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Abstract Experimental data for simple tension suggest that there is a power–law kinematic
relationship between the stretches for large classes of slightly compressible (or almost
incompressible) non-linearly elastic materials that are homogeneous and isotropic. Here we
confine attention to a particular constitutive model for such materials that is of generalized
Varga type. The corresponding incompressible model has been shown to be particularly
tractable analytically. We examine the response of the slightly compressible material to
some nonhomogeneous deformations and compare the results with those for the
corresponding incompressible model. Thus the effects of slight compressibility for some
basic nonhomogeneous deformations are explicitly assessed. The results are fundamental to
the analytical modeling of almost incompressible hyperelastic materials and are of
importance in the context of finite element methods where slight compressibility is usually
introduced to avoid element locking due to the incompressibility constraint. It is also shown
that even for slightly compressible materials, the volume change can be significant in
certain situations.
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1 Introduction

The homogeneous, isotropic, incompressible elastic material characterized by the strain-
energy density function

W ¼ c1 i1 � 3ð Þ þ c2 i2 � 3ð Þ; ð1:1Þ

where c1≠0, c2 are constants (c1 þ c2 ¼ 2m, where μ is the infinitesimal shear modulus) has
received particular attention in the literature on nonlinear elasticity. Here i1, i2 are two of the
principal invariants of the stretch tensors, defined in terms of the principal stretches as
follows:

i1 ¼ l1 þ l2 þ l3; i2 ¼ l1l2 þ l2l3 þ l3l1: ð1:2Þ
The special case of (1.1) with c2=0 was introduced by Varga [24] for natural rubber
vulcanizates and later by Dickie and Smith [6] for styrene-butadiene rubber. The general
form (1.1), called the modified Varga model, was considered by Hill and Arrigo [8] and
shown there to have a somewhat better fit with experimental data than the special Varga
model. Some remarkable mathematical properties of the model (1.1) have been established
in a series of papers by Hill and Arrigo [8, 9] and Arrigo and Hill [1]. See Hill [10] for a
review of this work. Since all materials are to some extent compressible, our objective here
is to consider a compressible version of (1.1) that accounts for slight compressibility and to
assess the effects of slight compressibility in some nonhomogeneous deformations.

The effects of slight compressibility are accounted for by using a model for almost
incompressible materials suggested recently by Horgan and Murphy [15]. They considered
a class of almost incompressible materials characterized by a power–law kinematic
relationship between the stretches in simple tension. Specifically, if

l2 ¼ l
�1

2þ"

1 ; ð1:3Þ
where l1, l2 are the principal stretches parallel and perpendicular to the direction of applied
force respectively and ɛ is such that

0 < " << 1; ð1:4Þ
then the material is considered to be almost incompressible. The experimental evidence for
assuming (1.3), (1.4), based on the response for some homogeneous deformations, is
reviewed in [15]. We note that the study of first-order effects due to compressibility has a
long history. Early work is due to Oldroyd [22] and Spencer [23]. Extensive work on
almost incompressible models was also carried out by Ogden [17–21]. Our particular
emphasis is on models that reflect the power–law kinematic relation (1.3), (1.4). As
mentioned earlier, our objective is to investigate how results for some basic nonhomoge-
neous deformations for the almost incompressible model compare with those for the
incompressible model (1.1). Apart from the fundamental analytical importance of this issue,
the results are of significance in the context of finite element methods for nonlinear
elasticity problems. It is well known that the constraint of incompressibility leads to
computational difficulties due to element locking and slight compressibility is usually
introduced to circumvent this problem. Our work provides an analytical basis that serves to
justify this procedure for some basic nonhomogeneous deformations. However, it is also
shown that the volume change can be significant for slightly compressible materials in
certain situations.
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The standard compressible version of (1.1) is written as

W ¼ c1 i1 � 3ð Þ þ c2 i2 � 3ð Þ þ h i3ð Þ; h i3ð Þ 6¼ 0; ð1:5Þ
where c1≠0, c2 are constants, h is an arbitrary function and i3=l1l2l3. In order for the
strain-energy and the stress to vanish in the undeformed state, it is required that

h 1ð Þ ¼ 0; h0 1ð Þ ¼ � c1 þ 2c2ð Þ: ð1:6Þ
This generalized compressible Varga model has been the subject of many investigations as
it has been possible to obtain explicit exact solutions to a variety of boundary-value
problems for this particular compressible material model. See, e.g., Aron [2], Carroll [3],
Carroll and Murphy [4], Carroll et al [5], Haughton [7], Horgan [11–14] and references
cited therein. It is worth noting that cavitation phenomena for compressible materials can
be investigated in a particularly simple analytic way for this model [13].

