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Abstract Soft tissues exhibit a nonlinear, essentially incompressible (visco-) elastic
response; a key issue is the active nature of muscle fibres, in other words their
ability to contract and relax in response to biochemical signals. Here we present a
continuum model able to describe an active elastic medium.
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1 Introduction

Living tissues such as the myocardium and arterial walls exhibit a nonlinear, es-
sentially incompressible (visco-) elastic response, as is typical of all soft tissues.
Important features to be accounted for are the complex distribution of the predom-
inant orientation of muscle fibres across the tissues and the active nature of these
fibres [1–3].

Cardiac myocites are able to contract and relax at high frequency producing heart-
beats; the contraction and relaxation of smooth muscle influence the distribution
of stress and strain in the vascular wall. A constitutive model of the mechanical
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behaviour of such tissues must account for both their passive response, due to the
extra-cellular matrix, and their active response, due to muscle fibres. The passive
mechanical response has been extensively investigated through uniaxial and biaxial
tests; however, very few data is available on the active response due to the presence
of muscle fibres, even though the physiological mechanism regulating the contraction
of muscle fibres is well understood.

The excitation-contraction coupling (ECC) in cardiac muscular fibres is a complex
mechanism involving many variables such as membrane potential, ionic conductance,
intracellular calcium concentration, membrane strain and stress, and changes in
the rest length of muscle fibres due to the interaction of actin and myosin. The
definition of a realistic model that is sufficiently complete to account for the principal
mechanism involved in ECC, yet simple enough to be effective is an arduous task.

The issue has been addressed from the microscopic point of view in various papers
aimed at establishing muscle models that relate sarcomere dynamics to calcium
kinetics (see [4–7]). From the macroscopic point of view, finite elasticity theory with
specific orthotropic constitutive prescriptions provides a reasonable framework for
analysing ventricular mechanics. Moreover, the contractile excitable nature of the
medium is usually accounted for through additive decomposition of the stress into a
passive component, the standard one, plus an active component.

In [8], the additional active stress acts in the direction of the muscle fibres and
depends on the concentration of free intracellular calcium (characterising the level
of activation of a cardiac muscle cell) and on the time-varying muscle fibre extension
ratio. In [9], the orthotropic muscle architecture of the dog ventricle is accounted for
through the introduction of an additional active stress component with a diagonal
structure with respect to the fibre-sheet axes. In [10] and [11], an electromechanical
model of the excitable tissue capable of conducting non-linear waves of excitation is
defined. The action potential enters a kinetic law driving the evolution of an isotropic
active stress component; this latter, summed with a constitutively determined passive
stress component, enters the balance equations of mechanics and determines the
deformation of the medium. Furthermore, these kinematic deformations have a
feedback effect on the excitation properties of the medium.

Typically, in arterial walls, smooth muscle cells contribute to the long-term
adaptive response involved in growth and remodelling processes; they constitute
the primary adaptive mechanism aimed at keeping the flow-induced shear stress and
the wall stress distribution at their baseline values. The analysis of such remodeling
processes has been addressed in many papers; in [12] and in [13], by assuming the
substantial alignment of the smooth muscle cells to be in the circumferential direc-
tion, the contribution of muscle fibres in the remodeling processes is accounted for
through the introduction of an active stress component acting in the circumferential
direction and depending on the concentration of free intracellular calcium and on the
actual stretch ratio in that direction; again, the total stress is given by the sum of the
active and passive components.

Key points to be found in the literature on biomechanical cardiac and vascular
models are the following: at the macroscopic level, the presence of muscle fibre enters
the model through the tension generated by the fibre itself (the active stress); in
addition, this tension has a preferred direction, which is defined by the orientation of
the fibre. When activable soft tissues are considered as a whole, the overall tension
state is described by adding up the passive and active stress.



Active response of soft living tissues 29

Here, we propose a different point of view. We describe, at the macroscopic
level, the excitable–contractile behaviour of the elastic medium by considering the
change in the rest state of the tissue due to the contraction of active fibres. The active
deformation, a (local) measure of the fibre’s rest length, does not induce any stress.
There follows a multiplicative decomposition of the visible deformation gradient into
two components: the active and the elastic deformations; the latter is defined as the
difference between the visible deformation gradient and the active component.

