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Abstract This paper is concerned with investigation of the effects of strain-stiffening on the
response of solid circular cylinders in the combined deformation of torsion superimposed on
axial extension. The cylinders are composed of incompressible isotropic nonlinearly elas-
tic materials. Our primary focus is on materials that undergo severe strain-stiffening in the
stress-stretch response. In particular, we consider two particular phenomenological constitu-
tive models for such materials that reflect limiting chain extensibility at the molecular level.
The axial stretch γ and twist that can be sustained in cylinders composed of such materials
are shown to be constrained in a coupled fashion. It is shown that, in the absence of an ad-
ditional axial force, a transition value γ = γt of the axial stretch exists such that for γ < γt ,
the stretched cylinder tends to elongate on twisting whereas for γ > γt , the stretched cylin-
der tends to shorten on twisting. These results are in sharp contrast with those for classical
models such as the Mooney-Rivlin (and neo-Hookean) models that predict that the stretched
circular cylinder always tends to further elongate on twisting. We also obtain results for ma-
terials modeled by the well-known exponential strain-energy widely used in biomechanics
applications. This model reflects a strain-stiffening that is less abrupt than that for the lim-
iting chain extensibility models. Surprisingly, it turns out that the results in this case are
somewhat more complicated. For a fixed stiffening parameter, provided that the stretch is
sufficiently small, the stretched bar always tends to elongate on twisting in the absence of
an additional axial force. However, for sufficiently large stretch, the cylinder tends to shorten
on undergoing sufficiently small twist but then tends to elongate on further twisting. These
results are of interest in view of the widespread use of exponential models in the context
of the mechanics of soft biological tissues. The special case of pure torsion is also briefly
considered. In this case, the resultant axial force required to maintain pure torsion is com-
pressive for all the models discussed here. In the absence of such a force, the bar would
elongate on twisting reflecting the celebrated Poynting effect.
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1 Introduction

Our concern in this paper is with investigating the effects of strain-stiffening on the re-
sponse of solid circular cylinders in the combined deformation of torsion superimposed on
axial extension. The bars are composed of isotropic hyperelastic incompressible materials
that undergo severe strain-stiffening in their stress-stretch response at large stretch. The con-
stitutive models that we employ reflect limiting chain extensibility at the molecular level and
thus are appropriate for modeling non-crystallizing elastomers and soft biological tissues.

In the next Section, we discuss some preliminaries from the theory of nonlinear hy-
perelasticity for isotropic incompressible solids. In particular, we describe some phenom-
enological constitutive models that exhibit strain-stiffening at large strains. The first class
of models reflects limiting chain extensibility at the molecular level and gives rise to se-
vere strain-stiffening in the stress-stretch response. The second class exhibits a less abrupt
strain-stiffening e.g., the exponential models widely used in biomechanics. In Sect. 3, we
summarize results for the problem of torsion superimposed on axial extension of a solid
circular cylinder composed of an incompressible isotropic hyperelastic material. This prob-
lem has been extensively investigated in the literature on nonlinear elasticity following the
pioneering theoretical investigations of Rivlin (see, e.g., [34, 35]) and experimental work
of Rivlin and Saunders [36] for the case of small twist. We summarize the results of Rivlin
[35] for a general strain-energy density. These results are then specialized for two particular
strain-energy densities that have been proposed to model limiting chain extensibility both of
which involve a single limiting chain extensibility parameter. The axial stretch γ and twist
that can be sustained in cylinders composed of such materials are shown to be constrained
in a coupled fashion. It is shown that, in the absence of an additional axial force, a tran-
sition value γ = γt of the axial stretch exists such that for γ < γt , the stretched cylinder
tends to elongate on twisting whereas for γ > γt , the stretched cylinder tends to shorten
on twisting. These results are in sharp contrast with those for classical models such as the
Mooney-Rivlin (and neo-Hookean) models that predict that the stretched circular cylinder
always tends to further elongate on twisting. The foregoing results have been substantiated
experimentally in a recent paper by Gent and Hua [12] where a non-monotone relation be-
tween axial force and applied extension has been observed giving rise to a transition stretch
of the type described above. (We note that focus of [12] was on an instability that can arise
for large twist but we shall not address such instability issues here.) Our results are also rem-
iniscent of those of Shield [37] for small twist superimposed on extension of bars of general
cross-section. For example, for the case of sufficiently slender elliptical cross-sections, it
is shown in [37] that a transition stretch exists for two particular strain-energies. Here we
have confined our attention to circular cylinders but do not assume small twist. Thus we
have established results analogous to those of Shield [37] in the wider context of large twist
where here the strain-stiffening material property plays a key role.

In the remaining part of Sect. 3, we obtain results for the well-known exponential strain-
energy due to Fung [9] and Demiray [7]. This model (see (2.15)) reflects a strain-stiffening
that is less abrupt than that for the limiting chain extensibility models. Surprisingly, it turns
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out that the results in this case are somewhat more complicated. For a fixed stiffening pa-
rameter, provided that the stretch is sufficiently small, the stretched bar always tends to
elongate on twisting in the absence of an additional axial force. However, for sufficiently
large stretch, the cylinder tends to shorten on undergoing sufficiently small twist but then
tends to elongate on further twisting. These results are of interest in view of the widespread
use of exponential models in the context of the mechanics of soft biological tissues (see,
e.g., [14, 25, 26, 38]). In particular, the extension and torsion of cylinders has been proposed
in [25] and [38] as a useful loading protocol to determine normal and shear properties of
papillary muscles in the heart.

The final section of this paper provides a brief discussion of the special case of pure tor-
sion. It is shown that the shearing stress (and resultant applied twisting moment) for both of
the limiting chain extensibility models are identical provided that the limiting chain parame-
ters are related to reflect equal ultimate torsional extensibility. Results for the exponential
model are shown to be similar to those for the limiting chain models for small twist but
diverge with increasing twist as might be anticipated. The resultant axial force necessary to
maintain pure torsion is compressive for all of the models discussed here. In the absence
of such a force, the bar tends to elongate on twisting reflecting the celebrated Poynting
effect [32].

2 Preliminaries

The mechanical properties of elastomeric materials are described in continuum mechanics
in terms of a strain-energy density function W . On denoting the left Cauchy-Green tensor
by B = FF T , where F is the gradient of the deformation and λ1, λ2, λ3 are the principal
stretches, then, for an isotropic material, W is a function of the strain invariants

I1 = trB = λ2
1 + λ2

2 + λ2
3, I2 = 1

2
[(trB)2 − tr(B2)] = λ2

1λ
2
2 + λ2

2λ
2
3 + λ2

3λ
2
1,

I3 = detB = λ2
1λ

2
2λ

2
3.