On using the method in Murphy [16], it can be shown that a general strain-energy
density of the form W ¼ W i1; i2; i3ð Þ gives rise to the power–law kinematic relation (1.3) in
simple tension if

W ¼ A i1 þ 4"

1� 2"
i2"�1=4"
3 � 3� 2"

1� 2"
; i2 þ 2"

1� 2"
i2"�1=2"
3 � 4"

1þ 2"
i2"þ1=4"
3 � 3� 2"

1� 4"2

� �
;

ð1:7Þ
where A (. , .) is an arbitrary smooth function of its indicated arguments. On linearization,
we obtain

W ¼ d1 i1 þ 4"

1� 2"
i2"�1=4"
3 � 3� 2"

1� 2"

� �
þ d2 i2 þ 2"

1� 2"
i2"�1=2"
3 � 4"

1þ 2"
i2"þ1=4"
3 � 3� 2"

1� 4"2

� �
; ð1:8Þ

where d1 and d2 are arbitrary constants. To ensure compatibility with the linear theory, it is
required that

2m ¼ d1 þ d2; 3k ¼ 3� 2"

4"
d1 þ d2ð Þ; ð1:9Þ

where μ, κ are the infinitesimal shear and bulk moduli respectively. It therefore follows that
d1 þ d2 > 0 and that

m
k
¼ 6"

3� 2"
ð1:10Þ

which conforms with the intuitive expectation that the ratio μ/κ is ‘small’ for almost
incompressible materials. A comparison of (1.8) with (1.5) shows that (1.8) is a generalized
Varga material if we identify d1, d2 with c1, c2 and take

h i3ð Þ ¼ c1
4"

1� 2"
i 2"�1ð Þ=4"
3 � 4"

1� 2"

� �
þ c2

2"

1� 2"
i 2"�1ð Þ=2"
3 � 4"

1þ 2"
i 2"þ1ð Þ=4"
3 þ 2" 1� 6"ð Þ

1� 4"2

� �
: ð1:11Þ
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Thus the particular compressible Varga model (1.5) with h(i3) given by (1.11) gives rise to
the power–law kinematic relation (1.3) in simple tension. Henceforth, for simplicity, we
shall refer to this as the almost incompressible Varga model. From (1.11) we obtain

h0 i3ð Þ ¼ �c1i
� 2"þ1ð Þ=4"
3 � c2i

�1=2"
3 � c2i

1�2"ð Þ=4"
3 ; ð1:12Þ

hµ i3ð Þ ¼ c1
2"þ 1

4"

� �
i� 1þ6"ð Þ=4"
3 þ c2

2"
i� 1þ2"ð Þ=2"
3 � 1� 2"

2
i 1�6"ð Þ=4"
3

� �
: ð1:13Þ

The nonhomogeneous deformations that we will consider in the sequel are special cases
of the well-known families of nonhomogeneous controllable deformations that are known
to hold for all incompressible isotropic materials. Two approaches will be adopted: when
the deformation fields are independent of the material, as in the case for both spherical and
cylindrical inflation (Sections 2 and 3), then representative boundary value problems will be
solved to examine the effects of slight compressibility on the behavior of the
incompressible material (1.1). When the deformation fields depend on the small parameter
ɛ (Sections 4 and 5), it will be shown that the controllable deformations for incompressible
materials are recovered on letting ɛ→0.

Since all elastomers are to some extent compressible, the incompressibility constraint is
an idealization, albeit one that usually works exceedingly well in practice. The results
described here provide a quantitative assessment of the accuracy of this idealization for
some important inhomogeneous deformations.

