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Abstract Hydrocephalus is a condition which occurs when an excessive accumulation
of cerebrospinal fluid in the brain causes enlargement of the ventricular cavities.
Modern treatments of shunt implantation are effective, but have an unacceptably
high rate of failure in most reported series. One of the common factors causing shunt
failure is the misplacement of the proximal catheter’s tip, which can be remedied if
the healed configuration of the ventricular space can be predicted. In a recent study
we have shown that this is accomplished by a mathematical model which requires
as input the knowledge of the speed at which the ventricular walls move inwardly.
In this paper we report on a theoretical method of calculating this speed and show
that it will become of great practical usefulness as soon as more experimental results
become available.
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1. Introduction

Hydrocephalus is a condition in which an excess of cerebrospinal fluid (CSF) accu-
mulates within the brain’s ventricular walls with serious consequences if untreated.
The modern treatment consists of a CSF shunt implantation in order to transport
the excess fluid from the generation site to the resorption site [7]. CSF shunts are an
effective but problematic treatment, in that they can fail for a variety of reasons. A
recent, prospective, randomized clinical trial has shown a shunt failure rate of about
50% at two years from implantation [6]. Further analysis of the data indicated that
the position of the ventricular catheter tip (in the frontal or the occipital horns), and
whether the catheter was surrounded by CSF, were risk factors for shunt failure [44].
This suggests that optimal positioning of the catheter’s tip, allowing for the inevitable
collapse of the ventricles and the growth of the brain and the skull, could reduce the
incidence of shunt failure in children.

In a recent study, and with the help of modern image processing techniques, we
showed how to predict the final shape of the ventricular space after shunting [9].
However, the method requires as input the velocity of each point of the ventricular
wall as it moves inwardly under the decreasing pressure gradient resulting from the
shunting process. In order to find this decompression velocity we need to construct a
mathematical model for the hydrocephalic brain capable of describing as accurately
as possible the dynamics of the unloading process. Following [18], most researchers
in this area liken the brain to a microscopic sponge in which the brain tissue by itself
may be considered incompressible, while its compliance results from the collapsibility
of the cells of the sponge-like parenchyma. Roughly speaking, two approaches have
been used in the study of the brain’s response to different types of loading. The first-
and older-treats the brain as an elastic or viscoelastic material, and uses linear or
nonlinear mathematical models in the spirit of engineering practice [10, 16, 21, 33, 35].
The second approach, on the other hand, is more recent and mathematically more
sophisticated [20, 30, 39]. Here the models are based on the theory of consolidation
[3] in which the brain parenchyma is treated as a porous, linearly elastic solid with
Newtonian fluid-filled pores. In both approaches, many of these models have been
solved numerically with the help of standard software packages such as ABAQUS [1]
and many researchers have extolled the virtues of an entirely numerical simulation
of hydrocephalus.

In view of our poor knowledge of the brain’s mechanical properties, however,
uncritical reliance on numerical simulations appears premature, and it is in this spirit
that the following analysis should be taken. Our task here is the calculation of the
velocity of each point on the healing ventricular wall after shunt implantation. On
physical grounds one would expect this velocity to depend on the location of the
point and, in particular, on the curvature of the ventricular wall. However, a recent
study of samples from a large data base [6, 43] showed that the dependence on the
curvature seems to be small. Hence, in predicting the ventricular boundary velocity,
we can reasonably assume that the speed is the same everywhere; this then allows
us to make a drastic simplification in the geometry, whereby we replace the actual
hydrocephalic brain with a thick-walled hollow cylinder whose ends are tethered
so that the strain distribution is planar, and all displacements occur in the radial
direction. The thick wall of the cylinder, on the other hand, is assumed to consist of
a homogeneous, isotropic, non-linear viscoelastic material, while the hollow is filled
with an incompressible Newtonian fluid (representing CSF).
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The next important approximation is introduced in the equation of motion, where
inertia terms are neglected, thus making the theory a quasi-equilibrium one. This,
however, is an excellent approximation in view of the fact that the response of the
hydrocephalic brain occurs on a very long time scale, more akin to a diffusive than a
wave-like process.

The rest of the paper is structured as follows. In Section 2 we provide the
mathematical background and terminology for our adopted constitutive theory, as
well as the necessary mathematical details for our parameter estimation procedure.
Section 3 gives an account of the theoretical calculation of the velocity of points
on the healing surface, and the last two sections contain the results and a critical
discussion of them, respectively.

