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Abstract Current interest in nanoscale systems and molecular dynamical simulations
has focussed attention on the extent to which continuum concepts and relations may
be utilised meaningfully at small length scales. In particular, the notion of the Cauchy
stress tensor has been examined from a number of perspectives. These include
motivation from a virial-based argument, and from scale-dependent localisation
procedures involving the use of weighting functions. Here different definitions and
derivations of the stress tensor in terms of atoms/molecules, modelled as interacting
point masses, are compared. The aim is to elucidate assumptions inherent in different
approaches, and to clarify associated physical interpretations of stress. Following a
critical analysis and extension of the virial approach, a method of spatial atomistic
averaging (at any prescribed length scale) is presented and a balance of linear
momentum is derived. The contribution of corpuscular interactions is represented
by a force density field f. The balance relation reduces to standard form when f is
expressed as the divergence of an interaction stress tensor field, T−. The manner in
which T− can be defined is studied, since T− is unique only to within a divergence-
free field. Three distinct possibilities are discussed and critically compared. An
approach to nanoscale systems is suggested in which f is employed directly, so
obviating separate modelling of interfacial and edge effects.
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1 Introduction

The macroscopic behaviour of inanimate matter is usually modelled in terms of
deterministic continuum mechanics (cf. e.g., [1–3].) If adopted in isolation this
approach can give rise to conceptual difficulties concerning questions of scale,
physical interpretation of fields, and reproducibility of phenomena. As pointed
out in [4], these difficulties can be resolved by linking continuum concepts, fields,
and balance relations to molecular behaviour. Such linkage also helps in reverse,
in the interpretation of data from molecular dynamical simulations. Of particular
interest are systems and/or phenomena in which at least one spatial dimension is
macroscopically small, such as liquid–vapour interfaces, shock waves, and nanoscale
bodies. In such cases the number of molecules is usually large enough for a
classical, rather than quantal, description to be adopted. Here we discuss and
compare molecular-based definitions of the Cauchy stress tensor in which molecules
are modelled as interacting point masses. A molecular definition of the average
stress, computed over any (bounded) region occupied by a system of molecules
in macroscopic equilibrium, and then averaged in time, has been established on
the basis of virial considerations [5, 6]. In the context of pulse heating and shock
compression in solids, a molecular spacetime average ‘internal’ stress meaningful
within the region occupied by the system was introduced by Tsai [7]. Hardy [8]
recalled the pioneering work of Irving & Kirkwood [9] in which stress is defined
as a pointwise statistical average of molecular variables. Via an ergodic hypothesis
this stress is identified with molecular averaging in time but not space. Such an
approach was not practical for Hardy’s purpose of determining local properties of
shock waves from molecular dynamics. By the introduction of a spatial ‘localisation’
function in place of a probability density distribution, he established balances of
linear momentum and energy in which field values, including stress, are defined in
terms of local spatial averages at any given scale. Unaware of Hardy’s work, Murdoch
& Bedeaux [10] adopted a similar approach, drawing upon simplification of the work
of Irving & Kirkwood by Noll [11] to obtain molecular expressions for stress and
heat flux together with relevant balance relations. Recognising the importance of
identifying field values with experimental data, and noting that local measurement
values reflect local averages of molecular behaviour both in space and time, in [10]
all fields are identified via local spacetime averages. The definitions of stress and heat
flux before temporal averaging here differ from Hardy’s expressions both in form
and choice of localisation/weighting function (cf. [12, 13]). Recently Zimmerman
et al. [14] have compared the predictions of Hardy stress with those based upon
a so-called ‘local’ virial stress in molecular simulations of a crystal, and Zhou [15]
has argued that no definition of mechanical stress should include contributions
from microscopic momentum exchange, in contrast to all aforementioned studies.
Such lack of consensus motivates the present study which attempts to trace the
physical and mathematical assumptions behind molecular definitions of stress, and
to compare critically virial formulations and those proposed by Hardy and Murdoch
& Bedeaux.

In Section 2 salient aspects of continuum theory are presented for later reference.
A link between the continuum description of a macroscopic body and its molecular
content is established in Section 3. By considering the virial of a set of interacting
point masses which model molecules, a relation between the average stress in the
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body and time-averaged sums of molecular variables is derived. It is shown how
the argument can be modified for solids to obtain a local, rather than global,
stress average. Shortcomings of the virial approach are listed, after which a much
more general approach to the molecular basis of continuum fields is introduced in
Section 4. The continuity equation and a form of linear momentum balance are
derived via scale-dependent weighting function methodology. The balance relation
involves an interaction body force density field fw. The usual form of balance is
obtained by exhibiting a tensor field T−

w , the interaction stress tensor, for which
div T−

w = fw. The Cauchy stress tensor Tw is thereupon the sum of T−
w with a pressure-

like tensor −Dw of kinematic character whose trace is a measure of heat energy
density. The non-uniqueness of T−

w is explored in Section 5. Three possibilities
are discussed in a systematic way; the first would appear to be new, the second a
formulation due to Hardy, and the third a modification of a statistical mechanical
expression introduced by Noll. The physical interpretations of the three choices are
compared in Section 6 both in terms of pointwise values and their integrals over
an infinite plane. A discussion is given in Section 7 of the utility of the weighting
function approach, the possible computational advantage of the new definition of T−

w ,
and common characteristics of all three candidates for T−

w . Relevance of the study to
nanoscale systems is indicated, and a novel approach is suggested whereby modelling
directly in terms of fw could be implemented, so obviating separate modelling of bulk,
interfacial, and edge effects.

2 The Continuum Viewpoint

The distribution and evolution of matter in a given ‘body’ are modelled in terms of
fields of mass density ρ and velocity v. Mass conservation requires that

∂ρ/∂t + div{ρv} = 0. (2.1)

The region ‘occupied’ by the body at time t is

Bt := {points x : ρ(x, t) > 0}. (2.2)

The internal and external forces on any part of the body are treated in terms of
the Cauchy stress tensor T and body force density b, respectively. Balance of linear
momentum then yields, in an inertial frame,

div T + b = ∂/∂t{ρv} + div {ρv ⊗ v} = ρa (2.3)

for each point in Bt, where the acceleration field

a := ∂v/∂t + (∇v)v. (2.4)

If the only external field is gravitational then

b = ρg. (2.5)

For any surface S (oriented by choice n of unit normal field) the surface integral of
Tn over S is interpreted to be the force exerted across S by that part of the body
into which n is directed on that part of the body out of which n points. If the external
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traction field on the boundary ∂ Bt of Bt is t̂ and n denotes the outward unit normal
on ∂ Bt then, in the absence of surface/interfacial effects,

Tn = t̂ on ∂ Bt. (2.6)

3 The Virial Approach to Stress

3.1 The Global Virial Stress

Consider a set of interacting point masses Pi (i = 1, 2, . . . , N). The motion of Pi in
an inertial frame is governed by

∑

j�=i

fij + bi = d/dt{mivi}. (3.1)

Here fij denotes the force exerted on Pi by Pj (the sum is taken over all particles
except Pi), bi the resultant force on Pi due to all other agencies (in particular bi

includes the weight mig of Pi), and mi and vi denote the mass and velocity of Pi,
respectively.