2 Spherical Inflation

For spherically symmetric deformations of an elastic sphere, the principal stretches are
given by

l1 ¼ dr

dR
; l2 ¼ l3 ¼ r Rð Þ

R
; ð2:1Þ

where radial spherical polar coordinates of a typical point in the reference and current
configurations are denoted by R and r respectively. It was shown by Carroll [3] and indepen-
dently by Horgan [11] that spherically symmetric deformations for the complete class of
compressible Varga materials (1.5) are described by a radial deformation r(R) of the form

r3 ¼ aR3 þ b; ð2:2Þ

where a, β are integration constants. This result was also established by Haughton [7] for the
special Varga model where c2=0 in (1.5). For a review of explicit solutions of this type for a
variety of deformations and valid for wide classes of compressible materials, we refer to the
book chapter of Horgan [14]. The solution (2.2) will now be used to investigate the effect of
slight compressibility for the problem of internal pressurization of a hollow sphere. See also
[7] for a discussion of some aspects of this issue for the special Varga material (1.5) with c2=0.

(a) Internal pressurization of a hollow, incompressible sphere
For the internal pressurization of an incompressible hollow elastic sphere, where the
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radial Cauchy stress is specified to be −P at the inner surface, the equations of equilibrium
can be integrated to give

P ¼
Zr2
r1

2

r
l2

@W

@l2
� l1

@W

@l1

� �
dr; ð2:3Þ

where the inner and outer spherical surfaces are denoted by the subscripts 1 and 2
respectively. In (2.3), the derivatives of W are evaluated at the values of the principal
stretches given by (2.1). Equation (2.3) provides a relationship between the applied pressure
and the inner radius of the deformed sphere since the incompressibility condition gives

r32 ¼ R3
2 þ r31 � R3

1: ð2:4Þ
On letting u � r=R (u is the circumferential stretch) equation (2.3) can be rewritten as

P ¼
Zu2
u1

2

u 1� u3ð Þ l2
@W

@l2
� l1

@W

@l1

� �����
l1¼u�2;l2¼l3¼u

du; ð2:5Þ

where

u1 � r1
R1

; u2 � r2
R2

¼ 1� γ þ γu31
� �1=3

; γ � R3
1

�
R3
2 < 1: ð2:6Þ

For the incompressible Varga model (1.1), the pressure versus deformed inner radius
relation (2.5) has the particularly simple form

bP ¼ P

c1
¼ 1

u2
þ c

� �2

� 1

u1
þ c

� �2

; c � c2
c1

: ð2:7Þ

(b) Internal pressurization of an almost incompressible sphere
Consider now the internal pressurization of a sphere of a compressible material of the

form (1.5), (1.11) so that the corresponding deformation field is given by (2.2). On using
(2.1) and (2.2) and the definition of i3, we obtain

i3 ¼ a: ð2:8Þ
The principal components of the Cauchy stress T for compressible materials are given by

Ti ¼ li
l1l2l3

@W

@li
no sum on ið Þ: ð2:9Þ

Therefore we find that the radial and hoop stresses are given by

Trr ¼ c1R
2
�
r2 Rð Þ þ 2c2R=r Rð Þ þ h0 αð Þ; ð2:10Þ

Tθθ ¼ Tφφ ¼ c1r Rð Þ=αRþ c2 R
�
r Rð Þ þ r2 Rð Þ�αR2

� 	þ h0 αð Þ; ð2:11Þ
where r(R) is given in (2.2). On using the same notation u ¼ r Rð Þ=R introduced for the
incompressible case and on employing the boundary condition of zero applied traction on
the outer surface we obtain

h0 að Þ þ c1
u22

þ 2c2
u2

¼ 0; ð2:12Þ
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where from (1.12) we have

h0 að Þ ¼ �c1a
� 1þ2"ð Þ

4" � c2 a
1�2"
4" þ a� 1

2"


 �
: ð2:13Þ

If the radial Cauchy stress (2.10) is prescribed to be −P on the inner surface, we obtain

bP ¼ P

c1
¼ 1

u2
þ c

� �2

� 1

u1
þ c

� �2

; c � c2
c1

; ð2:14Þ

which is identical in form to (2.7) but now the u1 versus u2 relationship is given by (2.2) so that

u2 ¼ a 1� gð Þ þ gu31
� 	1=3

; g � R3
1

�
R3
2 < 1: ð2:15Þ

For a fixed ɛ, on substitution from (2.15) into (2.12) and making use of (2.13) one obtains a as
an implicit function of u1. However the resulting equation is highly non-linear and treating a
as a function of u1 does not appear to be particularly instructive. An easier, more intuitive
approach is adopted instead based on the result (2.8). Because almost incompressible materials
are being considered, we use (2.8) to write