2. Constitutive Equation and Parameter Estimation

The difficulty of developing an accurate constitutive equation for biological tissues
is well known and, in the case of the brain, some of the many efforts involved over
the past 30 years have been recently reviewed by [21]. The problem of modeling
hydrocephalus is particularly challenging, involving as it does quite large strains
which tend to make questionable the use of linear models. It is well known, however,
that a constitutive equation taking into account the non-linear stress-strain charac-
teristics of living tissue is the quasi-linear viscoelastic (QLV) theory of [15], which
has been found to work reasonably well for a large number of tissues [4, 14]. It seems
therefore desirable to apply the QLV theory to the brain, as well.

The essence of Fung’s approach is the following. Let us consider a cylindrical
specimen of viscoelastic material subject to a tensile load, and let λ be the principal
stretch ratio in the z direction. As is familiar to anybody who has handled a piece of
silicone “silly putty”, the response of the system to fast loading (ideally, step loading)
is almost purely elastic, while relaxation occurs on a much longer time scale. It is
therefore reasonable to assume that the history of the stress response, called the
relaxation function K(λ, t), can be factorized as

K(λ, t) = G(t)T (e)(λ), G(0) = 1, (2.1)

where G(t) is a normalized function of time (the reduced relaxation function), and
T (e)(λ) is the elastic response. Next it is assumed that the stress response to infini-
tesimal changes in stretch can be evaluated with the Boltzmann superposition
principle, which lead up to the following Stieltjes integral

T (ve)(t) =

∫ t

−∞

G(t − τ)
∂T (e)(λ(τ ))

∂λ
dλ(τ), (2.2)

or, since G(t) is assumed to be continuously differentiable, to

T (ve)(t) = T (e)(λ(t)) +

∫ t

−∞

T (e)(λ(t − τ))G′(τ )dτ. (2.3)

Thus the tensile stress of the viscoelastic material T (ve) at any time t is equal to the
instantaneous stress response T (e) decreased by an amount depending on past history
(since G′(t) < 0).

The next step in the derivation of the constitutive equation is the development of
appropriate models for the elastic response T (e) and for the relaxation function G.
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Among the many possibilities, the Mooney–Rivlin [27] approach recommends itself
for its simplicity and success in modeling T (e) for incompressible, isotropic, rubber-
like materials, in which case it can be shown that a strain energy function 6 exists [2]
and has the form

6 = C10(I1 − 3) + C01(I2 − 3), (2.4)

where C10, C01 are the Mooney–Rivlin coefficients and I1, I2 are the principal in-
variants of the left Cauchy–Green stretch tensor. It follows from this (see [8], for the
mathematical details) that the stress tensor takes the form

T (e)
= 2

(
λ2

−
1

λ

) (
C10 +

C01

λ

)
. (2.5)

As for the reduced relaxation function, we adopt the popular box-shaped spectrum
[4, 5, 14, 31, 36, 37] which leads to the formula

G(t) =

1 + c
[

Ei
(

t
τ2

)
− Ei

(
t
τ1

)]
1 + c ln

(
τ2

τ1

) , (2.6)

where Ei(x) =

∫
∞

x

e−x

x
dx is the exponential integral function, the parameter τ1

governs fast relaxation processes (the larger τ1, the faster the initial relaxation),
τ2 governs the slow processes (the larger τ2, the longer relaxation takes), and c
determines the degree to which viscous effects are present (c = 0 when only the
elastic response is present). It is then straightforward to derive from (2.3), (2.5) and
(2.6) the final form of the QLV stress tensor as

T (ve)(t) =

∫ t

−∞

G(t − τ)H(λ(τ ))λ′(τ )dτ, (2.7)

where

H(λ(τ )) = C10

[
4λ(τ) +

2

λ2

]
+ C01

[
2 +

4

λ3(τ )

]
. (2.8)

As is clear from these expressions, our QLV constitutive equation involves five
unknown parameters – c, τ1, τ2, C10 and C01 – Which must be determined from
experiment; and this is a delicate task for the following reasons.

Normally, one would extract the material parameters by fitting the material func-
tions directly to the data. To be consistent with the assumptions of the QLV theory,
the material functions should be obtained by subjecting the test sample to an
instantaneous change to a value λ0 of the stretch ratio at t = 0, followed by a holding
of the stretch λ0 for t > 0. Unfortunately, such experimental conditions are not
realizable and one usually must settle for a determination of the elastic response from
a “fast” stretch ramp [0, λ0] in time t0.