(2.1)

Rubber-like materials are often assumed to be incompressible provided that the hydrostatic
stress does not become too large and so the admissible deformations must be isochoric, i.e.,
detF = 1 so that I3 = 1. The response of an incompressible isotropic elastic material can be
determined by applying the standard constitutive law (see, e.g., Atkin and Fox [2], Ogden
[30], Beatty [3], Holzapfel [13])

T = −p1 + 2
∂W

∂I1
B − 2

∂W

∂I2
B−1, (2.2)

where p is a hydrostatic pressure term associated with the incompressibility constraint and
T denotes the Cauchy stress.

The classical strain-energy density for incompressible rubber is the Mooney-Rivlin
strain-energy

WMR = 1

2
μ[α(I1 − 3) + (1 − α)(I2 − 3)], (2.3)

where μ > 0 is the constant shear modulus for infinitesimal deformations and 0 < α ≤ 1 is
a dimensionless constant. When α = 1 in (2.3), one obtains the neo-Hookean strain-energy

W nH = μ

2
(I1 − 3), (2.4)
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which corresponds to a Gaussian statistical mechanics model. The theoretical predictions
based on (2.3) do not adequately describe experimental data for rubber especially at high
values of strain. For modeling of soft biological tissue, where rapid strain stiffening occurs
even at moderate stretches (see, e.g., [14, 20, 25, 26]), classical models are completely in-
appropriate. To model such stiffening, a number of alternative models have been proposed.
In the molecular theory of elasticity (see, e.g., [8] for a review) these models are usually
called non-Gaussian, because they introduce a distribution function for the end-to-end dis-
tance of the polymeric chain composing the rubber-like material which is not Gaussian. The
non-Gaussian models of concern here reflect limiting chain extensibility at the molecular
level.

We shall not attempt here to describe the most general framework within which limiting
chain extensibility models can be developed but rather describe some specific phenomeno-
logical models that have been shown to be particularly useful in modeling strain-stiffening
phenomena. For a review of such models, see [17, 22, 23]. One class of isotropic incom-
pressible models with a maximum achievable length of the polymeric molecular chains
composing the material is described by strain-energies of the form W(I1, I2, I

∗) where I ∗ is
a limiting chain extensibility parameter. The function W is such that the stress components
are unbounded as f (I1, I2) → I ∗ for some specified function f and so one must impose the
constraint

f (I1, I2) < I ∗, (2.5)

on admissible deformations. One model of this type is a three-parameter model due to Gent
[10, 11], who proposed the strain-energy density

W = μ

2

[
−αJm ln

(
1 − I1 − 3

Jm

)
+ (1 − α)(I2 − 3)

]
, (2.6)

where μ is the shear modulus for infinitesimal deformations, α (0 < α ≤ 1) is a dimension-
less constant and Jm is the limiting value for I1 − 3, taking into account limiting polymeric
chain extensibility so that I ∗ = 3 + Jm for this model. On taking the limit as Jm → ∞ in
(2.6) we recover the Mooney-Rivlin model (2.3). Other related three-parameter models with
more elaborate dependence on I2 are discussed in [31, 33]. Thus, on using a dependence on
I2 suggested by Gent and Thomas, the model

W = −C1Jm ln

(
1 − I1 − 3

Jm

)
+ C2 ln(I2/3), I1 < Jm + 3, (2.7)

has been proposed by Gent [11] and by Pucci and Saccomandi [33], where the constants C1

and C2 are related to the infinitesimal shear modulus by

C1 + C2/3 = μ/2. (2.8)

It has been shown [31] that the model (2.7) can be used to accurately fit the classical data of
Treloar for vulcanized rubber over the full range of deformations for uniaxial, equibiaxial
and general biaxial extension.

For the case when α = 1 in (2.6), first proposed by Gent [10], we obtain the two-
parameter generalized neo-Hookean model (i.e., W = W(I1))

WG = −μ

2
Jm ln

(
1 − I1 − 3

Jm

)
, I1 < Jm + 3, (2.9)
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(henceforth called the basic Gent model), and one recovers the neo-Hookean model on tak-
ing the limit as Jm → ∞ in (2.9). The stress response for (2.9) in simple extension is de-
scribed in [10] and elastic instabilities of inflated rubber shells have been discussed in [11].
For rubber, typical values for the dimensionless parameter Jm for simple extension range
from 30–100 whereas for biological tissue, much smaller values of Jm are appropriate. For
example, for human arterial wall tissue, values on the order of 0.4 to 2.3 have been sug-
gested [20]. The basic Gent model (2.9) gives theoretical predictions similar to the Arruda
and Boyce eight chain model based on inverse Langevin function compact support statistics
(see, e.g., [1, 4, 5]). A molecular basis for the basic Gent model was given in [19], where it is
shown that the infinitesimal shear modulus is μ = nkT where k is the Boltzmann constant,
T is the absolute temperature, and n is the chain density, while Jm = 3(N − 1), where N is
the number of links in a single chain. Thus the basic Gent phenomenological model predicts
similar behavior to the molecular models, has a clear microscopic interpretation for the con-
stitutive coefficients and is tractable analytically. On using (2.2), we find that the Cauchy
stress associated with (2.9) is given by

T = −pI + μ
Jm

Jm − (I1 − 3)
B, (2.10)

so that the stress has a singularity as I1 → Jm + 3, reflecting the rapid strain stiffening
observed in experiments.

An alternative two-parameter limiting chain extensibility model with W(I1, I2, J ) has
been proposed in [21] (see also [15]) for which

W = WHS = −μ

2

(J − 1)2

J
ln

(
1

(J − 1)3

(
J 3 − J 2I1 + J I2 − 1

))
, (2.11)

where the limiting chain extensibility parameter J is such that J > 1. On using the principal
stretches of the deformation we can write WHS as

WHS = −μ

2

(J − 1)2

J
ln

(
(1 − λ2

1
J

)(1 − λ2
2

J
)(1 − λ2

3
J

)

(1 − 1
J
)3

)
, λ1λ2λ3 = 1. (2.12)

In (2.11), (2.12), μ is the shear modulus for infinitesimal deformations. Note that these
definitions differ from those in [21–24] by a multiplicative factor of (J − 1)2/J 2. In order
for the logarithm in (2.11) or (2.12) to be well defined, we impose the constraint

JI1 − I2 <
J 3 − 1

J
, (2.13)

or alternatively

max
(
λ2

1, λ
2
2, λ

2
3

)
< J. (2.14)