α ¼ 1þ "δ for " << 1; ð2:16Þ
where δ is a number of order 1. Substitution of (2.16) into (2.15) then yields

u2 ¼ 1� g þ gu31
� �1=3

1þ "δ
1� g

1� g þ gu31

� �1=3

¼ uincomp2 1þ "δ
1� g

uincomp2

� �3
 !1=3

; ð2:17Þ

where (2.6) has been used to obtain the last expression in (2.17). To first order in ɛ, we deduce
from (2.17) that

u2 ¼ uincomp2 þ "d
1� g

3 uincomp2

� �3 : ð2:18Þ

Since the ɛ term is never likely to be large, we see from (2.18) that the ratio of the outer
deformed radius to the outer undeformed radius is virtually the same for the incompressible and
almost incompressible models, as one might expect intuitively. By virtue of (2.14) and (2.7), the
pressure versus deformed inner radius relation for both models is also virtually identical.

The foregoing considerations can be made more explicit for the special Varga model
where c2=0. In this case, (2.12), (2.13) and (2.15) yield

gu31 ¼ a g � 1ð Þ þ a
3 1þ2"ð Þ

8" ; ð2:19Þ
which gives u1=u1(a). By virtue of (1.9)1 with d2≡c2=0, we have c1=2μ. When c2=0, we
see from (2.14) that c=0 and on using (2.15)1, we find that the applied pressure versus inner
deformed radius relation (2.14) simplifies to

bP ¼ P

2μ
¼ 1

α 1� gð Þ þ gu31
� �2=3 � 1

u21
; ð2:20Þ

where a(u1) is given implicitly by (2.19). The corresponding relation for the incompressible
case with c2=0 (i.e., (2.7) with c=0) can be obtained formally from (2.20) on setting a=1.
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In Fig. 1, we plot the relation (2.20) for g=1/2 (recall from its definition in (2.15) that
that 0<g<1) and for ɛ=0.05 and ɛ=0.25 and compare with the corresponding results for
the incompressible case. It is seen from Fig. 1 that, while all the inflation curves are
qualitatively similar, increasing compressibility is manifested in a lowering of the
maximum pressure. More importantly, we see that the pressure–stretch relation for the
incompressible material is obtained uniformly in the limit as ɛ→0 from the corresponding
curves in the almost incompressible case. This therefore supports the case for the use of
general strain-energy functions of the form (1.7) in the modeling of almost incompressible
materials. As described in [15], the motivation for adopting (1.7) was the matching of
theoretical predictions with experimental data for some basic homogeneous deformations.

A quantity of particular interest in the modeling of almost incompressible materials is the
volume change. By virtue of (2.8), we see that the volume change for spherical inflation is
given implicitly as a function of the inner hoop stretch by (2.19) for the case when c2=0. To
investigate this volume change, we first rewrite (2.19) as

a ¼ gu31 þ a 1� gð Þ� 	8"=3 1þ2"ð Þ
: ð2:21Þ

On letting ɛ→0 we obtain a=1, i.e., the material preserves volume in spherical inflation. To
obtain the first order term for the volume change, let

a ¼ 1þ "a1; ð2:22Þ
and substitution into (2.21) yields

a1 ¼ 8

3
ln 1þ g u31 � 1

� �� 	
: ð2:23Þ

Fig. 1 Pressure versus inner circumferential stretch for a hollow sphere with g � R3
1

�
R3
2 ¼ 1=2
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By virtue of its definition in (2.15), the limit g→0 corresponds to two physical situations
i.e. the case of a thick walled sphere or a spherical cavity in an infinite medium. In either
case, (2.23) yields a1=0 so that the volume change will be small. However for thin walled
spherical shells (corresponding to g→1), we see from (2.23) that a1 is large for u1>>1.
Thus, for a given slightly compressible special Varga material, the volume change can be
significant for sufficiently severe deformations of thin shells. Volume changes for an
intermediate value of g are illustrated in Fig. 2, where the volume changes for ɛ=0.05 and
ɛ=0.25 are plotted for the case g=1/2. As might be expected, at fixed values of the inner
hoop stretch, the volume change decreases as ɛ decreases. For both values of ɛ we see that
the volume change increases with increasing stretch and is significant even along the strain-
hardening sections of the corresponding pressure–stretch relation which, as seen from Fig. 1,
corresponds approximately to stretches in the range [1, 1.5].

