθθ versus r̄

Fig. 17 Deformation and stress fields associated with loss of saturation for an everted cylinder with
Ro = 2Ri . The material parameters are M̄ = 100, χ = 0.425, and ξ = 0. Loss of saturation is taken to
occur at λ̂∗

z = 2.0. Thus the curves for λ̂z = 2.0 are the same as the corresponding curves for ξ = 0 that were

displayed in Figs. 13 and 14. For λ̂z > 2.0 the curves in this figure differ from corresponding curves for a
saturated gel

where it is recalled λz = λ̂zζ . As discussed previously, the stress equations of equilibrium
are unchanged from that for a saturated system. Thus the displacement field r(R) is still
subject to (64) where F is given by (65). The normal stresses are modified by subtracting
the common constant p from the saturated stress relations as previously given in (59)–(61).
Eliminating this constant between the two conditions in (63) now gives

−Riri
′

λzri

[
(1 − ξ) + ξ

(
ri

Ri

)2

+ ξλ2
z

]
+ M̄

[ −Ri

λzriri
′ + χ

(
Ri

λzriri
′

)2

+ ln

(
1 + Ri

λzriri
′

)]
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Fig. 18 Local volume change J versus λ̂z for an everted cylinder with Ro = 2Ri and material parameters
M̄ = 100, χ = 0.425 and either ξ = 0 or ξ = 1. On the left, ξ = 0 and the loss of saturation corresponds
to that depicted in Fig. 17. After loss of saturation, increasing stretch redistributes the finite amount of fluid
from the outer region to the inner region. On the right, ξ = 1 and the loss of saturation corresponds to that
depicted in Fig. 19. For the nonsaturated cylinder, increasing stretch now redistributes the finite amount of
fluid from the inner region to the outer region

= −Roro
′

λzro

[
(1 − ξ) + ξ

(
ro

Ro

)2

+ ξλ2
z

]

+ M̄

[ −Ro

λzroro
′ + χ

(
Ro

λzroro
′

)2

+ ln

(
1 + Ro

λzroro
′

)]
, (69)

where ri
′ = r ′(Ri) and ro

′ = r ′(Ro). The second order ODE (64) is to be solved subject to
(68) and (69), after which p is obtained from (63).

For values Vf that cause the saturated solution condition (67) to be violated, we have
solved (64) using a double shooting method so as to meet both (68) and (69). The solutions
are dependent upon the mechanical stretch λ̂z and the value of Vf /πL appearing in (68).
Each such Vf /πL determines the range of λ̂z for which there is loss of saturation. As dis-
cussed in the previous section, the range of nonsaturated λ̂z can be unbounded (as in the
ξ = 0 example of Fig. 15) or can be confined to a finite interval (as in the ξ = 1 example of
Fig. 15).

Consider the material parameters associated with the ξ = 0 saturated solution fields that
were previously displayed in Fig. 13 and Fig. 14. The relation between total volume and
mechanical stretch for this material was displayed in panel (b) of Fig. 15. Since this relation
is monotonically increasing, it follows that loss of saturation could occur for any value of
stretch. Following previous convention, this transition value of stretch will be denoted λ̂∗

z and
the nonsaturated solution therefore applies for λ̂z ≥ λ̂∗

z . Figure 17 displays the nonsaturated
solution fields associated with this same material for the particular value of Vf that gives
λ̂∗

z = 2.0. Thus for this Vf the curves in Fig. 13 and Fig. 14 corresponding to λ̂z ≤ λ̂∗
z =

2.0 would continue to apply. However there would now be insufficient fluid to saturate the
everted cylinder when λ̂z > 2.0 and so the λ̂z = 4.0 curves in Fig. 13 and Fig. 14 would
no longer apply. Instead, the solution fields for λ̂z = 4.0 are as depicted in Fig. 17. The
solution fields for the nonsaturated everted cylinder for other values of mechanical stretch
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(a) r̄ versus R̄ (b) J/ξ3 versus r̄