In living tissues, the active deformation field is related to the microscopic players
in the ECC mechanism through specific laws based on the electrophysiology of the
tissue, whose form is not the subject of this paper. In [14] an electromechanical model
of excitable tissue based on the present setting is proposed.

As standard, we assume that the tissue is (elastically) incompressible and that a
strain energy function exists, depending only on the elastic deformation gradient:
the derivative of the energy with respect to the strain measure yields the energetic
part of the stress; the overall stress measure is built by adding the indeterminate
pressure field.

Thus, the energetic component of the stress is uniquely defined once the strain
energy function has been chosen; moreover, given the basic kinematical decomposi-
tion, it may be represented as a function of the visible and the active deformation.
Apart from alternative choices of the strain energy function, our assumptions deliver
a stress measure that differs from those cited above ([8–10]) insofar as it does not
allow reduction to a function that is additively decomposable into a passive part,
depending only on the visible deformation, plus an active part, depending on the
active deformation. It is shown that this additive decomposition is recovered under
the hypothesis of small active stretches.

To start with, we sketch the main features of our modeling process using a
prototype example involving a unidimensional cardiac muscle fibre. Then, a simple,
albeit not trivial problem of three-dimensional elasticity, suitably revisited, allows us
to present the consequences of our procedure and to discuss the results of our point
of view.

2 A Preparatory Problem

Our approach is similar to that presented in [4], in which a macroscopic model
for excitation-contraction coupling of a unidimensional cardiac muscular fibre is
presented.

Given a reference configuration of the fibre, two strain measures are introduced:
the visible strain ε, measuring the deformation of the actual (visible) configuration
with respect to the reference configuration, and the rest strain εo, defining the stress-
free state of the fibre with respect to the same reference. The elastic energy is then
assumed to be a function of the elastic strain ϕ, a measure of the difference between
the visible and the resting state, defined by the composition

ϕ = ε ε−1
o . (2.1)

Given a linear dependence of the tension σ on the elastic strain ϕ, we have

σ = Yϕ , (2.2)
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where Y is the elastic modulus. From (2.2) and (2.1) we have the following represen-
tation formula

σ = σε (εo)
−1 , σε = Y ε , (2.3)

which can be viewed as a (multiplicative) decomposition of the response function for
the tension into a passive part σε, which depends on the elastic properties of the fibre,
and an active part (εo)

−1, which depends on the change in the rest length of the fibre.
In [4], it is assumed that the microscopic ECC mechanism governs the rest strain

εo of the muscle fibre. There, a simple reaction–diffusion system triggering the
action potential is coupled to a linear stress-strain equation for the cardiac tissue
(see (2.2)) via the intermediate of the calcium ions; the membrane potential and
the effective membrane conductance satisfy a FitzHugh–Nagumo type system, and
the membrane potential drives the evolution of the calcium concentration through a
kinetic equation. The microscopic ECC at the basis of the model is completed by a
relation, built from experimental data, between the rest length of the cardiac muscle
fibre εo and the calcium concentration c: εo = ε̂o(c).

From our point of view, the key points of this approach are two: (a) the tension in
the muscle fibre is directly related to its elastic deformation, which in turn depends
on both the visible deformation ε and the rest state εo; (b) calcium dynamics, as
suggested by electrophysiology, (see [15]), governs the variation in rest length of
the muscle; this last aspect prompts the use of the term active strain to describe the
change in the rest length of excited muscle fibres. It is worth noting that the simple
multiplicative decomposition (2.3) relies on both the unidimensional setting of the
problem and the linear structure of the constitutive relation: if (2.2) were replaced
by a more general dependence on the elastic strain, σ = σ̂ (ϕ), the result shown by
the representation formula (2.3)1 would not be achieved.

In the following section, we present a model of an active three-dimensional tissue
based on the key point (a), and show how the resulting Cauchy stress tensor is not
decomposable into a passive and an active component except in certain special cases.
Our main aim is to describe the mechanics of excitable tissues through a model that
is well founded and energetically consistent; the underlying ECC mechanisms at the
basis of activation in living tissues are not among the aims of our present effort.

3 A Model for Active Tissues

We introduce the notion of active deformation as distinct from both visible and elas-
tic deformations, and develop a model for a hyperelastic body under the assumptions
of incompressibility and isotropy. It should be recalled that the incompressibility
constraint is a common hypothesis typically underlying the constitutive response of
soft living tissues; isotropy, on the contrary, is less convincing but allows us to point
out the essence of the model avoiding awkward expressions; in addition, it may easily
be set aside and replaced by a more plausible anisotropic material response.