Thus, from (2.14), the limiting chain extensibility parameter J can be interpreted as the
square of the maximum stretch allowed by the finite extensibility of the chains. Again,
in the limit as J → ∞ in (2.11) or (2.12), we recover the neo-Hookean model (2.4). It
is important to point out the difference between the constraint (2.14) and the constraint
I1 < Jm + 3 arising in connection with the Gent model. As already pointed out in [21–24],
the limiting chain condition expressed in terms of the principal invariant is less physically
accessible than (2.14). Furthermore, the absence of the dependence on the second invariant
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in the basic Gent model entails some physical limitations. Thus the model (2.11) has advan-
tages over the basic Gent model. Note that (2.12) belongs to the class of models for which
W(λ1, λ2, λ3, J ), with λ1λ2λ3 = 1 because of incompressibility. For such models, the limit-
ing chain extensibility constraint is given in terms of the principal stretches directly and this
has some advantages from a physical point of view. This alternative approach to constitutive
model development reflecting limiting chain extensibility has received some attention in the
literature [18, 21, 29]. The response of the WHS model in homogeneous deformations such
as simple extension, simple shear and equibiaxial extension was examined in Horgan and
Schwartz [24]. See also Kanner and Horgan [27]. It was shown that the response of the Gent
and WHS models was virtually identical for these deformations except at small values of Jm

and J . The inhomogeneous deformation of pure bending was investigated in [28].
While our discussion will focus on limiting chain extensibility models such as the above

that exhibit severe strain-stiffening, we note that there are numerous strain-hardening consti-
tutive models that have been successfully employed to investigate the effects of a less abrupt
strain-stiffening. A generalized neo-Hookean model of this type widely used in the biome-
chanics literature is the two-parameter exponential strain-energy density first proposed by
Fung [9] and then extended to three dimensions in Demiray [7], namely

WF = μ

2b
{exp[b(I1 − 3)] − 1}, (2.15)

where the dimensionless constant b > 0. The parameter b provides a measure for the rate
of strain-stiffening. On taking the limit as b → 0 in (2.15) one recovers the neo-Hookean
model (2.4). We shall henceforth refer to (2.15) as the Fung (or exponential) model.

We observe that, while the exponential model reflects strain-stiffening, it does not exhibit
the rapid strain-stiffening characteristic of the limiting chain extensibility models. This is
an important difference between these models. Chagnon et al. [6] suggest that both types
of models are essentially equivalent but as was discussed in Horgan and Saccomandi [23]
there are several significant differences in their predictions. For example, as described in
detail in [17], the shear stresses at the tip of a Mode III crack are singular for the model
(2.15) whereas these crack tip stresses are bounded for the Gent model (2.9). It was shown
by Horgan and Schwartz [24] that similar results hold for fracture toughness in the tearing
test for rubber. See the review article by Horgan and Saccomandi [23] for further discussion.

3 Extension and Torsion of a Solid Circular Cylinder

Consider a long, solid, circular cylinder of radius A composed of an incompressible isotropic
hyperelastic material subjected to a stretch in the axial direction and then to a twist at
its ends. On using cylindrical coordinates (R,�,Z) in the undeformed configuration and
(r, θ, z) in the current configuration, we may thus write

r = γ −1/2R, θ = � + τγZ, z = γZ, (3.1)

where τ denotes the twist per unit length of the stretched rod and γ denotes the axial stretch.
The coefficient γ −1/2 appears in (3.1)1 in order to maintain incompressibility, so that for
extension (γ > 1), the cylinder necessarily contracts laterally. The deformed radius a is
given by a = γ −1/2A. Corresponding to (3.1), one has the left Cauchy-Green tensor B and
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its inverse

B =
⎡
⎣γ −1 0 0

0 γ −1 + γ τ 2R2 γ 3/2τR

0 γ 3/2τR γ 2

⎤
⎦ , B−1 =

⎡
⎣γ 0 0

0 γ −γ 1/2τR

0 −γ 1/2τR γ −2 + τ 2R2

⎤
⎦ ,

(3.2)
and so the principal invariants are

I1 = γ 2 + 2γ −1 + γ τ 2R2, I2 = 2γ + γ −2 + τ 2R2, I3 = 1. (3.3)

For convenience of the reader, we briefly summarize the results of Rivlin [34, 35] for general
W and specialized for the classical Mooney-Rivlin (and neo-Hookean) models. Our main
focus is then on the strain-stiffening models described earlier. The non-zero stresses are
given by Rivlin [35] as

Trr = −2γ τ 2
∫ A

R

sW1(s)ds, (3.4)

Tθθ = −2γ τ 2
∫ A

R

sW1(s)ds + 2γ τ 2R2W1, (3.5)

Tzz = −2γ τ 2
∫ A

R

sW1(s)ds + 2(γ 2 − γ −1)W1 + 2(γ − γ −2 − τ 2R2)W2, (3.6)

Tzθ = 2γ 3/2τRW1 + 2γ 1/2τRW2, (3.7)

where the subscript on W denotes differentiation with respect to the corresponding invariant
and these derivatives are evaluated at (3.3).

The resultant applied moment and axial force necessary to maintain the deformation are
given by

M ≡
∫ 2π

0

∫ a

0
Tzθ r

2drdθ = 4πτ

∫ A

0
R3(W1 + γ −1W2)dR, (3.8)

and

N ≡
∫ 2π

0

∫ a

0
Tzzrdrdθ = 4π(γ − γ −2)

∫ A

0
R(W1 + γ −1W2)dR − 2πτ 2

×
∫ A

0
R3(W1 + 2γ −1W2)dR, (3.9)

respectively.
For generalized neo-Hookean materials where W = W(I1), (3.6)–(3.9) simplify so that

Trr = −2γ τ 2
∫ A

R

sW1(s)ds, Tθθ = −2γ τ 2
∫ A

R

sW1(s)ds + 2γ τ 2R2W1, (3.10)

Tzz = −2γ τ 2
∫ A

R

sW1(s)ds + 2(γ 2 − γ −1)W1, Tzθ = 2γ 3/2τRW1, (3.11)

M = 4πτ

∫ A

0
R3W1dR, N = 4π(γ − γ −2)

∫ A

0
RW1dR − 2πτ 2

∫ A

0
R3W1dR.

(3.12)
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For the Mooney-Rivlin model (2.3) (and its specialization to the neo-Hookean case), we
have the well-known results (see, e.g., Rivlin [35])

T MR
rr = −μαγ τ 2

2
(A2 − R2), T MR

θθ = −μαγ τ 2

2
(A2 − 3R2), (3.13)