If x0 labels a fixed point in the inertial frame then tensorial premultiplication1

of (3.1) by the displacement (xi − x0) of the location xi of Pi from x0, followed by
summation over all particles, yields

∑

i

∑

j�=i

(xi − x0) ⊗ fij +
∑

i

(xi − x0) ⊗ bi =
∑

i

(xi − x0) ⊗ d/dt{mivi}. (3.2)

Now
∑

i

∑

j�=i

(xi − x0) ⊗ fij = 1

2

∑

i �= j

∑
{(xi − x0) ⊗ fij + (x j − x0) ⊗ f ji}

= 1

2

∑

i �= j

∑
(xi − x j) ⊗ fij, (3.3)

upon invoking Newton’s third law for interactions:

f ji = −fij. (3.4)

Further,

∑

i

(xi − x0) ⊗ d/dt{mivi} = d/dt

{
∑

i

(xi − x0) ⊗ mivi

}
−

∑

i

vi ⊗ mivi. (3.5)

It follows from (3.2, 3.3) and (3.5) that

1

2

∑

i �= j

∑
(xi − x j) ⊗ fij +

∑

i

(xi − x0) ⊗ bi +
∑

i

vi ⊗ mivi = dL/dt, (3.6)

1In Cartesian tensor notation

(a ⊗ b)pq = apbq.
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where the generalised (tensor-valued) moment of momentum at time τ about point
x0 is

L(τ ; x0) :=
∑

i

(xi(τ ) − x0) ⊗ mivi(τ ). (3.7)

Now suppose the particles are confined at time t to a bounded region R. In the
absence of external electromagnetic fields the external force bi on Pi derives only
from the effects of gravity and forces which serve to confine the system. To separate
these effects we write

bi = mig + ci (3.8)

so defining the confining force ci on Pi. From (3.6)
∑

i

(xi − x0) ⊗ ci = dL/dt + 1

2

∑

i �= j

∑
(x j − xi) ⊗ fij −

∑

i

vi ⊗ mivi

−
∑

i

(xi − x0) ⊗ mig. (3.9)

It is the tensor moment of confinement forces delivered by (3.9) which provides the
link with the macroscopic description. Confinement forces are, from the continuum
viewpoint, modelled via the traction field t̂ on the boundary ∂R of R. In particular,
the tensor moment of confinement forces about fixed point x0 at any time is
represented by

∫

∂R
(x − x0) ⊗ t̂ dS =

∫

∂R
(x − x0) ⊗ Tn dS

=
∫

R
{(x − x0) ⊗ div T + TT}dV, (3.10)

on invoking (2.6). Here use has been made of the divergence theorem for rank two
tensor fields.2 Identifying the two expressions (3.9) and (3.10) for the moment of
confinement forces about x0, and also making the identification

∑

i

(xi − x0) ⊗ mig =
∫

R
(x − x0) ⊗ ρg dV (3.11)

for the resultant tensor moment of gravitational forces about x0, we have

dL/dt + 1

2

∑

i �= j

∑
(x j − xi) ⊗ fij −

∑

i

vi ⊗ mivi

=
∫

R
(x − x0) ⊗ (div T + ρg) + TTdV. (3.12)

In the case of macroscopic equilibrium in a terrestrial frame of reference (2.3)
becomes

div T + ρg = 0 (3.13)

2div T is that vector field with Cartesian components (div T)p = Tpq,q; TT denotes the transpose of
T so (TT )pq = (T)qp = Tqp.



118 A.I. Murdoch

if the effect of the Earth’s motion relative to any inertial frame is neglected. Thus taking
the transpose of (3.12) yields

Tav(R) = 1

vol (R)

⎧
⎨

⎩
dLT

dt
+ 1

2

∑

i �= j

∑
fij ⊗ (x j − xi) −

∑

i

vi ⊗ mivi

⎫
⎬

⎭ , (3.14)

where

Tav(R) :=
∫

R
T dV/vol (R). (3.15)

Integrating (3.14) over the time interval t − � ≤ τ ≤ t and dividing by its duration �,

T
�

av(R) = 1

vol (R)

⎧
⎨

⎩A + 1

2

∑

i �= j

∑
fij ⊗ (x j − xi)

� −
∑

i

vi ⊗ mivi
�

⎫
⎬

⎭ . (3.16)

Here

A(t; �) := �−1{LT(t) − LT(t − �)}, (3.17)

and the superposed bar, annotated ‘�’, denotes the �-time average of the quantity
in question: that is, for any time-dependent function F( . ),

F̄�(t) := 1

�

∫ t

t−�

F(τ )dτ. (3.18)

We note that

if L is bounded for all time (3.19)

then, from (3.17),

A(t; �) → 0 as � → ∞. (3.20)

Accordingly, from (3.16)

lim
�→∞

{
Tav(R)

�
}

= 1

vol (R)
lim

�→∞

⎧
⎨

⎩
1

2

∑

i �= j

∑
fij ⊗ (x j − xi)

� −
∑

i

vi ⊗ mivi
�

⎫
⎬

⎭ .

(3.21)

The first limit on the right-hand side of (3.21) is, upon recalling (3.3), a generalisation
of the virial of Clausius (see [16], p.84).

Remark 1 Macroscopic equilibrium (that is, v = 0) in a terrestrial frame F implies
from (2.1) that in this frame ρ is time-independent. Approximation (3.13) also
implies that if R is a fixed region in F over which g is essentially constant (note that
to an inertial observer g will change direction with time) then div T is independent
of time. Thus (modulo a possible time-dependent divergence-free field) T is time-

independent, and Tav(R)
� = Tav(R). Accordingly the left-hand side of (3.21) is just

Tav(R).
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Remark 2 Since, by assumption, R is a bounded region, distance ‖xi(τ ) − x0‖ of Pi

from fixed point x0 remains bounded for all times. In the event that the kinetic energy
of Pi is also bounded for all τ then vi is likewise bounded, and it follows from (3.7)
that hypothesis (3.19) is satisfied. Such boundedness of individual kinetic energies
would follow were the system to be thermomechanically isolated (so the total system
energy would be constant) and interactions were delivered by pair-potentials that are
bounded below (such as Lennard–Jones potentials).

Remark 3 If A(t; �) is negligible for � ∼ �0 then the time average limits in (3.21)
can be replaced by simple time averages of duration �0. (For example, L might be
essentially periodic with period �0: cf. [16], p.84.)

Remark 4 The foregoing essentially follows [5] and [6], although these works omit-
ted gravity and did not emphasise that they were only deriving results for macro-
scopic equilibrium (cf. [5] after Equation (25) and [6], Equation (22)).

Remark 5 Since the objective is to obtain an expression, valid in a general dynamical
context, for the Cauchy stress T(x, t) at a point x and time t in terms of microscopic
quantities, it is clear that relation (3.21) falls far short of this aim. Specifically, this
relation holds only for global macroscopic equilibrium and only delivers an average
of T taken over the whole region.

In the following subsection we indicate how the foregoing can be modified so as
to involve only an arbitrary subregion P of R and hence deliver local averages of T.
It turns out that a sensible average exists for solids in macroscopic equilibrium, but
that the argument is unsatisfactory for fluids.

3.2 A Local Virial Stress for Solids

Following the procedure of Subsection 3.1 one can, at any given time τ , restrict the
summations in (3.2) by requiring that the ‘i’ sum be taken only over those particles Pi

which lie in an arbitrary given subregion P of R. However, since in the first term of
(3.2) the double sum is computed over all particles Pj except Pi, simplification (3.3)
does not hold. Further, and more crucially, simplification (3.5) will no longer hold if
the particle population of P changes with time. Specifically, evaluation of the time
derivative of

∑

Pi∈P
at time τ

(xi(τ ) − x0) ⊗ mivi(τ )

requires that account be taken of particle migration between P and the rest of R.
Such migration is inevitable and non-trivial for fluids. The situation is different for
solids in equilibrium. In such case individual molecular mass centres undergo rapid
erratic localised motions. The time scale of such motions is typically of order 10−13 s.
It is thus meaningful to regard the macroscopically small (say 10−6 s) time-averaged
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location of a molecular mass centre to be a fixed point.3 We denote the averaged
location of Pi by x̄i (so x̄i is time-independent for macroscopic equilibrium). Now
consider those particles for which x̄i lies within any region P which lies strictly within
R (so that its boundary ∂P is not in the proximity of the surface ∂R which confines
the system). Then the analogue of (3.2) for particles Pi with x̄i ∈ P is