3.1 Kinematics

We regard a piece of tissue – which we shall here refer to as the body – as a smooth
region B (with boundary ∂B) of the three dimensional Euclidean space E , and refer
to any smooth embedding

χ : B → E (3.1)
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of the body into E as a placement. Tangent vectors at the body itself are referred to
as line elements and the set of all line elements attached to a single body point y ∈ B
is referred to as the body element at y, and denoted TyB, the tangent space to B
at y. Given the identification of the body B with a region of E , the tangent space
TyB, for any y ∈ B, is identified with the translation space V of E ; the term tensor
will be used to denote the elements of Lin, the space of linear maps from V onto V .

We assume that, at the macroscopic scale, activation of the muscle fibres of
the tissue is described by a variation in the rest length of the body elements, and
that this variation is measured by a distortion field Fo : B → Lin, to be known as
the active deformation. Then, we call visible deformation F := ∇χ the gradient of
the placement χ , and we define the elastic deformation Fe of the body elements
as the difference between the active and the visible deformations in the sense of
multiplicative composition:

Fe = FF−1
o ; (3.2)

it is worth noting that F is given by a gradient, but Fo and Fe are not, in general.
Then, given the visible strain measures C = FTF and B = F FT , the corresponding
elastic strain measures Ce and Be read as

Ce = F−T
o C F−1

o and Be = F C−1
o FT , (3.3)

with Co = FT
o Fo being the strain induced by the active deformation field. Other

elastic strain measures could easily be derived from (3.2).
We believe as relevant to account for possible anisotropic behaviour as an

outcome of the active fibres architecture: the distribution of fibres may enter the
model by assigning specific active deformation fields. As an example, an isotropic
fibre distribution (as in [10]) is described by a spherical tensor: denoted by I the
identity tensor, we have

Fo = γo I . (3.4)

An architecture with a specific line of activation, the so-called mean myofibre axis
in physiology (as in [8]), allows the corresponding active deformation field to be
represented as

Fo = γo e ⊗ e + Ǐ , Ǐ = I − e ⊗ e , (3.5)

with e being the tangent field to the activation line.1 In both cases, the electrophys-
iology of the tissue enters the model through the scalar field γo whose value may
depend on the outer stimuli (see [14]).

1More complex is the orthotropic myofiber architecture discussed in [9]; it would enter our modeling
through an active deformation field

Fo = αoe1 ⊗ e1 + βoe2 ⊗ e2 + δoe3 ⊗ e3 , (3.6)

where ei with i = 1, 2, 3 denote the fiber-sheet directions, and the fields αo, βo, and δo may be assigned
in terms of the microscopic stimuli according to electrophysiological data.
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3.2 Constitutive Prescriptions

We consider a nonlinear, essentially incompressible, elastic response, and we postu-
late the existence of a real-valued strain energy function, assuming that, at each body
point, the present value of the strain energy per unit rest volume ψ̂ depends only on
the present value of the elastic deformation Fe at that point:

ψ̂ : Fe �→ ψ̂(Fe) , ψ̂(I) = 0 . (3.7)

The elastic deformation Fe also satisfies the incompressibility constraint:

det Fe = 1 . (3.8)

The assumed hyperelasticity delivers the energetic part S of the Piola–Kirchhoff
stress measure as

S = Ŝ(Fe) , Ŝ(Fe) = ∂ψ̂

∂Fe
(Fe) ; (3.9)

the (Cauchy) stress may easily be derived through standard formulas as

T = SFT
e − pI , (3.10)

where the field p : R → R is the indeterminate pressure field accounting for the
incompressibility constraint. The stress measure SR on the reference configuration,
known as the referential stress measure, is given by

SR = T F∗ = S F∗
o − pF∗ , (3.11)

where the cofactor A∗ of a tensor A is defined as A∗ = (detA) A−T .