3 Cylindrical Inflation Accompanied by an Axial Stretch

For the general Varga material (1.5), Carroll [3] has shown that the equations of equilibrium
for inflation, accompanied by a constant axial stretch l, of hollow circular cylinders, have
the solution

r2 ¼ a
l
R2 þ b; θ ¼ D; z ¼ lZ; ð3:1Þ

where the radial cylindrical polar coordinates of a typical point in the reference and current
configurations are given by R and r respectively and a, β are constants of integration. On
noting that i3=a, the corresponding principal radial and axial Cauchy stresses are given by

Trr ¼ R

lr
c1 þ R

r
þ 1

l

� �
c2 þ h0 að Þ; Tzz ¼ l

a
c1 þ R

r
þ lr

aR

� �
c2 þ h0 að Þ: ð3:2Þ
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Fig. 2 Volume changes for ɛ=
0.05 and 0.25 for the same
hollow sphere as in Fig. 1
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Only plane stress problems will be considered here and it was observed by Carroll et. al. [5]
that such problems can be solved exactly for the Varga material (1.5) in the case when c2=0.
This will be assumed here and so the plane stress condition Tzz=0 then yields

h0 að Þ ¼ � l
a
c1: ð3:3Þ

For the particular almost incompressible model given by (1.5), (1.11) with c2=0, the
condition (3.3) reduces to

l ¼ a
2"�1
4" : ð3:4Þ

It follows immediately from (3.1) and (3.4), on using similar notation as before, i.e., u≡r/R, that

u22 ¼ a
2"þ1
4" 1� gcð Þ þ gcu

2
1; gc � R2

1

�
R2
2 < 1 ð3:5Þ

Only internal pressurization of tubes will be considered here. Thus, on using (3.2) with c2=0,
the boundary condition of zero traction on the outer surface yields

gcu
2
1 ¼ a

2"þ1
4" gc � 1ð Þ þ a

1
" ; ð3:6Þ

which determines a=i3 implicitly as a function of u1. Equation (3.6) is the counterpart of (2.19)
obtained for spherical inflation. If the radial Cauchy stress is prescribed to be −P on the inner
boundary, we find that

bP ¼ P

2m
¼ a

1�2"
4"

1

u2
� 1

u1

� �
: ð3:7Þ

It follows from (3.5), (3.6) that both bP, a are implicitly functions of u1 and so by virtue of (3.4)
we see that l is an implicit function of u1. Examples will be given shortly and the results
compared with the corresponding incompressible model.

First, however, the volume change, as determined by (3.6), will be considered. On
writing α in the form given by (2.22), (3.6) becomes

gcu
2
1 ¼ 1þ "a1ð Þ1"


 �2"þ1
4

gc � 1ð Þ þ 1þ "a1ð Þ1" : ð3:8Þ

To first order in ɛ, we obtain

gcu
2
1 ¼ gc � 1ð Þea1=4 þ ea1 ; ð3:9Þ

which, for a given gc, can be viewed as a quartic equation for eα1=4. For the special case of
an infinitely thick cylinder, on letting γc→0 in (3.9), we find that

0 ¼ ea1 � ea1=4; ð3:10Þ
which yields a1=0 and thus for thick cylinders the volume change will be infinitesimal. On
the other hand, for a thin tube, on setting gc=1 in (3.9) we obtain

a1 ¼ 2 ln u1: ð3:11Þ
Thus we conclude that if u1 is large enough, then a1 is also large and therefore the
corresponding volume change is appreciable. This implies that for thin cylindrical shells
under sufficiently large deformations, significant volume changes occur for the slightly
compressible materials considered here.