∑

i

′ ∑

j�=i

(xi − x0) ⊗ fij +
∑

i

′
(xi − x0) ⊗ mig

=
∑

i

′
(xi − x0) ⊗ d/dt(mivi). (3.22)

Here the superposed prime attached to sums signifies that only particles for which
x̄i ∈ P are involved. The nature of P means that such particles will for all time be
uninfluenced by the molecules of the confining system and the analogue of (3.8) is
bi = mig. Since a fixed set of particles is involved, relation (3.5) holds for primed
sums. Further,

∑

i

′ ∑

j

(xi − x0) ⊗ fij = 1

2

∑

i

′ ∑

j

′
(xi − x j) ⊗ fij +

∑

i

′ ∑

j

′′
(xi − x0) ⊗ fij. (3.23)

Here
∑

j

′ (∑

j

′′ )
denotes a sum over particles Pj for which x̄ j ∈ P(x̄ j �∈ P) and use

has been made of (3.4) for particle pairs whose averaged locations both lie in P .
From (3.22), the analogue of (3.5), and (3.23) we have

∑

i

′
(xi − x0) ⊗ mig = 1

2

∑

i

′ ∑

j

′
(x j − xi) ⊗ fij −

∑

i

′ ∑

j

′′
(xi − x0) ⊗ fij

+ dL′/dt −
∑

i

′
vi ⊗ mivi. (3.24)

Here [see (3.7)]

L′(τ ; x0) :=
∑

i

′
(xi(τ ) − x0) ⊗ mivi(τ ). (3.25)

Making identification (3.11) (with
∑

i

replaced by
∑

i

′
and R replaced by P) and

invoking (3.13, 3.24) yields

1

2

∑

i

′ ∑

j

′
(x j − xi) ⊗ fij −

∑

i

′ ∑

j

′′
(xi − x0) ⊗ fij −

∑

i

′
vi ⊗ mivi + dL′/dt

= −
∫

P
(x − x0) ⊗ div T dV

= −
∫

∂P
(x − x0) ⊗ Tn dS +

∫

P
TTdV. (3.26)

3Notice the discussion is restricted to macroscopic equilibrium; in dynamical contexts such
time-averaged locations will change, essentially tracing out the macroscopic motion.
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Given (3.19), L′ must be bounded for all time. Thus taking the �-time average of the
transpose of (3.26) yields

lim
�→∞

{∫

P
T̄�dV −

∫

∂P
T̄�n ⊗ (x − x0)dS

}

= lim
�→∞

⎧
⎨

⎩
1

2

∑

i

′ ∑

j

′
fij ⊗ (x j − xi)

� −
∑

i

′
vi ⊗ mivi

� −
∑

i

′ ∑

j

′′
fij ⊗ (xi − x0)

�

⎫
⎬

⎭ .

(3.27)

Noting that the last sum in (3.27) involves interactions between particles Pi and
Pj for which x̄i ∈ P and x̄ j �∈ P it is natural, in view of the interpretation of Tn (see
Section 2), to make the identification

lim
�→∞

{∫

∂P
T̄�n ⊗ (x − x0)dS

}
= lim

�→∞

⎧
⎨

⎩
∑

i

′ ∑

j

′′
fij ⊗ (xi − x0)

�

⎫
⎬

⎭ . (3.28)

Accordingly it follows from (3.27) that

lim
�→∞{Tav(P)

�} = 1

vol (P)
lim

�→∞

⎧
⎨

⎩
1

2

∑

i

′ ∑

j

′
fij ⊗ (x j − xi)

� −
∑

i

′
vi ⊗ mivi

�

⎫
⎬

⎭ ,

(3.29)

where Tav(P) is defined by (3.15) with R replaced by P .

Remark 6 Relation (3.29) provides a local version of (3.21), valid for macroscopic
equilibrium of solids, since P may be arbitrarily small. Exactly as in Remark 1 we

can argue that Tav(P)
� = Tav(P) on neglect of inertial terms.

Remark 7 Writing relation (3.26) for two differing choices x̂0 and x̃0 of fixed point x0

and then subtracting yields

−d ⊗
∑

i

′ ∑

j

′′
fij + d ⊗ d/dt

{
∑

i

′
mivi

}
= −d ⊗

∫

∂P
Tn dS, (3.30)

where d := x̃0 − x̂0. The arbitrary nature of d implies that

∫

P
div T dV =

∑

i

′ ∑

j

′′
fij − d/dt

{
∑

i

′
mivi

}
. (3.31)

Accordingly

(div T)av(P) = 1

vol(P)

⎧
⎨

⎩
∑

i

′ ∑

j

′′
fij − d/dt

{
∑

i

′
mivi

}⎫
⎬

⎭ (3.32)

Thus the local volume average of div T taken over region P consists of two terms:
the first is the volume average of the resultant force on particles Pi for which x̄i ∈ P
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exerted by particles Pj for which x̄ j �∈ P , and the second is the time rate of change of
momentum of particles Pi for which x̄i ∈ P . As with (3.29) it is seen that one cannot
expect the stress T to have a microscopic interpretation entirely in terms of forces.
Thus the conventional interpretation of Section 2 requires modification.

3.3 Shortcomings of the Virial Approach

The approach used in the foregoing is unsatisfactory. In particular we note that

S.1. Results hold only for macroscopic equilibrium.
S.2. Estimates of the virial need to be made before estimates of the temporal limits

involved in (3.21) and (3.29) can be made.
S.3. Only the stress (rather, its spatial average) is computed in microscopic terms.

As such it is more restrictive and no simpler than other approaches which deal
comprehensively with the relationships between all macroscopic field values
and molecular quantities.

The alternative approaches intimated in S.3. are those of statistical mechanics and
local spatial and temporal deterministic averaging. It is the latter procedure that will
be addressed hereafter.

4 Continuum Fields as Local Spatial Averages

4.1 General Relations

Rather than study the stress tensor in isolation, as in Section 3, we now outline
a systematic and comprehensive approach to linking continuum field values with
microscopic behaviour at any prescribed spatial scale. The material system (or
‘body’) of interest is modelled as a fixed set of point masses Pi as in Subsection 3.1.
Mass and momentum density fields ρw and pw are defined as local spatial averages via
a weighting/localisation function w. Specifically,

ρw(x, t) :=
∑

i

miw(xi(t) − x), and (4.1)

pw(x, t) :=
∑

i

mivi(t)w(xi(t) − x). (4.2)

Here the sums are taken over all particles and xi(t) − x denotes the displacement
of Pi from geometrical point x at time t. To accord with the continuum notion of
mass density, w should assign greater contributions to point masses near to x than
far therefrom, have physical dimension L−3, and be continuously differentiable on
the space of displacements V in Euclidean space E . To ensure that the integral of ρw

over all space E should yield the total mass of the body it is necessary and sufficient
that (see [13], p.107)

∫

V
w(u)du = 1. (4.3)
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In what follows, the relations which express mass conservation and linear momentum
balance are independent of the exact form of w beyond the foregoing constraints.
Specific choices are discussed in the next subsection.