Several forms of strain energy function have been proposed to describe the passive
material response of soft tissues such as the myocardium and arterial walls.2 Here,
we focus on the contribution of the active fibres to the material response of the tissue
and set up the mechanical behaviour as simple as possible by describing the response
of the incompressible hyperelastic body through the Mooney–Rivlin strain energy
function, whose representation form is

ψ̂(Ie, Ie) = α

2
(Ie − 3) + β

2
(Ie − 3) . (3.12)

Here, Ie and Ie are the first and the second invariant of Ce (or, equivalently, of Be)

Ie = Ce · I , Ie = 1

2
((Ce · I)2 − C2

e · I) , (3.13)

and α, β are elastic moduli; the neo-Hookean strain energy function is recovered
for β = 0. By using (3.9) and (3.10), the representation formula of the stress T
corresponding to a Mooney–Rivlin material takes the form

T = T̂(Be) − pI , T̂(Be) = (α + β I · Be) Be − β B2
e . (3.14)

2Extensive reviews may be found in [2] and in [16].
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A representation formula for the stress in terms of the visible and the active
deformation fields is now straightforward: using (3.3)2 we may write

T = T̂(F C−1
o FT) − pI ; (3.15)

the active deformation Fo is interwoven with the summands of T̂(F C−1
o FT), through

both Co and F = Fe Fo, in a way that does not allow for an additive decomposition of
the stress into a passive component, depending on F only, and an active component,
depending on Fo. We conclude this section with an important remark.

The present model of active tissues aims to describe at a macroscopic level the
time-varying contractile behaviour of an elastic medium excited by an external
source (a prototypical example is the cardiac myocardium excited by the activation
transmembrane potential). Typically, in such applications, time scale is that of the
cardiac cycle; thus, inertia forces may be neglected, but the stress power associated
with the time varying field Fo should not be disregarded.

When such stress power component is accounted for, the present model needs to
be generalized not to violate two relevant constitutive issues: the first concerns the
requirement that the power expended on the motions compatible with the incom-
pressibility constraint by the reactive stress be zero; the second is the requirement
that, within the model, a dissipation inequality holds.

In [14], it is shown as the theoretical framework appropriate for setting the
enlarged problem is that one defined in [19], where the energetic issues related to
the generalized model are largely discussed.

4 Isotropic Active Fibres

At macroscopic level, the fibre architecture of a tissue determines the lines of
activation in the body, that is, the directions along which active fibres contract: from
our point of view, tension is an outcome of contraction.

Here, we discuss the architecture of isotropic active fibres (as in [10, 11]); in this
case, the active deformation field Fo and the corresponding active strain Co are
given by

Fo = γoI , Co = γ 2
o I . (4.1)

By accounting for the special representation form (4.1)2, (3.15) may be written
as follows

T = 1

γ 4
o

(
(αγ 2

o + β I1) B − β B2
)

− pI , I1 = I · B . (4.2)

Equation (4.2) shows that, even for the simple case of isotropic activation, the
dependence of stress on the visible and the active deformations is not representable
as the sum of a passive component Tp = T̂(B), plus an active component Ta =
Ta(γo, B).

In the special case of small active deformations, this additive decomposition is
indeed possible. Let us assume

γo = 1 + εγ , (4.3)
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with ε � 1, a smallness parameter, and γ the approximation of order 1 in ε of γo;
a power series expansion in ε for (4.2), up to the same order, yields

T = T̂(B) − pI + Ta , Ta = γ F(B) . (4.4)

Nonetheless, even if an additive decomposition is granted, an isotropic Fo (i. e., an
isotropic fibres architecture) does not imply a spherical active stress: here, the active
component Ta depends linearly on the intensity of the active deformation γ through
the map F : Sym → Sym, a nonlinear function of the visible strain measure B
defined by

F(B) = −2
(
(α + 2β I1)B − 2βB2

)
. (4.5)

In the next section, with reference to a well-known problem of nonlinear elasticity,
the so-called Rivlin cube, we show some results relative to isotropic activation.

5 The Active Rivlin Cube

We consider a cube of neo-Hookean, active material, described by the energy
function (3.12) with β = 0; the cube is uniformly loaded by a pressure field acting
on its faces. The sketch is simple but it is enough to present the consequences of our
modeling procedure and to discuss the main differences in comparison with models
proposed in the literature. We first briefly summarize the solution to the classical
problem (see [17, 18]); we then solve the same problem for the case of isotropic
activation.