T MR
zz = μ

[
−αγ τ 2

2
(A2 − R2) + α(γ 2 − γ −1) + (1 − α)(γ − γ −2 − τ 2R2)

]
, (3.14)

T MR
zθ = μγ 1/2τR[α(γ − 1) + 1], MMR = μπτA4

2
[α + (1 − α)γ −1], (3.15)

NMR = μπA2

{
(γ − γ −2)[α + (1 − α)γ −1] − τ 2A2

4
[α + 2(1 − α)γ −1]

}
, (3.16)

and

T nH
rr = −μγ τ 2

2
(A2 − R2), T nH

θθ = −μγ τ 2

2
(A2 − 3R2), (3.17)

T nH
zz = μ

[
−γ τ 2

2
(A2 − R2) + γ 2 − γ −1

]
, T nH

zθ = μγ 3/2τR, (3.18)

MnH = μπτA4

2
, NnH = μπA2

(
γ − γ −2 − τ 2A2

4

)
, (3.19)

respectively. For the classical models, the axial force N depends on τ in a simple quadratic
fashion and decreases as τ increases regardless of the amount of stretch γ .

For the Gent model (2.9), the limiting chain extensibility constraint I1 − 3 < Jm (see
(2.9)) can be written, on using (3.3), as

γ 2 + 2γ −1 + γ τ 2R2 < Jm + 3, (3.20)

so that the twist τ and axial stretch γ are constrained in a coupled fashion. To ensure that
the local constraint (3.20) holds for all R in [0,A], we henceforth assume that (3.20) holds
at R = A and so impose the stronger global constraint

τ 2A2 <
1

γ
(Jm − γ 2 − 2γ −1 + 3). (3.21)

For a given extensibility parameter Jm and a given stretch γ , (3.21) constrains the total angle
of twist τA that the strain-stiffening cylinder can undergo. Two special cases of (3.21) for
which the twist τ and axial stretch γ are uncoupled are worth noting:

(1) When τ = 0 we have pure extension of the cylinder and (3.21) reduces to

γ 2 + 2γ −1 < Jm + 3, (3.22)

which is the usual constraint for simple extension for the Gent model (see, e.g., [10,
23]).

(2) When γ = 1, we have pure torsion, which we will consider in detail in Sect. 4. In this
case, the total angle of twist τA is constrained by

τ 2A2 < Jm. (3.23)



On Extension and Torsion of Strain-Stiffening Rubber-Like Cylinders 47

For the Gent model, where W = W(I1), the stresses (3.10)–(3.11) are

T G
rr = −μ

2
Jm ln

(
Jm − γ 2 − 2γ −1 + 3 − γ τ 2R2

Jm − γ 2 − 2γ −1 + 3 − γ τ 2A2

)
, (3.24)

T G
θθ = μ

2
Jm

[
2γ τ 2R2

Jm − γ 2 − 2γ −1 + 3 − γ τ 2R2
− ln

(
Jm − γ 2 − 2γ −1 + 3 − γ τ 2R2

Jm − γ 2 − 2γ −1 + 3 − γ τ 2A2

)]
,

(3.25)

T G
zz = μ

2
Jm

[
2(γ 2 − γ −1)

Jm − γ 2 − 2γ −1 + 3 − γ τ 2R2
− ln

(
Jm − γ 2 − 2γ −1 + 3 − γ τ 2R2

Jm − γ 2 − 2γ −1 + 3 − γ τ 2A2

)]
,

(3.26)

T G
zθ = μ

Jmγ 3/2τR

Jm − γ 2 − 2γ −1 + 3 − γ τ 2R2
, (3.27)

and the relations (3.12) now read

MG = −μπJm

γ τ 3

{
τ 2A2 + 1

γ
(Jm − 2γ −1 − γ 2 + 3) ln

[
Jm − 2γ −1 − γ 2 + 3 − γ τ 2A2

Jm − 2γ −1 − γ 2 + 3

]}
,

(3.28)

NG = μπJm

2γ τ 2

{
τ 2A2 + 1

γ
(Jm − 3γ 2 + 3) ln

[
Jm − 2γ −1 − γ 2 + 3 − γ τ 2A2

Jm − 2γ −1 − γ 2 + 3

]}
. (3.29)

For the HS model, the constraint (2.13) or (2.14) will be assumed to hold at R = A thus
ensuring that it holds for all R in [0,A]. This constraint, again involving a coupling of τ and
γ , can be written as

τ 2A2 <
(J − γ 2)(J − γ −1)

Jγ
, (3.30)

where the limiting chain parameter J can be shown to necessarily satisfy

J > γ 2 and J > γ −1. (3.31)

The constraint (3.30) is the analog of (3.21). Again two special cases of (3.30) are of inter-
est:

(1) When τ = 0 (i.e., pure extension), the constraint (3.30) is equivalent to (3.31) which we
write, for γ > 1, as

γ < J 1/2, (3.32)

and so the stretch in pure extension cannot exceed J 1/2 (cf. [15, 21–24]).
(2) When γ = 1 (i.e., pure torsion) we find from (3.30) that the total angle of twist τA is

constrained as

τ 2A2 <
(J − 1)2

J
. (3.33)

From (3.4)–(3.7) we obtain

T HS
rr = −μ

2

(J − 1)2

J − γ −1
ln

[
(J − γ 2)(J − γ −1) − Jγ τ 2R2

(J − γ 2)(J − γ −1) − Jγ τ 2A2

]
, (3.34)
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T HS
θθ = μ

2

(J − 1)2

J − γ −1

{
2Jγ τ 2R2

(J − γ 2)(J − γ −1) − Jγ τ 2R2

− ln

[
(J − γ 2)(J − γ −1) − Jγ τ 2R2

(J − γ 2)(J − γ −1) − Jγ τ 2A2

]}
, (3.35)

T HS
zz = μ

2

(J − 1)2

J − γ −1

{
2
J (γ 2 − γ −1) − (γ − γ −2 − τ 2R2)

(J − γ 2)(J − γ −1) − Jγ τ 2R2

− ln

[
(J − γ 2)(J − γ −1) − Jγ τ 2R2

(J − γ 2)(J − γ −1) − Jγ τ 2A2

]}
, (3.36)

T HS
zθ = μ

(J − 1)2γ 3/2τR

(J − γ 2)(J − γ −1) − Jγ τ 2R2
, (3.37)

and (3.8)–(3.9) now yield

MHS = −μπ(J − 1)2

J 2γ 2τ 3

{
Jγ τ 2A2 + (J − γ 2)(J − γ −1)

× ln

[
(J − γ 2)(J − γ −1) − Jγ τ 2A2

(J − γ 2)(J − γ −1)

]}
, (3.38)

NHS = μπ(J − 1)2

2J 2γ τ 2

{
J (J − 2γ −1)

(J − γ −1)
τ 2A2 + (J 2γ −1 − 3Jγ + 2)

× ln

[
(J − γ 2)(J − γ −1) − Jγ τ 2A2

(J − γ 2)(J − γ −1)

]}
. (3.39)

In the limit as Jm → ∞ or as J → ∞ in the foregoing it can be verified that one recovers
the results (3.17)–(3.19) for the neo-Hookean material.