Holding x fixed in (4.1)

∂ρw/∂t =
∑

i

mi∇w · vi = −
∑

i

mi∇xw · vi

= −
∑

i

mi div{viw} = −div pw. (4.4)

(See [17], p.74 for more explicit details.) Whenever and wherever ρw �= 0, the
corresponding velocity field

vw := pw/ρw. (4.5)

Hence, from (4.4) and (4.5),

∂ρw/∂t + div{ρwvw} = 0. (4.6)

To derive linear momentum balance we multiply (3.1) by w(xi − x) and sum over all
particles. This yields

fw + bw =
∑

i

d/dt{mivi}w(xi − x), (4.7)

where

fw(x, t) :=
∑

i

∑

j�=i

fij(t)w(xi(t) − x), and (4.8)

bw(x, t) :=
∑

i

bi(t)w(xi(t) − x). (4.9)

Remark 8 If the only external forces are gravitational, and g is the same for all Pi,
then bi = mig and

bw = ρwg. (4.10)

Since

d/dt{mivi}w(xi − x) = ∂/∂t{miviw(xi − x)} − (mivi ⊗ vi)∇w

and

(mivi ⊗ vi)∇w = −(mivi ⊗ vi)∇xw = −div{(mivi ⊗ vi)w},
the right-hand side of (4.7) becomes

∂/∂t
{ ∑

i

miviw(xi − x)

}
+ div Dw, (4.11)

where

Dw(x, t) :=
∑

i

mivi(t) ⊗ vi(t)w(xi(t) − x). (4.12)
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Substitution of (4.11) in (4.7), noting (4.2) and (4.5), yields

fw + bw = ∂/∂t{ρwvw} + div Dw. (4.13)

Writing

v̂i(t; x) := vi(t) − vw(x, t), (4.14)

∑

i

miv̂i(t; x)w(xi(t) − x) = pw(x, t) − ρw(x, t)vw(x, t) = 0, (4.15)

on invoking (4.1), (4.2) and (4.5). It follows that

Dw = Dw + ρwvw ⊗ vw, (4.16)

where

Dw(x, t) :=
∑

i

miv̂i(t; x) ⊗ v̂i(t; x)w(xi(t) − x). (4.17)

Using (4.17), balance (4.13) becomes

− div Dw + fw + bw = ∂/∂t{ρwvw} + div{ρwvw ⊗ vw} (4.18)

= (∂ρw/∂t + div{ρwvw})vw + ρwaw, (4.19)

where

aw := ∂vw/∂t + (∇vw)vw. (4.20)

Thus, noting (4.6), linear momentum balance takes the form

− div Dw + fw + bw = ρwaw. (4.21)

Relation (4.21) becomes formally equivalent to the standard balance (2.3) upon
finding an interaction stress tensor T−

w for which

div T−
w = fw. (4.22)

In such case

div Tw + bw = ρwaw, (4.23)

where

Tw := T−
w − Dw. (4.24)
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At this point there are two fundamental issues to be addressed:

F.I.1. Physical interpretation of the foregoing depends crucially upon the form of w,
and

F.I.2. Derivation of the standard form (4.23) involves computation of T−
w from

(4.22) when fw is given. Such a problem can only yield a solution to within
a divergenceless rank two tensor field.

F.I.1. is addressed in the following subsection, and three distinct candidates for T−
w

are exhibited and compared in Section 5.

4.2 A Simple Choice of Weighting Function w and Corresponding Physical
Interpretations

The simplest choice of w is given by

w(u) = V−1
ε if ‖u‖ < ε

w(u) = 0 if ‖u‖ ≥ ε

}
, (4.25)

where ε > 0 denotes any given length and Vε := 4πε3/3. This choice means that
ρw(x, t) is the sum of the masses of those particles which lie within that sphere
Sε(x), centred at x with radius ε, at time t, divided by the volume of Sε(x). Similarly,
pw(x, t) is the corresponding momentum/volume quotient, and vw(x, t) is [see (4.5)]
the velocity of the mass centre of those particles inside Sε(x) at time t. Further, from
(4.8) and (4.25),

fw(x, t) =
∑

Pi in
Sε (x)

⎧
⎪⎨

⎪⎩

∑

P j in
Sε (x), j�=i

fij(t) +
∑

P j not in
Sε (x)

fij(t)

⎫
⎪⎬

⎪⎭
V−1

ε . (4.26)

However, if we assume interactions satisfy (3.4) then

∑

Pi ,P j in Sε (x)

j�=i

∑
fij = 1

2

∑

Pi ,P j in Sε (x)

j�=i

∑
(fij + f ji) = 0.

It follows that

fw(x, t) =
∑

Pi in
Sε (x)

∑

P j not in
Sε (x)

fij(t)V−1
ε . (4.27)

That is, fw(x, t) is the resultant force exerted on particles within Sε(x) by particles
outwith Sε(x), divided by Vε . The definition (4.17) of Dw(x, t) involves the velocities
v̂i(t; x) of individual particles within Sε(x) at time t relative to the mass centre
velocity of all such particles at this time. These velocities correspond to chaotic
particle motions and form the basis of the kinetic theory of heat: see Brush [18].
In particular, the trace of Dw(x, t) yields twice the kinetic energy associated with
this chaotic motion of particles within Sε(x) at time t, divided by Vε . Such kinetic
energy is identified with heat, and hence (tr Dw)/2 with heat energy density.
For moderately-rarefied gases molecular interactions occur only intermittently, via
binary ‘collisions’, fw is negligible, and Dw is identifiable with the so-called pressure
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tensor of kinetic theory4 (cf. [4], Remarks 4.11–16, [19], p. 169). In solid phases −Dw

represents a highly temperature-dependent contribution to the total (Cauchy) stress
Tw, vanishing only at absolute zero. Indeed, for bodies constrained to occupy fixed
regions it is the contribution of −Dw which explains the increase in compressive mean
stress −tr Tw with temperature.

Remark 9 Choice (4.25) for w is discontinuous when ‖u‖ = ε and hence fails to
satisfy our differentiability requirement. It is, however, a simple matter to ‘mollify’
w over an interval ε < ‖u‖ < ε + δ in such a way that w has arbitrary smoothness
everywhere, with δ(> 0) arbitrarily small. Specifically we redefine w by

w(u) = ŵ(u) with u := ‖u‖, (4.28)

where ŵ(u) = k, φ(u), or 0 according as 0 < u < ε, ε ≤ u ≤ ε + δ, or u > ε + δ,
respectively, and k is a constant mandated by the normalisation requirement (4.3).
(In fact k = V−1

ε (1 + O(δ/ε)): see [4], p.31 or [10], p.160.) Mollifier φ is everywhere
continuously differentiable, and satisfies

φ(ε) = k, φ′(ε) = 0, φ(ε + δ) = 0, φ′(ε + δ) = 0, (4.29)

and is monotone decreasing on ε < u < ε + δ. The foregoing ensures that for small
enough choice of δ (say δ = 10−12m) the physical interpretations of ρw, pw, vw, fw,
and Dw are essentially unchanged.

Remark 10 Since the macroscopic motion is described by vw, choice (4.25) is natural
in that it delivers vw as a local mass centre velocity. Alternatively, upon noting that
any field F can be averaged via

Fw(x) :=
∫

E
F(y)w(y − x)dy, (4.30)

one might wish to require that repeated averaging at the same scale should deliver
nothing new; that is, that

(Fw)w = Fw. (4.31)

In such case w is prescribed once the domain of interest is delineated; for example,
all E , or the interior of a rectangular box: see [20], Section 3. The relevant choices
of w are here not positive everywhere on their domains, although such restriction is
often posed: see, for example, [12], p. 3161.