In general, for given values of the inner hoop stretch and ɛ, (3.6) can be solved
numerically to obtain the corresponding volume change. For gc=1/2, these changes are
plotted in Fig. 3 for ɛ=0.05 and ɛ=0.25. The same qualitative features are obtained as for
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spherical inflation but, for a given inner circumferential stretch, the volume change is
smaller in cylindrical inflation, as might be anticipated.

Internal pressurization of tubes composed of the incompressible Varga material (1.1)
with c2=0, i.e.,

W ¼ 2m i1 � 3ð Þ; ð3:12Þ
is now considered. The plane stress condition is again imposed and yields the following
implicit relation for l in terms of u1:

gcu
2
1l

4 þ 1� gcð Þl3 � 1 ¼ 0; ð3:13Þ
on using the same notation as for the almost incompressible case. The relation between the
internal pressure and the inner hoop stretch is easily shown to be

bP ¼ P

2m
¼ 1

l
1

u2
� 1

u1

� �
; ð3:14Þ

where

lu22 ¼ 1� gc þ lgcu
2
1: ð3:15Þ

A plot of the axial stretch versus u1 is given in Fig. 4 for the incompressible case and for
the almost incompressible case with ɛ=0.05 and ɛ=0.25 for gc=1/2, where we recall from
(3.5) that gc is the squared ratio of the inner to the outer undeformed radius. Again as ɛ→0,
there is uniform convergence to the incompressible result. The same feature can be seen in
Fig. 5 where plots of the internal pressure versus u1 for the incompressible case and for the
almost incompressible material with ɛ=0.05 and ɛ=0.25 are given for the same tube, i.e.,
for gc=1/2.

For the deformations considered so far, the deformation fields have been independent of
the form of the arbitrary function h(i3) for the general Varga material (1.5) and, in particular,
have been independent of the material constants c1, c2, ɛ in the proposed model (1.5), (1.11)
for an almost incompressible material. In the next two sections, deformations will be
considered where this is not the case.
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4 Straightening of a Cylindrical Sector

The straightening of a cylindrical sector, with initial radii R1, R2, into a rectangular block,
accompanied by an axial stretch, is described by

x ¼ bx Rð Þ; y ¼ BD; z ¼ lZ; ð4:1Þ
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Fig. 4 Axial stretch versus inner hoop stretch for the same tube as in Fig. 3
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where dx/dR>0, l>0, B>0. Here (R, Θ, Z) are the cylindrical coordinates of a typical
particle before deformation and (x, y, z) denote the Cartesian coordinates of the particle after
deformation. The principal stretches are

l1 ¼ dx=dR; l2 ¼ B=R; l3 ¼ l: ð4:2Þ
It is shown in Carroll [3] that the principal Cauchy stresses for the generalized Varga model
(1.5) are given by

Txx ¼ c1R=lBþ c2 R=Bþ 1=lð Þ þ h0 i3ð Þ;
Tyy ¼ c1=l dR=dxð Þ þ c2 dR=dxþ 1=lð Þ þ h0 i3ð Þ;
Tzz ¼ c1R=B dR=dxð Þ þ c2 dR=dxþ R=Bð Þ þ h0 i3ð Þ;

ð4:3Þ

where

i3 ¼ lB
R

dx

dR
: ð4:4Þ

Thus, in the absence of body forces, the equations of equilibrium divT=0 in the y and z
directions are satisfied identically and that for the x direction is dTxx/dx=0 which may be
integrated to give

R

lB
c1 þ R

B
þ 1

l

� �
c2 þ h0 i3ð Þ ¼ ba; ba constantð Þ: ð4:5Þ

Thus a quadrature solution for x can be obtained, provided that h′ is invertible. An
examination of (1.12) shows that for the almost incompressible Varga material, h′ is not
easily invertible. However, one special case immediately suggests itself, namely the special
Varga model where c2=0. On setting c2=0 in (4.5) and (1.12) we get

R

lB
� i� 2"þ1ð Þ=4"

3 ¼ �a; a � � ba
2μ

: ð4:6Þ

On substitution of (4.4) in (4.6) the resulting first-order ordinary differential equation can
be easily integrated to yield

x ¼ lB 1þ 2"ð Þ2
2 1� 2"ð Þ

R

lB
þ a

� �1�2"
1þ2" R

lB
1� 2"