For the Fung exponential model (2.15) we find from (3.10)–(3.12) that

T F
rr = μ

2b
eb(γ 2+2γ −1−3)(ebγ τ2R2 − ebγ τ2A2

), (3.40)

T F
θθ = μ

2b
eb(γ 2+2γ −1−3)[(1 + 2bγ τ 2R2)ebγ τ2R2 − ebγ τ2A2 ], (3.41)

T F
zz = μ

2b
eb(γ 2+2γ −1−3)[(1 + 2bγ 2 − 2bγ −1)ebγ τ2R2 − ebγ τ2A2 ], (3.42)

T F
zθ = μγ 3/2τReb(γ 2+2γ −1−3+γ τ2R2), (3.43)

MF = μπ

b2γ 2τ 3
eb(γ 2+2γ −1−3)[(bγ τ 2A2 − 1)ebγ τ2A2 + 1], (3.44)

NF = μπ

2b2γ 2τ 2
eb(γ 2+2γ −1−3)

× [(2bγ 2 − 2bγ −1 + 1 − bγ τ 2A2)ebγ τ2A2 − 2bγ 2 + 2bγ −1 − 1]. (3.45)

3.1 Discussion

In order to investigate how the resultant moment M and axial force N depend on the twist
τ and the stretch γ , we define N0(γ0) ≡ N | γ=γ0

τ=0
so that N0(γ0) represents the axial force
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necessary to achieve an axial stretch γ = γ0 in the absence of a torsional moment, i.e., when
τ = 0. Thus N0 is the axial force necessary to produce a stretch γ0 in uniaxial extension. We
also define the quantity NT such that

N(γ0, τ ) = N0(γ0) + NT (γ0, τ ), (3.46)

and so NT represents the additional axial force that is necessary to maintain a constant
stretch of γ = γ0 upon application of the twist τ . We see from (3.9) that

N0(γ0) = N | γ=γ0
τ=0

= 2πA2(γ0 − γ −2
0 )(W1 + γ −1

0 W2), (3.47)

where W1 and W2 are evaluated at I1 = γ 2
0 + 2γ −1

0 and I2 = 2γ0 + γ −2
0 . On using (3.9)

and (3.47), (3.46) yields an expression for NT . In the absence of the additional force NT

(i.e., when the axial force N is constant), the stretch γ will, in general, differ from γ0 upon
torsion. Whether a stretched cylinder tends to further lengthen or to shorten upon increasing
torsion depends on the sign of ∂N/∂τ(= ∂NT /∂τ). Since N0 does not depend on τ and
NT |τ=0 = 0, we see that if N is a monotonically increasing function of τ then NT will be
positive, while if N is a monotonically decreasing function of τ then NT will be negative.

For the Mooney-Rivlin material (and its specialization to the neo-Hookean case), we
have

∂NMR

∂τ
= −μπτA4

2
[α + 2(1 − α)γ −1], (3.48)

and

∂NnH

∂τ
= −μπτA4

2
, (3.49)

respectively. Clearly, for both classical models ∂N/∂τ < 0 regardless of the amount of
stretch γ or the amount of torsion τ , and so NT is always compressive. Under a constant ax-
ial force (i.e., in the absence of the additional force NT ), the stretched cylinder thus always
has a tendency to further elongate upon twisting, i.e., γ > γ0 for τ > 0.

For the Gent model, however, we find that

∂NG

∂τ
= −μπJm

γ 2τ 3
(Jm − 3γ 2 + 3)

×
[

γ τ 2A2

Jm − γ 2 − 2γ −1 + 3 − γ τ 2A2
− ln

(
Jm − γ 2 − 2γ −1 + 3

Jm − γ 2 − 2γ −1 + 3 − γ τ 2A2

)]
,

(3.50)

which may be re-written as

∂NG

∂τ
= −μπJm

γ 2τ 3
(Jm − 3γ 2 + 3)

[



1 − 

− ln

(
1

1 − 


)]
, (3.51)

where we have defined 
 ≡ γ τ 2A2/(Jm − γ 2 − 2γ −1 + 3). Note that the constraint (3.21)
guarantees that 0 ≤ 
 < 1. On using power series expansions, we may rewrite (3.51) as

∂NG

∂τ
= −μπJm

γ 2τ 3
(Jm − 3γ 2 + 3)

(

2

2
+ 2
3

3
+ 3
4

4
+ · · ·

)
. (3.52)
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We see from (3.52) that

∂NG/∂τ < 0 if and only if Jm − 3γ 2 + 3 > 0, (3.53)

so that

NG
T < 0 if and only if γ <

√
Jm + 3

3
≡ γ G

t . (3.54)

Since Jm > 0, we have γ G
t > 1. Similarly for the HS model, we find that

∂NHS

∂τ
= −μπ(J − 1)2

J 2γ τ 3
(J 2γ −1 − 3Jγ + 2)

×
[

Jγ τ 2A2

(J − γ 2)(J − γ −1) − Jγ τ 2A2
− ln

(
(J − γ 2)(J − γ −1)

(J − γ 2)(J − γ −1) − Jγ τ 2A2

)]
.

(3.55)

On using (3.30) and (3.31), we find that

NHS
T < 0 if and only if γ <

1 + √
1 + 3J 3

3J
≡ γ HS

t . (3.56)

To ensure that the quantity γ HS
t defined in (3.56) is such that γ HS

t > 1, we require that

J > 2, (3.57)

which is assumed henceforth.
We have just shown that for the Gent and HS models, in the absence of the additional ax-

ial force NT , the stretched cylinder has a tendency to further extend with increased twisting
for γ < γt , but for γ > γt the cylinder tends to shorten upon twisting. For γ = γt , NT = 0
and N = N0 regardless of the amount of torsion τ . We may think of γt as a transition stretch
that exists for such strain-stiffening stretched cylinders. The results (3.54) and (3.56) are
depicted graphically in Fig. 1, where the transition value γt is shown as a function of the
parameter Jm for the Gent model and as a function of the parameter J for HS model.