4It should be noted that Dw is not necessarily a multiple of the identity (−Dw is pressure-like in the
sense that −Dw n . n < 0 for any unit vector n: see (7.6) hereafter) and is to be distinguished from
the continuum usage of the term pressure (which corresponds here to Tw being a negative multiple
of the identity).
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5 Possible Definitions of the Interaction Stress Tensor

5.1 Simplest Choice sT−
w

The problem is to obtain a rank two tensor field T−
w which satisfies (see (4.22)

and (4.8))

div T−
w =

∑

i

∑

j�=i

fij w(xi − x). (5.1)

Since fij does not depend upon x, and hence, for any vector field a,

div{fij ⊗ a} = (div a)fij, (5.2)

it is natural to search for a vector field ai such that

div ai = w(xi − x). (5.3)

The candidate for T−
w is then

sT−
w =

∑

i

∑

j�=i

fij ⊗ ai. (5.4)

Since (see (4.28))

w(xi − x) = ŵ(‖xi − x‖) = ŵ(‖x − xi‖) (5.5)

is spherically-symmetric about xi, it is natural to seek a vector field ai of form

ai = â(u)u (5.6)

with

u := x − xi and u := ‖u‖. (5.7)

Accordingly

div ai = 3â + â′u = u−2(d/du){u3â}. (5.8)

Hence from (5.3) and (5.5)

u3â(u) =
∫ u

0
s2ŵ(s)ds. (5.9)

The definition of ŵ in Remark 9 implies that

â(u) = k/3 if 0 ≤ u ≤ ε,

â(u) = (k/3)(ε/u)3 + u−3
∫ u

ε

s2φ(s)ds if ε < u ≤ ε + δ,

â(u) = (k/3)(ε/u)3 + u−3
∫ ε+δ

ε

s2φ(s)ds if u > ε + δ. (5.10)

Since 0 ≤ φ ≤ k and φ(s) = 0 for s ≥ ε + δ, for u > ε

∣∣∣∣u
−3

∫ u

ε

s2φ(s)ds

∣∣∣∣ < ε−3k
∫ ε+δ

ε

s2ds = (kδ/ε){1 + δ/ε + (δ/ε)2/3}. (5.11)
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From (5.4, 5.6) and (5.7),

sT−
w(x) =

∑

i

∑

j�=i

fij ⊗ (x − xi)â(‖x − xi‖). (5.12)

Noting that the sum may be decomposed into one over particles Pi for which
‖xi − x‖ < ε and those for which ‖xi − x‖ ≥ ε, and neglecting δ/ε in comparison with
1 (so k ∼ V−1

ε = 3/4πε3 : see Remark 9), (5.12) may be written as

sT−
w(x) = 1

4πε3

∑

Pi∈Sε (x)

∑

j�=i

fij ⊗ (x − xi)

+ 1

4π

∑

Pi �∈Sε (x)

∑

j�=i

fij ⊗ (x − xi) (‖x − xi‖)−3. (5.13)

Remark 11 The net contribution from a pair of particles Pi and Pj which both lie in
Sε(x) is, from (5.13), and noting k/3 = (3Vε)

−1(= (4πε3)−1),

1

3Vε

{fij ⊗ (x − xi) + f ji ⊗ (x − x j)} = 1

3Vε

fij ⊗ (x j − xi), (5.14)

upon invoking (3.4). If fij is parallel to x j − xi then this net contribution is symmetric.
However, the presence of the remaining terms in (5.13) means that sT−

w is not
necessarily symmetric. Further, while div{(‖x − xi‖)−3(x − xi)} = 0, the divergence of
the second double sum does not vanish: this follows from the derivation (and directly
from (5.13) on noting the ‘i’ sum depends upon x via non-membership of Sε(x)).

5.2 Hardy’s Choice HT−
w

Notice that (5.1) may be rewritten, modulo (3.4), as

div T−
w = 1

2

∑

i �= j

∑
fij(w(xi − x) − w(x j − x)). (5.15)

Observation (5.2) motivates the search for a vector field bij for which

div bij = 1

2
(w(xi − x) − w(x j − x)). (5.16)

The analogue of (5.4) is here

HT−
w =

∑

i �= j

∑
fij ⊗ bij. (5.17)

A simple solution, bearing in mind the virial-based interaction sums in (3.21) and
(3.29), would be of the form

bij(x) = 1

2
b̂ij(x)(x j − xi), (5.18)

where, b̂ij is a scalar field which (see (5.15)), satisfies

(x j − xi) .∇b̂ ij = w(xi − x) − w(x j − x). (5.19)



A critique of atomistic definitions of the stress tensor 129

A solution to (5.19) is (see [8], (2.9)) Hardy’s bond function

b̂ ij(x) :=
∫ 1

0
w(λ(x j − xi) + (xi − x))dλ. (5.20)

With such choice (5.17) and (5.18) yield

HT−
w(x) = 1

2

∑

i �= j

∑
fij ⊗ (x j − xi)b̂ij(x). (5.21)

Remark 12 If

u := λ(x j − xi) + (xi − x) (0 ≤ λ ≤ 1) (5.22)

then x + u is a point on the line segment joining xi to x j. Choice (4.25) of weighting
function implies that the integral in (5.20) is computed only along that portion of this
line segment which lies within Sε(x) (of length �ij(x), say) and yields the value

b̂ij(x) = αij(x) V−1
ε , (5.23)

where

αij(x) := �ij(x)/‖xi − x j‖. (5.24)

Accordingly, from (5.21),

HT−
w(x) = (2Vε)

−1
∑

i �= j

∑
fij ⊗ αij(x)(x j − xi). (5.25)

Of course, αij(x)(x j − xi) denotes that portion of the displacement from xi to x j which
lies within Sε(x).

Remark 13 It should be noted that in [8] and [12] Hardy did not specifically mention
choice (4.25) of w. Indeed (5.21), defined via (5.20), holds for any choice of weighting
function. It is the essential simplicity of physical interpretation which motivates
emphasis on choice (4.25). Alternative choices of w are given in [8] and [20].

Remark 14 If interactions are given by separation-dependent pair potentials then fij

is parallel to (xi − x j), so HT−
w takes symmetric values (for any choice of weighting

function), and hence, via (4.24), Cauchy stress Tw is symmetric-valued. Since point
masses here model molecules, and neighbouring molecules influence each other,
force fij must be expected to depend upon instantaneous neighbours of both Pi and
Pj, and symmetry cannot be proved since fij may not be parallel to (x j − xi).
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5.3 Noll’s Choice NT−
w

Equation (5.16) also has the solution

bij(x) := −1

2

∫

V

∫ 1

0
uw(xi − x − αu)w(x j − x + (1 − α)u)dαdu. (5.26)

To verify this we note that

div bij = −1

2

∫

V

∫ 1

0
u . Fij(α, u; x)dαdu, (5.27)

where

Fij(α, u; x) := (∇xw(xi − x − αu))w(x j − x + (1 − α)u)

+ w(xi − x − αu)∇xw(x j − x + (1 − α)u). (5.28)

Now

∂

∂α
{w(xi − x − αu)w(x j − x + (1 − α)u)}
= −(∇w(xi − x − αu). u)w(x j − x + (1 − α)u)

−w(xi − x − αu)(∇w(x j − x + (1 − α)u). u)

= Fij(α, u; x). u. (5.29)

Accordingly, from (5.27) and (5.29)

div bij = −1

2

∫

V

∫ 1

0

∂

∂α
{w(xi − x − αu)w(x j − x + (1 − α)u)}dα du

= −1

2

∫

V
w(xi − x − u)w(x j − x) − w(xi − x)w(x j − x + u)du

= −1

2
(w(x j − x) · 1 − w(xi − x). 1). (5.30)

The final step follows from normalisation condition (4.3). It follows that with choice
(5.26) we have

NT−
w(x) :=

∑

i �= j

∑
fij ⊗ bij(x) (5.31)

as the corresponding interaction stress tensor.

6 Comparison of Interaction Stress Tensors

6.1 Preamble

Before making general remarks about the three tensors sT−
w, HT−

w and NT−
w we

cite contributions thereto for two simple particle-pair locations (calculation details
are given in [21]). If e is a unit vector, xi − x = −εe and x j − x = εe, then the
Pi, Pj net contributions are, respectively, (2πε2)−1fij ⊗ e, (2πε2/3)−1fij ⊗ e, and
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(2πε2/7)−1fij ⊗ e. If xi − x = εe1 and x j − x = εe2, where e1 and e2 are orthonormal,
then the net contributions are, respectively, (4πε2)−1fij ⊗ (e2 − e1), (4πε2/3)−1fij ⊗
(e2 − e1), and (2πε2)−1fij ⊗ (e2 − e1). In the event that interactions are central (that
is, fij is parallel to x j − xi, as is the case for interactions governed by separation-
dependent pair potentials) all foregoing net contributions are symmetric. This is not
a general property, but rather a consequence of the special chosen geometries.