1þ 2"
� a

� �
þ b; b constantð Þ: ð4:7Þ

The constant b can be set equal to 0 without loss of generality as it corresponds to a rigid
body translation. On setting ɛ=0 in (4.7) we recover, to within an additive constant, the
corresponding controllable deformation for incompressible materials, i.e.,

x ¼ R2
�
2lB: ð4:8Þ

On imposing traction-free boundary conditions on the lateral surfaces, i.e., Txx ¼ 0 for x ¼
x R1ð Þ; x R2ð Þ, one finds that a=0 and (4.7) yields

x ¼ 1þ 2"

2
lB

R

lB

� � 2
1þ2"

; ð4:9Þ

for the deformation of the almost incompressible special Varga material (1.5), (1.11) with c2=0.
This solution can be shown to be identical to that obtained by Aron [2]. The non-zero principal
stresses are given by

Tyy ¼ 2m
1

l
R

lB

� �2"�1
2"þ1

� R

lB

 !
; Tzz ¼ 2m l

R

lB

� � 4"
2"þ1

� R

lB

 !
: ð4:10Þ
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On observing that the plane stress boundary condition cannot be satisfied exactly here, we will
be content to consider plane strain problems only for which l=1. On denoting the resultant
applied moment by M, we obtain

bM � M

2mL
¼ 1

2m

Zx R2ð Þ

x R1ð Þ

xTyydx¼ 1þ 2"ð Þ2
2

B
2"�3
2"þ1

B
2

1þ2"R
3þ2"
1þ2"

3þ 2"
� R

5þ2"
1þ2"

5þ 2"

 !�����
R¼R2

R¼R1

; ð4:11Þ

where L is the width of the sector in the Z-direction before deformation. As ɛ→0 in (4.11), we
obtain the corresponding result for the incompressible Varga model (1.1) with c2=0 that is

bM � M

2mL
¼ 1

2B3

B2R3

3
� R5

5

� �����R¼R2

R¼R1

: ð4:12Þ

The corresponding volume change can be found from (4.6) with a=0 and l=1, i.e.,

i3 ¼ B

R

� � 4"
1þ2"

; ð4:13Þ

which, to the first order in ɛ, has the form

i3 ¼ 1þ 4" ln
B

R
: ð4:14Þ

On noting that the ɛ term is a monotonically decreasing function of R, we see that if the
geometrical ratio, B/R1, of the undeformed sector is sufficiently large, then again the volume
change is no longer small for the slightly compressible special Varga material considered here.

5 The Bending of a Rectangular Block

The related problem of the bending of a rectangular block is described by

r ¼ br Xð Þ; q ¼ BY ; z ¼ lZ; ð5:1Þ
where dr/dR>0, l>0, B>0. Here (X, Y, Z) are rectangular Cartesian coordinates before
deformation and (r, θ, z) are cylindrical polar coordinates after deformation. For the general
Varga model (1.5), Carroll [3] has shown that the equations of equilibrium reduce to

i3
dh0 i3ð Þ
dr

¼ lB
c1
l
þ c2


 �
; i3 ¼ lBr

dr

dX
: ð5:2Þ

This equation can reduced to a quadrature, provided that the function H i3ð Þ ¼ R i3shµ sð Þds is
invertible. Consideration of (1.13) shows that this is unlikely for the almost incompressible
Varga material (1.5), (1.11) but is easily achieved for the special case when c2=0 in which

case H i3ð Þ ¼ c1 2"þ1
4" i

�2"þ1
4"

3 . Then (5.2) can be integrated to yield

lBr
dr

dX
¼ 2"� 1

2"þ 1
Br þ k

� � 4"
2"�1

; k constantð Þ ð5:3Þ

which yields the implicit solution

2"� 1

2"þ 1
Br þ k

� �1þ2"
1�2"

Br þ kð Þ ¼ � 2B

l 1þ 2"ð Þ X þ K; K constantð Þ: ð5:4Þ
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Solution of associated boundary value problems is complicated here because the solution
(5.4) is an inverse solution, giving the undeformed variable explicitly in terms of the
deformed variable. We will be therefore content to note that on setting ɛ=0 in (5.4), we
recover, to within an additive constant, the corresponding controllable solution for
incompressible materials, namely,

r2 ¼ 2X=lB: ð5:5Þ
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