(c) σrr versus r̄ (d) σθθ versus r̄

Fig. 19 Deformation and stress fields associated with loss of saturation for an everted cylinder with
Ro = 2Ri . The material parameters are M̄ = 100, χ = 0.425, and ξ = 1. The value of Vf is such that

loss of saturation occurs on the interval 0.8 ≤ λ̂z ≤ 1.993

λ̂z > λ̂∗
z are also shown in Fig. 17. The nonsaturated solution is identical to the saturated

solution at the transition stretch λ̂∗
z as is verified by comparison of the curves for λ̂z = 2.0 in

Figs. 13, 14 and 17. As the mechanical stretch increases, comparison of Fig. 14 and Fig. 17
reveals similar qualitative trends in the nature of the stress fields after loss of saturation. In
contrast, comparison of Fig. 13 and Fig. 17 shows qualitative differences in the J field after
loss of saturation. Specifically, the saturated solution gives values of J that increase at each
point in the everted cylinder. Hence all locations absorb additional fluid as λ̂z increases so
long as the gel is saturated. However, upon loss of saturation, it is found that the value of J

now decreases on the outer portion of the cylinder (while continuing to increase in the inner
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Fig. 20 Resultant axial force as
a function of mechanical stretch
for the everted cylinder with
Ro = 2Ri . Material parameters
correspond to those in Fig. 15(c),
namely: M̄ = 100, χ = 0.425,
and ξ = 1. Three different values
of Vf are considered,

corresponding to λ̂∗
z = 0.8,0.9,

and 1.0. The nonsaturated
response curve is first above, and
then below, the saturated
response curve, and so mirrors
the case of this material under
homogeneous deformation
(Fig. 12b)

portion of the cylinder). This is shown in detail in the first panel of Fig. 18. Thus, after loss
of saturation, the fixed amount of fluid within the cylinder exhibits a quasi-static migration
from the outer portion of the everted cylinder to the inner portion of the everted cylinder
under increasing mechanical stretch λ̂z.

In a similar fashion Fig. 19 exhibits nonsaturated solution fields for the ξ = 1 material
whose saturated solution fields were previously exhibited in Fig. 13 and Fig. 14. The relation
between overall volume and mechanical stretch for this material is displayed in panel (d)
of Fig. 15. Since this relation exhibits a local maximum it follows that loss of saturation
occurs on a finite interval of stretch. Again, following previous convention, we denote the
endpoints of this interval by λ̂∗

z−A and λ̂∗
z−B . For the purposes of Fig. 19, we take λ̂∗

z−A = 0.8
which in turn makes λ̂∗

z−B = 1.993. Once again, the fixed amount of fluid redistributes itself
in a quasi-static fashion as λ̂z varies in the interval λ̂∗

z−A ≤ λ̂z ≤ λ̂∗
z−B . In particular, as

λ̂z increases through this interval we find that fluid migrates from the inner portion of the
everted cylinder to the outer portion. This is shown in detail in the second panel of Fig. 18.
For this material, after a return to saturation at λ̂∗

z−B , any further increase in mechanical
stretch gives a loss in overall volume, indicating that increasing mechanical stretch now
expels fluid from the everted cylinder.

Recall for the fluid saturated everted cylinder that the relation between axial force and
axial stretch was given previously in Fig. 15 for both the ξ = 0 material (panel a) and the
ξ = 1 material (panel c). Loss of saturation causes the response to depart away from this
backbone response. The question therefore arises as to whether this departure takes place in
a manner that is similar to that which occurs in the homogeneous deformation of uniaxial
stress. Recall for the homogeneous deformation of uniaxial stress that the departure of the
nonsaturated axial force response from the saturated backbone response was displayed in
Fig. 12b for the ξ = 1 material. The conspicuous feature of Fig. 12b was that the nonsatu-
rated axial load response for the ξ = 1 material was first above, and then below, the saturated
axial load response. We find that similar qualitative behavior occurs for the ξ = 1 material
as the everted cylinder is mechanically stretched. This is shown in Fig. 20 where the differ-
ence between saturated and nonsaturated response is shown not only for the case in which
λ̂∗

z−A = 0.8, but also for two other cases corresponding to λ̂∗
z−A = 0.9 and λ̂∗

z−A = 1.0.
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