6.2 Pointwise Properties and Interpretations

6.2.1 If n denotes a unit vector then from (5.13)

sT−
w(x)n = 1

4πε3

∑

Pi∈Sε (x)

αi(x; n)

⎛

⎝
∑

j�=i

fij

⎞

⎠

+ 1

4π

∑

Pi �∈Sε (x)

βi(x; n)

⎛

⎝
∑

j�=i

fij

⎞

⎠ , (6.1)

where

αi(x; n) := (x − xi). n (6.2)

and

βi(x; n) := (x − xi). n/‖x − xi‖3. (6.3)

The sums in (6.1) constitute weighted averages of the resultant force
∑

j�=i

fij on Pi

associated with corpuscular interactions; just which weighting is relevant depends
on whether or not Pi ∈ Sε(x). In particular, if Pi and Pj both lie in Sε(x) then
their net contribution to sT−

w(x)n is, via (3.4), ((x j − xi). n)fij/4πε3. Since in this case
|(x j − xi). n| < 2ε this contribution is kfij where |k| < 1/2πε2.

6.2.2 From (5.25) point masses Pi and Pj contribute to HT−
w(x) if and only if

the line through their locations intersects Sε(x). For any unit vector n, from (5.25)
and (3.4)

HT−
w(x)n = V−1

ε

∑

i �= j

∑
αij(x)((x j − xi). n)fij, (6.4)

where the double sum is, without loss of generality, over particle pairs for which
(x j − xi). n > 0. The weighting of fij for the net contribution of Pi, Pj is the compo-
nent in the n direction of that portion of the displacement of Pj from Pi within Sε(x)

divided by Vε .
If interactions are central then (5.25) implies HT−

w is symmetric, as will be the
corresponding Cauchy stress HTw := HT−

w − Dw, via symmetry of Dw.

6.2.3 Changing notation, (5.31) and (5.26) yield

NT−
w(x) = −1

2

∑

i �= j

∑
fij ⊗ F(xi − x, x j − x), (6.5)
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where, for any a, b ∈ V ,

F(a, b) :=
∫

V

∫ 1

0
uw(a − αu)w(b + (1 − α)u)dαdu. (6.6)

It is a simple matter, via changes of variable, to show that F : V × V → V satisfies,
for every a, b ∈ V ,

1. F(b, a) = −F(a, b), (6.7)

2. F(−a,−b) = −F(a, b), (6.8)

and, for every orthogonal tensor Q,

3. F(Qa, Qb) = QF(a, b). (6.9)

As a consequence of 1.–3. we have the following

Proposition If a and b are linearly independent (l.i.) then

F(a, b) = α̃(‖a‖, a · b, ‖b‖)a − α̃(‖b‖, a · b, ‖a‖)b, (6.10)

for some function α̃ : R
+ × R × R

+ → R.

Proof If a and b are l.i. then a, b and a × b are l.i. Hence

F(a, b) = α̂(a, b)a + β̂(a, b)b + γ̂ (a, b)a × b (6.11)

for some scalar-valued functions α̂, β̂ and γ̂ . Invoking (6.9) with Q : a → −a, b →
−b, a × b → a × b together with (6.8) we have

−α̂(a, b)a − β̂(a, b)b + γ̂ (a, b)a × b

= QF(a, b) = F(Qa, Qb)= F(−a,−b) = −F(a, b)

= −α̂(a, b)a − β̂(a, b)b − γ̂ (a, b)a × b.

Hence γ̂ (a, b)a × b vanishes and

F(a, b) = α̂(a, b)a + β̂(a, b)b. (6.12)

Using (6.8) we obtain

−α̂(−a,−b)a − β̂(−a,−b)b = −α̂(a, b)a − β̂(a, b)b

whence a, b l.i. implies

α̂(a, b) = α̂(−a, −b) and β̂(−a,−b) = β̂(a, b). (6.13)

Further (6.7) yields from (6.12)

α̂(b, a)b + β̂(b, a)a = −α̂(a, , b)a − β̂(a, b)b,

whence a, b l.i. gives

α̂(a, b) = −β̂(b, a), (6.14)

and (6.12) becomes

F(a, b) = α̂(a, b)a − α̂(b, a)b. (6.15)
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From (6.9), for every orthogonal tensor Q, (6.15) implies

α̂(Qa, Qb)Qa − α̂(Qb, Qa)Qb = α̂(a, b)Qa − α̂(b, a)Qb.

Since Qa, Qa are l.i., for all Q

α̂(Qa, Qb) = α̂(a, b). (6.16)

It follows (see Truesdell and Noll [7], §11) that α̂ may be represented in the form

α̂(a, b) = α̃(‖a‖, a . b, ‖b‖), (6.17)

so (6.10) follows from (6.15) and (6.17). �

Corollary If ‖xi − x‖ = ‖x j − x‖ (= d, say) then

F(xi − x, x j − x) = α̃(d, (xi − x) . (x j − x), d)(xi − x j) (6.18)

if xi − x and x j − x are l.i.

From (6.5, 6.7) and (3.4), the net contribution of Pi and Pj to NT−
w(x) is −fij ⊗

F(xi − x, x j − x). If these point masses are equidistant from x and interactions are
central then the corollary shows such contribution is symmetric. In general pairwise
contributions will not be symmetric, and hence NT−

w and NTw := NT−
w − Dw will not

necessarily be symmetric-valued.

6.3 Integration of T−
w Over Plane �(x0; n) Through Point x0 with Unit Normal n

6.3.1 Although pointwise values of T−
w are of interest (here we have constitutive

considerations in mind), it is surface integrals of form

∫

S
Twn dS

which have the clearest physical interpretation in the literature: see Section 2. In this
connection we study net contributions scij, Ncij, and Hcij from particle pairs Pi, Pj to
integrals over choice S = �(x0; n) for each of the candidate interaction stress tensors
sT−

w, NT−
w , and HT−

w , respectively.

6.3.2 For any point x on plane �(x0; n)

(x − xi). n = (x0 − xi). n =: −zi. (6.19)
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It follows that if |zi| < ε (so Pi lies within a distance ε from this plane) then the
contribution of Pi to the integral of sT−

w over �(x0; n) is, from (6.1, 6.2) and (6.3),
ki

∑

j�=i

fij, where

ki = − zi

4πε3
· π(ε2 − z2

i ) − zi

4π

∫ ∞
√

ε2−z2
i

2πr

(r2 + z2
i )

3/2
dr

= − zi

4ε

{
3 −

(zi

ε

)2
}

. (6.20)

If |zi| ≥ ε, so Pi is distant further than ε from the plane, then from (6.1) and (6.3) its
contribution is �i

∑

j�=i

fij, where

�i = − zi

4π

∫ ∞

0

2πr

(r2 + z2
i )

3/2
dr = −zi/2|zi|. (6.21)

It follows that the net contribution scij to the integral over �(x0; n) from particles
Pi and Pj is, via (3.4), (ki − k j)fij, (ki − � j)fij, (�i − k j)fij, or (�i − � j)fij, according to
whether Pi and Pj are both within a distance ε of �(x0; n), this is true of just Pi, or
of just P j, or of neither. Simple calculation yields, from (6.20) and (6.21),

(ki − k j)fij = (z j − zi)

4ε

{
3 − (z2

i + ziz j + z2
j)

ε2

}
fij, (6.22)

and

(�i − � j)fij = −1

2
(zi/|zi| − z j/|z j|)fij. (6.23)

In particular, if Pi and Pj are further than ε from �(x0; n) then from (6.23) their
net contribution is zero if they lie on the same side of this plane and fij otherwise if,
without loss of generality, we take z j > 0. It is also clear from (6.22) and (6.23) that
particles on the same side of the plane and at the same distance therefrom yield a
zero net contribution.