5.1 The Classical Solution

The undeformed body B is a homogeneous unit cube of neo-Hookean material
centred on an orthogonal coordinate system whose unit vectors are perpendicular
to the faces of the cube, and is loaded uniformly by three identical pairs of equal and
oppositely directed forces acting normally to its faces [18]. The referential (Piola–
Kirchhoff) traction on the face with normal ei (i = 1, 2, 3) is

SRei = f ei , (i = 1, 2, 3) . (5.1)

Rivlin studied homogeneous solutions of the form

SR = f I , F = λi ei ⊗ ei , (5.2)

with λi > 0, satisfying the incompressibility condition λ1 λ2 λ3 = 1. These solutions
satisfy balance with zero body forces

Div SR = 0 , (5.3)

and the traction conditions (5.1). Rivlin found seven possible states, defined by the
stretches λi (i = 1, 2, 3) such that

(λi − λ j)
(

fo − (λi + λ j)
)

= 0 , i, j = 1, 2, 3 , (5.4)



Active response of soft living tissues 35

with fo = f/α. The trivial state

λ1 = λ2 = λ3 = 1 (5.5)

is always a solution. Moreover, there is a value f ∗
o = (27/4)1/3 of the parameter fo

such that for fo < f ∗
o the trivial state is the unique solution; for fo > f ∗

o , there are six
further solutions, given by

λi = λ j and 0 < λk <
1

3
fo or

1

3
fo < λk < fo , (5.6)

with i, j, k = 1, 2, 3 and i 	= j 	= k. For fo = f ∗
o each pair of the above solutions

collapses to the one characterized by having two stretches equal to ( fo/3)− 1
2 , and the

remaining one uniquely defined by the incompressibility constraint. In [17], Rivlin
showed that, for fo < 2, four solutions are stable with respect to arbitrary superposed
infinitesimal homogeneous deformations: the trivial one and

λi = λ j and 0 < λk <
1

3
fo , i, j, k = 1, 2, 3 , i 	= j 	= k . (5.7)

For fo > 2, the trivial solution is no longer stable, and there remain only three stable
solutions.

5.2 The Active Cube

Let us consider the undeformed and homogeneous unit cube B as consisting of
neo-Hookean active tissue. We account for an isotropic distribution of active fibres
through the introduction of an active deformation field Fo = γo I; in this case, the
role of control parameter is played by the scalar field γo. We look for homogeneous
solutions of the form (5.2); the corresponding elastic deformation Fe is

Fe = ϕi ei ⊗ ei , ϕi = λi

γo
; (5.8)

moreover, the incompressibility constraint on Fe requires that

ϕ1 ϕ2 ϕ3 = 1 , (5.9)

that is,

λ1 λ2 λ3 = γ 3
o . (5.10)

Assuming (3.11) and (4.1), the referential stress measure SR takes the form

SR = λ1 λ2 λ3

( 1

γ 2
o

α F − p F−T
)

. (5.11)

By incorporating the incompressibility condition (5.10), substituting (5.2)2 in (5.11),
and eliminating the indeterminate pressure field, one finds that the stretches λi

must satisfy

(λi − λ j)
(

fo − γo (λi + λ j)
)

= 0 , i, j = 1, 2, 3 . (5.12)
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Let us consider the set P ⊂ R
+ × R

+ of all parameters (γo, fo), and the curve C ⊂ P
defined by (see Fig. 1)

fo = c (γo)
2 , c =

(
27

4

) 1
3

. (5.13)

The curve C divides P into an upper part U , and a lower part L. For any pair
(γo, fo) ∈ P , there is the trivial and symmetric solution

λ1 = λ2 = λ3 = γo ; (5.14)

moreover, for (γo, fo) ∈ L, the trivial solution is unique; for (γo, fo) ∈ U , there are
six further solutions, given by

λi = λ j and 0 < λk <
1

3

fo

γo
or

1

3

fo

γo
< λk <

fo

γo
, (5.15)

with i, j, k = 1, 2, 3 and i 	= j 	= k. For (γo, fo) ∈ C, each pair of the above solutions
collapses to the one characterized by having two stretches equal to ( fo/(3 γo))

− 1
2 ,

and the third uniquely determined by the incompressibility constraint (5.10). As in
the classical solution, here (5.14) is the only symmetric solution. Figure 2 shows the
stretches versus the load fo, for a given value of γo. Solid lines represent the solutions
for which 0 < λk < 1

3 fo/γo (stable solutions), and dashed lines those corresponding
to 1

3 fo/γo < λk < fo/γo (unstable solutions). We have plotted λk on the left, and
λi = λ j on the right; the classical Rivlin solution is recovered for γo = 1.