No fewer problems will be encountered by attempting to match G(t) directly to
relaxation data. In particular, the assumption that material relaxation ends when the
experiment is stopped is unwarranted [5, 29], for it is understood that the loading
rate affects the stress relaxation [22, 38] and that stress relaxation can continue well
beyond the time allowed in typical experiments [14].
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Table 1 Material parameters
for different strain rate values Strain rate v [ips] C10 [psi] C01 [psi] c τ1 [s] τ2 [s]

0.2 0.23 0.09 0.36 0.5 80
2 0.14 0.67 0.33 0.5 80
10 0.27 0.73 0.32 0.5 80

A clever method to obviate these difficulties has been recently developed by [4]
and used in their application of QLV theory to the internal shearing of porcine aortic
valve leaflets. In their words,

We fit the loading and relaxation data separately and relate these to the equiv-
alent instantaneous loading experiment by imposing the constitutive equation
at the start and end of relaxation. The reduced relaxation function is obtained
through normalizing by the infinite-strain-rate stress, as required by the QLV
theory. This follows a fit of dimensional relaxation data by a relaxation function.
The elastic response is obtained from a scale-up of the measured stress in the
loading part of the experiment. ([4], p.387).

The effect of this procedure is that the values of the extracted parameters are those
for which the constitutive Equation (2.7) predicts the fast strain-rate experiments,
rather than those for which the material functions directly match the data, with
the consequence that the latter are more realistic estimates of the “true” material
functions. This procedure for the extraction of the material parameters, adjusted for
our case, is reviewed in Appendix A, along with a discussion of the experiments used
for the fitting procedure. The values of the extracted parameters are listed in Table 1
of the Results section.

3. Equation of Motion and Derivation of the Speed of the Healing Surface

The QLV constitutive Equation (2.7), derived by the method summarized in the
previous section, allows us to write down the equation of motion and the appropriate
boundary conditions, which can then be solved for the displacement vector and hence
the velocity of the healing surface. This task sounds straightforward in principle,
but it is nothing of the sort in practice. In particular, we shall pay attention to the
appropriate form of the stress tensor at various stages of the calculation, as there is
some confusion in the literature.

As stated in the Introduction, our previous work [9] has shown that the healing
velocity has a relatively small dependence on the curvature of the ventricular walls,
which means that all points of these surfaces move with approximately the same
speed in response to the reduced ventricular pressure caused by shunt drainage.
Consequently, we may model the brain as a thick-walled, viscoelastic, hollow cylinder
whose outer elastic casing represents the skull. The outer skull is modelled as an
elastic casing to permit the inward motion of the outer skull on decompression
drainage – As commonly occurs in pediatric hydrocephalic patients. It is important
to keep in mind, however, that this simplified geometry is only used for the purpose
of calculating the healing speed, which is then used for the study of the actual
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Figure 1 Geometry of a quasi-linear viscoelastic cylinder with healing inner surface and reinforced
by an elastic casing in the reference configuration.

hydrocephalic brain. We also assume that the material is homogeneous, isotropic,
and incompressible, and that the motion of the healing surface is radial.

Consider now a cross-section of the cylinder as in Figure 1. Thanks to the incom-
pressibility condition we have

π
[
r2

− a2(t)
]

= π
[
R2

− a2
0(t)

]
, (3.1)

where a0(t) and b 0 are the inner and outer radii of the reference cylinder, a(t) and b
are the inner and outer radii of the current cylinder, and (R, 2, Z ) and (r, θ, z) are the
standard cylindrical coordinates of a material particle before and after deformation,
respectively. Since the inner cylinder is not only de-pressurized but also is shrinking
(due to the natural growth of the brain tissue), its radius is a function of time a0(t)
which is assumed to be known (i.e. by giving a0(t) we prescribe the law of normal,
natural growth phenomena that occur in any – hydrocephalic or normal – brain
tissue). It is convenient to introduce the quantity

A(t) = a2(t) − a2
0(t), (3.2)

which has obviously the dimensions of area, so that Equation (3.1) can be rewritten as
r2

= R2
+ A(t). It is then clear that the deformation law in response to the internally

decreasing pressure P(t) is given by r =
√

R2 + A(t),
θ = 2,

z = Z .
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The deformation gradient is therefore

F =



R√
R2 + A(t)

0 0

0 1 0

0 0 1

 , (3.3)

and the only two nonvanishing physical components of the strain tensor are:

ERR = −
A(t)

2(R2 + A(t))
, E22 =

A(t)
2R2

. (3.4)