Factor ki has a simple geometric interpretation, since from (6.20)

ki = −(sgn(zi)/Vε)

{
πε2|zi| − π

3
|zi|3

}
, (6.24)

where sgn(zi) := zi/|zi|. Here Vε, πε2|zi| and |zi|3 are, respectively, the volumes of a
sphere of radius ε, a circular cylinder of height |zi| and radius ε, and cube of side |zi|.
Accordingly all four possible expressions for scij can be interpreted geometrically in
terms of such volumes.

6.3.3 In [13] the contribution in respect of NT−
w was shown to be (see (3.36) therein)

Ncij = V−1
ε (V−

i − V−
j )fij = V−1

ε (V+
j − V+

i )fij. (6.25)

Here (k = i or j) V−
k (V+

k ) denotes the volume of that part of Sε(xk) which lies
below (above) �(x0; n). In particular, if Pi and Pj lie below and above �(x0; n),
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respectively, and are distant greater than ε therefrom, then Ncij = fij. Interestingly,
and in contradiction to the standard interpretation, there may be a net contribution
even if both point masses lie on the same side of �(x0; n). For example, if Pi lies
ε/2 above, and Pj above and distant greater than ε from, �(x0; n), then V−

i =
5πε3/24, V−

j = 0, and Ncij = (5/32)fij.

6.3.4 Direct computation of Hcij for simple choices of Pi and Pj locations is non-
trivial. Somewhat surprisingly, given the different pointwise values of HT−

w and NT−
w ,

the values of Hcij and Ncij turn out to be the same if
−→

Pi Pj is parallel to n, or Pi is on
�(x0; n) and Pj distant greater than ε therefrom, or Pi and Pj are both more than ε

away from this plane. Such results led to a reappraisal of the general form of Hcij and
(to the author) surprising discovery of the following

Proposition
∫

�
HT−

w dS =
∫

�
NT−

w dS, (6.26)

where � := �(x0; n).

Proof From (5.21, 3.4) and (5.20), the net contribution of a particle pair Pi, Pj to the
left-hand side of (6.26) is (noting also that b̂ji = b̂ij from (5.23) and (5.24))

Hcij = aij((x j − xi). n)fij, (6.27)

where

aij :=
∫

�

∫ 1

0
w(λ(x j − xi) + (xi − x))dλdSx = a ji. (6.28)

Properties (3.4) and a ji = aij allow us to assume (x j − xi). n ≥ 0 in (6.27) without loss
of generality. Writing u := λ(x j − xi) and reversing the order of integration in (6.28),

aij((x j − xi). n) =
∫ (x j−xi). n

0

∫

�

w(u + (xi − x))dSx d(u . n). (6.29)

For a given point xi + u on Pi Pj the integrand vanishes for point x on � distant
greater than ε therefrom and takes the value V−1

ε otherwise. Thus

aij(x j − xi). n = V−1
ε

∫ (z j−zi)

0
A(z)dz, (6.30)

where A(z) is the area of intersection of � with Sε(u + xi), z := u . n, and z j − zi :=
(x j − xi). n. Such intersections are void, consist of a single point, or are circular plane
regions. It follows that aijVε is zero or the volume of part of a sphere of radius ε

bounded between two planes parallel to �. Specifically (see (6.25)) we have

aij((x j − xi). n)Vε = Vε − V−
j − V+

i , (6.31)
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whence (noting V−
j + V+

j = Vε) from (6.27) and (6.25),

Hcij = V−1
ε (V+

j − V+
i )fij = Ncij. (6.32)

�

7 Discussion

7.1 The shortcomings of virial-based expressions for the Cauchy stress (see (3.21),
(3.29) and Remark 1) were listed in Subsection 3.3. The weighting function approach
is much more general since it delivers dynamic balances of mass, linear momentum,
moment of momentum, and energy whose forms are scale-independent. For any
given scale the fields which appear in these relations are clearly defined in terms
of local spatial molecular averages computed at the chosen scale. Choice (4.25) of
weighting function (see also Remark 9) is here favoured because of its particularly
simple interpretation of velocity field value vw(x, t) as the velocity of the mass centre
of molecules which lie within a distance ε of x at time t. Knowledge of vw means
the macroscopic motion of the system can be visualised at scale ε and the notion
of material point (at this scale) motivated and defined (see [17]). This reverses
the viewpoint of modern continuum mechanics (e.g. [1, 3]) in which such notion is
primitive and velocity a derived concept.

7.2 Weighting function methodology gives rise to the unique form (4.21) of linear
momentum balance, and accordingly draws attention to the non-uniqueness of the
interaction stress tensor T−

w . Heretofore two candidates, HT−
w and NT−

w , had been
proposed. Here a third possibility, sT−

w , has been derived. A priori it would seem
from comparison of (5.13), (5.25), and (5.31) that this new choice might offer com-
putational advantages over the other possibilities. All three choices share common
aspects when considering the net contribution cijfij of a pair of point masses Pi, Pj to
the integral of T−

w n over an infinite plane �n with unit normal n. Noting that without

loss of generality we can take
−→

Pi Pj . n ≥ 0, these common properties are:

C.P.1. If Pi and Pj lie within a distance ε of �n then cij decreases smoothly as either
of these particles moves closer to �n.

C.P.2. If
−→

Pi Pj . n = 0 (so that Pi and Pj are on the same side of �n and the same
distance therefrom) then cij = 0.

C.P.3. If Pi and Pj are further than ε from �n then (a) cij = 0 if they are on the
same side of �n, and (b) cij = 1 if they are on opposite sides of �n.

Remark 15 Since macroscopic scales far exceed nearest-neighbour separations (of
order 2 − 3 Å in condensed phases) and molecular interactions usually have ranges
less than 100 Å, property C.P.3. (b) might seem irrelevant since fij in such case would
be negligible. However, if the system of interest were to be a collection of ions of the
same polarity (for example, a constituent in a reacting mixture) then even Coulombic
interactions could be involved. The analysis shows that even in such mixtures there
exist interaction partial stress tensors. (Of course, constitutive relations for such
stresses would be non-local.)
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Remark 16 Consider a body consisting of a cubic array of atoms at rest (so that
the body is at zero absolute temperature) and let �n be parallel to a lattice plane.
The standard interpretation of the integral of the Cauchy stress tensor T over �n

is (see Section 2) the resultant force exerted by atoms on that side of �n into
which n is directed upon the atoms on the other side of �n. Moving this plane so
as to keep normal n fixed, consider the situation in which �n contains a ‘layer’ of
atoms. The standard interpretation implies that interactions which contribute to the
integral in this case involve only atoms at least two lattice spacings apart. However,
a slight displacement of �n will yield contributions to the integral dominated by
nearest-neighbour interactions. Accordingly the standard interpretation implies a
jump discontinuity in the value of the integral as the atomic layer is traversed,
and is at variance with the macroscopic/continuum viewpoint in which fields change
imperceptibly over microscopic distances. In the foregoing atomistic considerations
Dw = 0 (since vi = 0 for all Pi, by assumption) and T is identified with (see (2.3),
(4.23) and (4.24)) T−

w . The integral of T−
wn over �n involves interactions weighted

by coefficients which vary imperceptibly as atomic layers are crossed (see C.P.1).
Of course, more generally there is a contribution to the integral of Tn over �n

due to thermal motions, namely the integral of −Dwn over �n. Further, there is an
immediate resolution of the paradox of how, in the case of rarefied gases, one can
have stresses which are pressures, despite molecular interactions being negligible:
in such case T−

w = 0 and T is identified with −Dw. More generally the temperature-
dependence of stress is appreciated via the presence of −Dw in (4.24). Additionally,
the scale dependence of field values via choice of w (see (4.25)) is clear and explicit.
The standard, intuitive, interpretation of stress is thus seen to be modified and deepened
by microscopic considerations.