The foregoing results have been substantiated experimentally for vulcanized rubber in a
recent paper by Gent and Hua [12] where a non-monotone relation between axial force and
applied extension has been observed giving rise to a transition stretch of the type predicted
above (see Fig. 2 of [12]). Our results are also analogous to those obtained by Shield [37]
in the context of small twist superimposed on extension of bars of general cross-section. As
remarked on p. 76 of [37]: “Whether an extended cylinder will tend to elongate or shorten
when given a small twist with the axial force held constant depends on the material, the
geometry of the cross-section of the cylinder and the amount of initial extension.” Here we
have restricted our attention to a circular cross-section but our results do not assume small
twist. We have thus demonstrated the validity of Shield’s assertion in the wider context of
large twist where here the strain-stiffening material property plays a key role. Figure 1 of the
present paper is analogous to Fig. 4 of [37] where a transition stretch is found for sufficiently
slender elliptical cross-sections for two particular strain-energy densities.

For the exponential model (2.15) we find from (3.45) that

∂NF

∂τ
= μπ

b2γ 2τ 3
βeb(γ 2+2γ −1−3)

[
1 − ex

(
x2

β
− x + 1

)]
, (3.58)
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Fig. 1 The transition value γt is
shown as a function of the
parameter Jm for the Gent model
and as a function of the
parameter J for HS model. For
a stretch less than γt the stretched
cylinder tends to further extend
upon torsion while for a stretch
greater than γt , the cylinder tends
to shorten upon torsion

where we have defined the quantities

x ≡ bγ τ 2A2 ≥ 0 and β ≡ 2b(γ 2 − γ −1) + 1 ≥ 1. (3.59)

We see from (3.58) that ∂NF /∂τ < 0 if and only if

ex

(
x2

β
− x + 1

)
− 1 > 0. (3.60)

In Fig. 2, we plot the left hand side of (3.60) for various values of β . It may be shown (see
Fig. 2) that whenever the stretch is such that β ≤ 2, i.e.,

γ 2 − γ −1 ≤ 1

2b
, (3.61)

then (3.60) holds over the entire range of τ 2A2, and so NF is a monotonically decreasing
function of τ in this case. Thus, under the condition (3.61), NF

T is always compressive, and
the stretched cylinder would further elongate upon twisting in the absence of such a force.
The condition (3.61) may be interpreted in two ways: (1) For a given stiffening parameter
b > 0, the inequality (3.61) requires the stretch γ (> 1) to be sufficiently small. For large
b, (3.61) holds only for γ close to unity. Note that in the limit as b → 0, i.e., as β → 1,
the inequality (3.61) holds for all γ and we recover the previously discussed result for the
neo-Hookean model. (2) Alternatively, for a given stretch γ > 1, the inequality (3.61) holds
if the stiffening parameter b is sufficiently small. However, when (3.61) does not hold (i.e.,
β > 2) so that

γ 2 − γ −1 >
1

2b
, (3.62)

the situation is more complicated. Again, the condition (3.62) can be interpreted in two ways
analogous to those described above in connection with (3.61). In this case (see Fig. 2), it
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Fig. 2 The left hand side of
(3.60) plotted versus
x = bγ τ2A2 for various values
of β defined in (3.59)2. Note that
for β ≤ 2, the inequality (3.60)
holds for all x, while for β > 2,
(3.60) holds only for sufficiently
large x

may be shown that NF is no longer a monotonic function of τ . One finds that ∂NF /∂τ > 0
for small twist, while ∂NF /∂τ < 0 for sufficiently large twist. This transition from NF

increasing to NF decreasing occurs for the value of τ such that

ex

(
x2

β
− x + 1

)
− 1 = 0, (3.63)

where x and β are defined in (3.59). The exponential model thus predicts that, for a given
stiffening parameter b, in the absence of the additional force NT a sufficiently stretched
cylinder will shorten on undergoing sufficiently small twist, but then tends to elongate upon
further twisting.

These somewhat complicated predictions for the Fung exponential model are rather sur-
prising and illustrate again the differences that can occur in the behavior of both classes of
strain-stiffening models (cf. the remarks made at the end of Sect. 2).

In Figs. 3–8 we plot the nondimensional applied moment M and axial force N versus τA

for varying amounts of constant stretch γ = γ0. This is done for the Gent model with Jm =
2.289, 30, and 97.2 (for which to γt = 1.3,3.3, and 5.8) and for the exponential model with
b = 0.55, 0.035, and 0.01. These values of Jm are chosen in accordance with the discussion
of simple extension in Horgan and Schwartz [24] where it was pointed out that Jm = 2.289
is representative of human arterial wall tissue of low extensibility (see [20]), Jm = 97.2
is representative of vulcanized rubber [10], and Jm = 30 is an intermediate value for less
extensible rubber. The values of the parameter b in the exponential model were chosen to
qualitatively match the moment curves for the Gent model at γ0 = 1, i.e., for pure torsion.
To simplify Figs. 3–8, we have omitted analogous plots for the HS model as they are very
similar to those for the Gent model. Note that as γ0 increases, the vertical asymptotes for the
Gent model occur at decreasing values of τA as expected from the constraint (3.21), which
limits the allowable twist τ and axial stretch γ in a coupled fashion. In Figs. 4, 6, and 8 we
see that N is a decreasing function of τ when γ0 < γt and increasing when γ0 > γt , where γt

is the transition stretch defined in (3.54). We also see a loss of monotonicity in the N versus
τ curve for the exponential model when γ 2

0 − γ −1
0 > 1

2b
(i.e., when γ = 1.5, 1.75, and 2 in

Fig. 4 and when γ = 4 in Fig. 6), as expected from the discussion following (3.62). Each
curve in Figs. 4, 6, and 8 intercepts the vertical axis at N = N0(γ0).
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Fig. 3 Nondimensional resultant
applied moment M versus τA for
varying amounts of constant
stretch γ = γ0. Solid curves
correspond to the Gent model
with Jm = 2.289. Dotted curves
correspond to the Fung model
with b = 0.55

Fig. 4 Nondimensional resultant
axial force N versus τA for
varying amounts of constant
stretch γ = γ0. Solid curves
correspond to the Gent model
with Jm = 2.289 (thus γt ≈ 1.3).
Dotted curves correspond to the
Fung model with b = 0.55