Thus, the kinematic description of the motion is known as soon as A(t) is known.
The dynamics of the motion, on the other hand, requires the solution of the Cauchy
equation

ρ Ëu(ve)
= divT(ve)

+ ρ Ef , (3.5)

where Eu(ve) is the displacement vector, Ef the resultant of the external forces, T(ve) is
the Cauchy stress tensor, and all quantities are expressed in the current (deformed)
configuration. Because of our interest in hydrocephalus, which is notoriously a very
slow process, we may drop the inertia terms (which characterize wave motions) and
neglect the external forces as well, in order to simplify the equation of motion as much
as possible. All that remains of Equation (3.5) is then divT(ve)

= E0, which has the
form of a static problem. Unfortunately, the boundary conditions complicate matters
considerably; for they must express the matching of the stresses at the interface
separating the liquid from the viscoelastic medium, and in the current configuration
such a boundary is not known.

We circumvent this problem by switching to the reference configuration in which
the geometry of the ventricles is known a priori. Even though the reference configu-
ration is usually chosen to be the undeformed one, it is not essential that it be so ([2],
p.1702); in our case the reference configuration can be defined to be any intermediate
configuration determined by CT scans. Then our boundary value problem becomes:

Div
(
F5(ve))

= E0, (3.6)

5
(ve)
RR (a0(t), t) = P(t), (3.7)

5
(ve)
RR (b 0, t) = B E22(b 0, t), (3.8)

where the deformation gradient F is given by Equation (3.3), the strain tensor E
is given by Equation (3.4), 5(ve) is the second Piola–Kirchhoff stress tensor, and
a0(t)
a(t)

P(t) represents the contact force in the current configuration per unit area of

the inner surface in the reference configuration. The constant B is given by [35]:

1

B
=

[
1 +

b 0

h
(1 − ν)

]
1 + ν

E
, (3.9)

where h, ν and E are the thickness, Poisson ratio and, respectively, the Young
modulus of the elastic casing. Everything in Equations (3.6)–(3.8) is referred to
the reference configuration in which the cylindrical coordinates are R, 2, Z . The
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coordinate switch must be applied, of course, to the QLV constitutive Equation (2.2)
as well, and it is a simple matter to show [8] that in the reference configuration it
becomes

5(ve)(R, t) =

∫ t

0
G(t − τ)

d
dτ

5(e)(R, τ )dτ, (3.10)

where the relaxation function G is given by Equation (2.6) and 5(e)
= F−1 ∂6(F)

∂F
is the second Piola–Kirchhoff tensor in the corresponding elastic solid with 6(F)

given by Equation (2.4). A straightforward calculation (Drapaca [8], Ch.5) produces
the explicit forms of the only two nonvanishing physical components of the second
Piola–Kirchhoff tensor as

5
(e)
RR = −

p(e)
[
R2

+ A(t)
]

R2
+ 2C10 − 2C01

[
R2

+ A(t)
]2

R4
, (3.11)

5
(e)
22 = −

p(e) R2[
R2 + A(t)

] + 2C10 − 2C01
R4[

R2 + A(t)
]2 , (3.12)

where p(e) is the indeterminate scalar arising from the constraint of incompressibility
[45].

It is well known that one of the powerful techniques for solving boundary value
problems in linear viscoelasticity is the use of the correspondence principle (also
known as the elastic-viscoelastic analogy). Generally, viscoelastic stress analysis
problems are more involved than elasticity problems due to the inclusion of the time
variable in the regulating equations. However, in many problems where the types of
boundary conditions and the temperature remain constant in time, the time variable
can be removed by using the Laplace transform. The problem is then converted into
an equivalent elastic problem; when the latter has been solved the inverse Laplace
transform of the result will produce the full solution of the original viscoelastic
problem [13, 17].

As it stands, the classical elastic-viscoelastic analogy does not apply to our case.
However, the solution to our QLVE boundary problem can be easily constructed
from the solution of an elastic problem as follows. Let D(t) be the creep function
given by ∫ t

0
G(t − τ)

dD(τ )

dτ
dτ = H(t), (3.13)

where G(t) is the given relaxation function and H is the unit step function. If we
take the convolution of Equations (3.6)–(3.8) with the time derivative of the creep
function D(t) and make use of relation (3.13), the properties of the convolution
operation and the definition of the Dirac distribution (since the derivative of H is
the Dirac function), we obtain the following hyperelastic problem

Div
(
F5(e))

= E0, (3.14)

5
(e)
RR (a0(t), t) =

∫ t

0
D(t − τ)

d P(τ )

dτ
dτ, (3.15)

5
(e)
RR (b 0, t) = B

∫ t

0
D(t − τ)

d E22(b 0, τ )

dτ
dτ, (3.16)
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which corresponds to the original viscoelastic problem given by Equations (3.6)–
(3.8).