Remark 17 The situation described in Remark 16 (in which the atoms of a body
are arranged in a lattice structure at zero absolute temperature) would seem to
indicate a shortcoming in the definition of sT−

w . Suppose the body has been distorted
by forces acting on its boundary. In the absence of gravity the resultant force on any
atom/molecule Pi remote from the boundary is, from (3.1),

Fi :=
∑

j�=i

fij = 0. (7.1)

(Atoms at or near the boundary would also experience a resultant external force ci :
see (3.8)). It follows from (5.4) that, strictly within the interior of the body, the stress
sT−

w must vanish, no matter how the body has been distorted.5 More insight is gained
by observing that from (4.26) and (4.27), together with Remark 9,

fw(x, t) =
∑

i

∑

j

′
fij(t)w(xi(t) − x). (7.2)

The superposed prime here indicates a sum that is taken only over particles Pj which
do not belong to Sε(x) at time t. Noting that at this time

w(xi(t) − x) − w(x j(t) − x)

5The author gratefully acknowledges having this drawn to his attention by a Reviewer.
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vanishes if Pi and Pj are both inside or both outside Sε(x), is w(xi(t) − x) if Pi is
inside and P j outside Sε(x), and is −w(x j(t) − x) if Pi is outside and Pj inside Sε(x),
(7.2) may be written as

fw(x, t) = 1

2

∑

i �= j

∑
fij(t){w(xi(t) − x) − w(x j(t) − x}, (7.3)

upon invoking (3.4). In this format one is led to consider, via (5.3), another candidate
stress tensor (cf. (5.4))

sT̂−
w := 1

2

∑

i �= j

∑
fij ⊗ (ai − a j). (7.4)

However, if (7.1) holds then sT̂−
w also vanishes. Accordingly one is led, via (4.22) and

(7.3), to (5.15). This is the starting point for both the Hardy and Noll versions of T−
w ,

namely solution of (5.16) for vector field bij.

Remark 18 The arguments advanced in Remarks 16 and 17 involve considerations
of equilibrium at absolute zero temperature, and should be regarded as less than
conclusive in view of the simplistic modelling adopted. Anomalous behaviour of mat-
ter at temperatures near absolute zero indicates the need for a more sophisticated,
quantum-mechanical, approach. Here the result of complex interactions between
assemblies of nuclei and electrons is modelled in terms of forces between point
masses. Each point mass models such an assembly: its mass is that of the assembly
and its location the assembly mass centre. Interaction fij(t) may be interpreted to be
the result of averaging the effect of the assembly modelled by Pj upon that modelled
by Pi over an atomic-scale time interval (of duration �1, say). Since neighbouring
electron ‘clouds’ affect each other, fij(t) will depend upon not only Pi and Pj, but also
neighbouring assemblies. What remain in the simplified model are chaotic aspects of
corpuscular motions and fluctuations in (see (7.1)1) Fi(t) on a time scale in excess
of �1 yet which is macroscopically small. For crystalline phases such motions are
localised at lattice nodes, and will change their natures with lattice distortion. (For
example, uniaxial extension of a lattice may be expected to result in motions in some
sense more wide ranging parallel to the axis in question.) It follows that the argument
behind the jump discontinuity in Remark 16 is naive: Such discontinuity will not exist
since point masses undergo chaotic motions localised about lattice nodes, and hence
those corresponding to a lattice plane will cross this plane many times in random
fashion over any macroscopic time interval. In respect of Remark 17, notice that in
macroscopic equilibrium (so v ≡ 0), from (4.24, 7.11, 5.4) and (4.14),

sTw(x, t) = sT−
w(x, t) − Dw(x, t)

=
∑

i

{Fi(t) ⊗ ai(xi(t) − x) − mivi(t) ⊗ vi(t)w(xi(t) − x)}. (7.5)

Here each of Fi, (xi − x) and vi fluctuates: the individual trajectories xi(t) have
different character for gases, liquids, and solids. In the solid case (see Subsection
3.2) trajectories, governed by Fi, are chaotic but localised: the domain of localisation
depends upon the macroscopic deformation of the body. Accordingly, each of the two
contributions to the right-hand side of (7.5) depend upon macroscopic deformation.
In view of (7.5) sT−

w,Dw, and sTw fluctuate, but such stochastic behaviour is in general
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negligible given the large numbers of particles in the sum and lack of correlation in
the chaotic motions. Notice that for any unit vector n

−Dw n . n = −
∑

i

mi(vi . n)2w(xi − x) < 0. (7.6)

Thus if stress sTw vanishes within the body then, from (7.3),

sT−
wn . n =

∑

i

(Fi . n)(ai . n) > 0. (7.7)

7.3 The issue of non-uniqueness of T−
w can be avoided by working directly with

fw (see (4.21)), which is simply a uniquely defined interaction body force density
(recall from Subsection 4.2. that fw(x, t) is the resultant force on molecules within a
distance ε from x at time t by all other molecules of the system, divided by 4πε3/3).
This possibility would seem to merit particular attention when considering nanoscale
bodies. For such bodies the surface area to volume ratio is much greater than for
macroscopic systems, and surface effects can become significant. (For example, it
has long been known [22] that cleaving a small crystalline body in vacuo results in
surface stresses which give rise to detectable bulk deformation.) Indeed, as the scale
of a solid body decreases both surface/interfacial and edge effects must be expected
to become more and more evident. Of course, macroscopic modelling of these effects
can be adopted, via descriptions of boundary regions in terms of bidimensional
continua (see, for example, [23, 24]), and edge effects in terms of one-dimensional
continua. However, there are here two drawbacks. The first is that of the complexity
of introducing balance equations and constitutive relations for boundaries and edges,
and the second is that at very small scales such conventional continuum modelling is
no longer valid. By contrast, (4.21) holds formally at any scale, and makes physical
sense if the scale is such that quantal effects can be neglected together with details
of molecular structure. Of course, (4.21) requires to be supplemented by constitutive
assumptions in respect of fw and Dw.

7.4 Here we have only addressed mass conservation and linear momentum rela-
tions from a microscopic perspective. A useful macroscopic description of a specific
material system requires a constitutive relation for the Cauchy stress Tw (or separate
relations for either T−

w and Dw, or fw and Dw) together with relevant boundary
and initial conditions. Constitutive aspects are here guided by the explicit atomistic
definitions (4.8), (4.17) and choice of (5.13), (5.25) or (5.31). Information concerning
atomic locations and interaction models can be used to motivate assumptions which
greatly reduce the degrees of freedom of the microscopic description. For example,
in Subsection 3.2 neighbouring time-averaged locations xi could be assumed to be
governed by an affine deformation field consistent with the macroscopic motion. It is
beyond our purposes here to pursue constitutive considerations or, indeed, to discuss
energy balance or the rôle of time-averaging (see [4, 10] and [17]).

7.5 Current interest in small-scale systems has given rise to extensive studies of how
specific atomistic knowledge can be incorporated into scale-dependent simplified
descriptions. In particular we note the quasi-continuum approach of Miller and
Tadmor [25] and continuum (of reduced dimension) view of Friesecke and James
[26], both of which are based upon energetic considerations. It is hoped that the
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present work will complement such detailed and sophisticated studies by clarifying
the scale-dependent microscopic interpretation of continuum concepts and relations.
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