Fig. 5 Nondimensional resultant
applied moment M versus τA for
varying amounts of constant
stretch γ = γ0. Solid curves
correspond to the Gent model
with Jm = 30. Dotted curves
correspond to the Fung model
with b = 0.035
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Fig. 6 Nondimensional resultant
axial force N versus τA for
varying amounts of constant
stretch γ = γ0. Solid curves
correspond to the Gent model
with Jm = 30 (thus γt ≈ 3.3).
Dotted curves correspond to the
Fung model with b = 0.035

Fig. 7 Nondimensional resultant
applied moment M versus τA for
varying amounts of constant
stretch γ = γ0. Solid curves
correspond to the Gent model
with Jm = 97.2. Dotted curves
correspond to the Fung model
with b = 0.01

Fig. 8 Nondimensional resultant
axial force N versus τA for
varying amounts of constant
stretch γ = γ0. Solid curves
correspond to the Gent model
with Jm = 97.2 (thus γt ≈ 5.8).
Dotted curves correspond to the
Fung model with b = 0.01
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Fig. 9 Stretch γ versus τA for
N = N0 for various values of N0
corresponding to γ0 = 1, 1.25,
1.5, 1.75, and 2. (a) is for the
Gent model with Jm = 2.289,
which leads to γt ≈ 1.33. The
dotted curve corresponds to the
constraint (3.21) so that only
deformations on the left of the
dotted line are admissible. (b) is
for the Fung model with b = 0.55

(a)

(b)

Thus far, we have considered γ constant and taken N = N(τ) in order to maintain such
a deformation. Alternatively, instead of keeping the stretch constant, we can consider a con-
stant axial force N and examine how γ changes as a function of τ . If we assume

N(γ, τ) = N0(γ0) (3.64)

for all τ , then for a given γ0, (3.64) gives γ = γ (τ) implicitly. We write

γ (τ) = γ0 + γT (τ ), (3.65)

where we have introduced the quantity γT (τ ), which represents the additional stretch in-
duced by torsion in the absence of the additional force NT . In Fig. 9 we plot γ versus τA
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when N = N0(γ0) for γ0 = 1, 1.25, 1.5, 1.75, and 2. Each curve in Fig. 9 intercepts the
vertical axis at γ = γ0. The values of N0 that lead to these stretches may be calculated from
(3.47) and are seen, in general, to depend on the constitutive model being used, with the ex-
ception that γ0 = 1 implies N = N0 = 0 (in this case, γ0 = 1 does not imply simple torsion
since, in general, γ 
= γ0 for τ > 0). Results for the Gent model with Jm = 2.289 are shown
in Fig. 9a and so, from its definition in (3.54), we have γt ≈ 1.33. The dashed horizontal
straight line in Fig. 9a intercepts the vertical axis at γ0 = γt . This is the transition stretch
at which, on application of a constant axial force N = N0(γt ) = 0.86μπA2, the stretched
cylinder will not change length upon twisting. The dotted curve in Fig. 9a corresponds to
the constraint (3.21) so that only deformations to the left of the dotted curve are admissible.
We see that for the Gent model the stretch versus total angle of twist curve is monotonic
increasing for γ < γt and monotonic decreasing for γ > γt and so the stretched cylinder
further extends upon torsion in the former case and shortens in the latter. In Fig. 9b we plot
results for the Fung model with b = 0.55. In this case there are no constraints on the defor-
mation. For b = 0.55, the condition (3.61) implies that γ ≤ 1.30, and so, in the absence of
an additional axial force, the stretched cylinder tends to elongate upon torsion for γ ≤ 1.30.
When γ > 1.30, however, the stretch versus total angle of twist curves are non-monotonic
and show that the stretched bar shortens for sufficiently small twist and then elongates at
larger twist.

4 Simple Torsion

If we set γ = 1 in the preceding, then one recovers the classic problem of simple or pure
torsion, where the cylinder is not allowed to stretch axially or contract radially. For com-
pleteness, we briefly summarize the results for this case. From (3.3), we have

I1 = 3 + τ 2r2, I2 = 3 + τ 2r2, I3 = 1. (4.1)

Since r = R for simple torsion, all quantities in this subsection can be written in terms of r

or R without alteration. For simplicity we will use the lower case letter. We denote both the
undeformed and the current radius of the cylinder as a. On setting γ = 1 in (3.4)–(3.7) we
recover the results of Rivlin [34, 35] that the non-zero Cauchy stresses are given by

Trr = −2τ 2
∫ a

r

sW1(s)ds, (4.2)

Tθθ = −2τ 2
∫ a

r

sW1(s)ds + 2τ 2r2W1, (4.3)

Tzz = −2τ 2
∫ a

r

sW1(s)ds − 2τ 2r2W2, (4.4)

Tzθ = 2τr(W1 + W2), (4.5)

where the subscript on W denotes differentiation with respect to the corresponding invariant
and these derivatives are evaluated at (4.1). On setting γ = 1 in (3.8) and (3.9), we find that
the resultant applied moment is given by

M =
∫ 2π

0

∫ a

0
Tzθ r

2drdθ = 4πτ

∫ a

0
r3(W1 + W2)dr, (4.6)
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while the resultant axial force is

N =
∫ 2π

0

∫ a

0
Tzzrdrdθ = −2πτ 2

∫ a

0
r3(W1 + 2W2)dr. (4.7)

For W = W(I1), (4.4)–(4.7) simplify so that for generalized neo-Hookean materials we have
(see e.g., [16, 39])

Trr = Tzz = −2τ 2
∫ a

r

sW1(s)ds, Tθθ = −2τ 2
∫ a

r

sW1(s)ds + 2τ 2r2W1, (4.8)

Tzθ = 2τrW1, M = 4πτ

∫ a

0
r3W1dr, N = −2πτ 2

∫ a

0
r3W1dr. (4.9)

For a Mooney-Rivlin material (and its specialization to the neo-Hookean case), on setting
γ = 1 in (3.13)–(3.16) we recover the well-known results of Rivlin [34], i.e.,

T MR
rr = −ματ 2

2
(a2 − r2), T MR

θθ = −ματ 2

2
(a2 − 3r2), (4.10)

T MR
zz = −μ

[
ατ 2

2
(a2 − r2) + (1 − α)τ 2r2

]
, T MR

zθ = μτr, (4.11)

MMR = μπτa4

2
, NMR = −μπτ 2a4

4
(2 − α), (4.12)

and

T nH
rr = T nH

zz = −μτ 2

2
(a2 − r2), T nH

θθ = −μτ 2

2
(a2 − 3r2), (4.13)

T nH
zθ = μτr, MnH = μπτa4

2
, NnH = −μπτ 2a4

4
, (4.14)

respectively.
For the Gent model we have the constraint (3.23), i.e.,

τ 2a2 < Jm. (4.15)