Thus, it turns out that isotropic distortions Fo = γo I modify the critical value of
the load fo below which the trivial state (5.14) is the unique solution: precisely, a
contraction γo < 1 reduces the critical load and an expansion γo > 1 increases it. In
Fig. 1 the locus of critical pairs (γo, fo) is represented by the curve C; the value γo = 1
identifies the classical critical parameter f ∗

o discussed in [17].
It is worth noting that modeling the isotropic active structure of the incompressible

cube simply by adding a spherical active stress to any given constitutive relation

Fig. 1 Curve C is the locus
defining the critical values of
the parameters fo and γo:
above it, there are six
solutions, plus the trivial one;
this curve shows how the
critical value fo for which the
trivial solution is the only one
increases with the distortion
γo. Curve Cs represents the
limit above which the trivial
solution becomes unstable
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Fig. 2 Stretch λ versus load fo, for given distortion γo. We plot λk on the left, and λi = λ j on the
right, for i, j, k = 1, 2, 3, and i 	= j 	= k. Stable solutions are plotted with solid line; arrows denote
increasing values of γo, valued 0.5, 1, 1.5. To each distortion γo, there correspond a critical value of
the loading parameter fo, denoted by: f −

o for γo = 0.5, f ∗
o for γo = 1, and f +

o for γo = 1.5

for incompressible materials turns out to be ineffective. To be more precise, in a
constitutive relation that reads as

T = T̂(B) − pI + τoI , (5.16)

with τo having the role of control parameter (see [10]), any variation of τo is
compensated by the pressure field p such that the difference (τo − p) does not
change: incompressibility makes it impossible to trigger any activation of the tissue
through a spherical active stress.

5.3 Stability Issues

Let us introduce a relaxed energy function ψ̂r, derived from (3.7) by adding an
indeterminate pressure field p playing the role of Lagrange multiplier

ψ̂r(Fe) = ψ̂(Fe) − p(detFe − 1) ; (5.17)

then, the relaxed energy density per unit reference volume ψr is related to ψ̂r by

ψr = (detFo) ψ̂r . (5.18)

The stability of each of the previous states may be discussed with respect to arbitrary
superposed infinitesimal deformations in terms of the energy functional

�{F} =
∫

B
(ψr − SR · F) . (5.19)

The functional � allows for the following representation:

�{F} =
∫

B

((
ψ̂(Fe) − p (detFe − 1)

)
detFo − SR · F

)
, F = FeFo ; (5.20)
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the variations of �{F} must be evaluated with respect to any incremental visible
deformation F(ε) = F + ε H. Corresponding to any F(ε), there is an incremental
elastic deformation Fe(ε) = Fe + ε F̃e with F̃e = H F−1

o ; moreover, because

det Fe(ε) = 1 , (5.21)

we note that

det Fe(ε) − 1 = ε (F∗
e · H F−1

o ) + O(ε2) (5.22)

requires H to satisfy the constraint

H · F−T = 0 . (5.23)

Finally, an equilibrium state is said to be stable if the corresponding stationary value
of � is a relative minimum, that is, if

δ2� = d2�

dε2
(F + εH)|ε=0 > 0 , (5.24)

for all admissible H which satisfy the incompressibility constraint (5.23). Accounting
for the representation form of Fo in terms of the scalar field γo, the condition (5.24)
may be written as

δ2� =
∫

B

( α

γ 2
o

H · H − p ((F−T · H)2 − HTF−T · F−1H)
)
γ 3

o > 0 (5.25)

for any H such that

H11

λ1
+ H22

λ2
+ H33

λ3
= 0 . (5.26)

This analysis shows that the states

λi = λ j and 0 < λk <
1

3

fo

γo
, i, j, k = 1, 2, 3 , i 	= j 	= k , (5.27)

are stable. Moreover, it is found that the trivial solution is stable below the curve
Cs ⊂ P defined by fo = 2 γ 2

o , and unstable above it; thus, in the small region bounded
between C and Cs four stable solutions are possible, see Fig. 1.
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