On setting γ = 1 in (3.24)–(3.29), we find that

T G
rr = T G

zz = −μ

2
Jm ln

(
Jm − τ 2r2

Jm − τ 2a2

)
, (4.16)

T G
θθ = μ

2
Jm

[
2τ 2r2

Jm − τ 2r2
− ln

(
Jm − τ 2r2

Jm − τ 2a2

)]
, (4.17)

T G
zθ = μ

Jmτr

Jm − τ 2r2
, (4.18)

MG = −μπJm

τ 3

[
τ 2a2 + Jm ln

(
Jm − τ 2a2

Jm

)]
, (4.19)

NG = μπJm

2τ 2

[
τ 2a2 + Jm ln

(
Jm − τ 2a2

Jm

)]
. (4.20)
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These results were also obtained directly from (4.8), (4.9) in [16]. From (4.19), (4.20) we
see that MG and NG → ∞ as τa → √

Jm.
For the HS model we have the constraint (3.33), i.e.,

τ 2a2 <
(J − 1)2

J
. (4.21)

On setting γ = 1 in (3.34)–(3.39) we obtain

T HS
rr = −μ

2
(J − 1) ln

[
(J − 1)2 − Jτ 2r2

(J − 1)2 − Jτ 2a2

]
, (4.22)

T HS
θθ = μ

2
(J − 1)

{
2Jτ 2r2

[(J − 1)2 − Jτ 2r2] − ln

[
(J − 1)2 − Jτ 2r2

(J − 1)2 − Jτ 2a2

]}
, (4.23)

T HS
zz = μ

2
(J − 1)

{
2τ 2r2

[(J − 1)2 − Jτ 2r2] − ln

[
(J − 1)2 − Jτ 2r2

(J − 1)2 − Jτ 2a2

]}
, (4.24)

T HS
zθ = μ(J − 1)2τr

(J − 1)2 − Jτ 2r2
, (4.25)

MHS = −μπ(J − 1)2

J 2τ 3

{
Jτ 2a2 + (J − 1)2 ln

[
(J − 1)2 − Jτ 2a2

(J − 1)2

]}
, (4.26)

NHS = μπ(J − 1)2

2J 2τ 2

{
J (J − 2)

(J − 1)
τ 2a2 + (J − 1)(J − 2) ln

[
(J − 1)2 − Jτ 2a2

(J − 1)2

]}
. (4.27)

We see that MHS and NHS → ∞ as τa → (J −1)J−1/2. Note that for the HS model we have
Trr 
= Tzz, which is in contrast with (4.16) for Gent model. This reflects the fact that WHS

depends on I2. As Jm → ∞ in (4.16)–(4.20) or as J → ∞ in (4.22)–(4.27), one recovers
the results for pure torsion of a neo-Hookean material.

For the Fung exponential model (2.15), on setting γ = 1 in (3.40)–(3.45), we find that

T F
rr = T F

zz = μ

2b
(ebτ2R2 − ebτ2A2

), (4.28)

T F
θθ = μ

2b
[(1 + 2bτ 2R2)ebτ2R2 − ebτ2A2 ], (4.29)

T F
zθ = μτRebτ2R2

, (4.30)

MF = μπ

b2τ 3
[(bτ 2A2 − 1)ebτ2A2 + 1], (4.31)

NF = μπ

2b2τ 2
[(1 − bγ τ 2A2)ebτ2A2 − 1]. (4.32)

On letting b → 0 in (4.28)–(4.32) and using l’Hopital’s rule, we recover results for the neo-
Hookean model.

4.1 Discussion

Our first objective is to compare results for the Gent and HS models. As noted above, for the
Gent model M and N → ∞ as τa → √

Jm, and similarly, for the HS model, M and N → ∞
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Fig. 10 Resultant applied
moment for simple torsion for the
Gent model with Jm = 2.289, 30,
and 97.2, which is also valid for
the HS model with J = 4.042,
31.969, and 99.188. The vertical
asymptotes occur at τa = 1.51,
5.47, and 9.86 respectively. The
dotted curves show results for the
exponential model with b = 0.55,
0.035, and 0.01. The straight line
corresponds to the neo-Hookean
model

Fig. 11 Resultant compressive
axial force for simple torsion for
the Gent, HS, and exponential
models with Jm , J , and b the
same as in Fig. 10. The vertical
asymptotes for the first two
models occur at the same values
as those in Fig. 10. Results for
the neo-Hookean model are also
shown

as τa → J−1√
J

. Thus, for materials of equal ultimate torsional extensibility as measured by
the limiting resultant moment and axial force, the parameter J is related to Jm by

Jm = (J − 1)2

J
or J = Jm + 2 + √

J 2
m + 4Jm

2
. (4.33)

Henceforth, we will assume that (4.33) holds and thus compare results for two different
strain-stiffening models with equal ultimate torsional extensibility. First, observe that on us-
ing the first of (4.33) in (4.18), we find from (4.25) that the shear stress Tzθ is identical for
both models. Thus, by (4.6), the resultant moment M for both models is also identical. This
may be verified directly from (4.19) and (4.26). In Fig. 10, we plot M for both models for
the three representative values of Jm used in Sect. 3, namely Jm = 2.289, 30, and 97.2. The
corresponding values of J according to (4.33) are J = 4.042, 31.969, and 99.188, respec-
tively. We also plot results for the exponential model for the same values of the parameter
b that were used in Sect. 3. As the total angle of twist τa increases, the curves diverge as
they must since the exponential model does not reflect limited extensibility and thus does
not have the vertical asymptotes characteristic of the Gent and HS models. In Fig. 10, we
also show the straight line (see (4.14)2) for the neo-Hookean model.
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It may be readily verified that the resultant axial force N required to maintain pure torsion
is compressive for all the models discussed here. In the absence of such a force, the bar would
elongate on twisting reflecting the celebrated Poynting effect [32]. These compressive axial
forces are plotted in Fig. 11 for the same parameter values that were used in Fig. 10. As
can be seen from Fig. 11, for large values of Jm and J the predictions for both of the severe
strain-stiffening models are in very close agreement. In fact, as remarked previously, in the
limit as Jm → ∞ and J → ∞ the results for the two models coincide and reduce to those for
the neo-Hookean model. However when Jm and J are quite small (very low extensibility)
as for soft biological tissues, the Gent model predicts a slightly more rapid approach to the
vertical asymptote than the HS model. These results are similar to those obtained in [24]
for a variety of homogeneous deformations. The curves in Fig. 11 for the exponential model
show similar trends to those discussed in connection with Fig. 10.
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