By substituting (3.11) and (3.12) into Equation (3.14), one easily isolates the term
∂p(e)/∂ R which can then be simply integrated to obtain p(e). This is next substituted
into (3.11) with the result

5
(e)
RR(R, t) = −

R 2
+ A (t)
R 2

f (t) + 2C10 − (C01 − C10)
A (t)
R 2

−

− (C10 + C01)
R 2

+ A (t)
R 2

ln
(

R 2
+ A (t)
R 2

)
− 2C01

R 2
+ A (t)
R 2

, (3.17)

where f (t) is an arbitrary function of time arising from the process of integration
with respect to R of the equation for ∂p(e)/∂ R. Since the Mooney–Rivlin coefficients
C01 and C10 will be determined in the next section, the only unknowns are the two
functions of time A(t) and f (t), and these are determined by the boundary conditions
(3.15) and (3.16). The procedure is quite straightforward. Recalling that E22(R, t) =

A(t)
2R2

, substitution of this and of (3.17) into (3.15) and (3.16) produces a system of two

equations in two unknowns, and elimination of f (t) gives us the following integro-
differential equation for A(t):

(C01 + C10)

ln

1 +
A(t)

b 2
0

1 +
A(t)

a2
0(t)

 +
1

1 +
A(t)

a2
0(t)

−
1

1 +
A(t)

b 2
0


+

B

2
(
b 2

0 + A(t)
) ∫ t

0
D(t − τ)

d A(τ )

dτ
dτ

−
1

1 +
A(t)

a2
0(t)

∫ t

0
D(t − τ)

d P(τ )

dτ
dτ = 0. (3.18)

The presence of the constant B in Equation (3.18) accounts for the effect of the elastic
casing on the solution A(t).

Once the function A(t) is known, the radial displacement in the viscoelastic
cylinder can be found from

U (ve)(R, t) =

√
R2 + A(t) − R (3.19)

and thus the healing velocity can be immediately calculated. The numerical solution
of Equation (3.18) is discussed in Section 4.

4. Results

The choice of the method of [4] for the determination of our parameters was
explained in Section 2, and the method itself is reviewed in Appendix A. In this
section we report on the results of this fitting procedure to the experiments of [12]
and [16]. The former gives loading data from the sample compression at the constant
rates of 0.02, 0.2, 2 and 10 ips (inches per second – See Appendix A, last paragraph);
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with L denoting the initial length of the cylindrical sample, and v the compression
rate, the stretch ratio at any time instant t was given by λ = 1 + (v/L)t. The latter
experiment was performed by holding the stretch ratio at the constant value λ0 such
that the initial relaxation modulus is T0 = 0.95 psi (1 psi = 6.89×103 Pa); only the first
80 s of the relaxation process were recorded, and the value of the relaxation stress at
time t1 = 80s was T1 = 0.32 psi.

These experimental results were published in the same year but in two separate
papers. However, in order to find our parameters we need to assume that the
same brain tissue specimen was used in a fast-loading test followed by relaxation.
Consequently, we chose to mimic a single load and hold test by the following cut and
paste procedure:

1 From the fast loading experiments we find the time t0, and hence the stretch ratio
λ0 = 1 + (v/L)t0 from which T (ve)(t0) = σ E(λ0) = T0 = 0.95 psi.

2 We assume λ = λ0 = constant and use the relaxation data from [16] on the same
sample as in the previous step. Taking into account that the last recorded
relaxation datum is at time t = 80s where the relaxation stress is 0.32 psi, we
choose t1 = 80 s and T (ve)

= T1 = 0.32 psi.

The above steps are summarized graphically in Figure 2. The fitting algorithm
outlined in Appendix A is then used and parameter values so obtained are listed
in Table 1. We note here that the loading rate of 0.02 ips was deemed too slow
to be compatible with the QLV theory, and was therefore not used. Furthermore,
no attempt has been made to supply an estimate of the error because of too many
uncertainties in the data which we had read off the published figures. Hence, we
simply rounded off the results of the calculations to two decimal places, and elaborate
on their status in the next section.

Having determined the values of the parameters, and having therefore obtained
the QLV constitutive Equations (2.7)–(2.8), we are now ready to move to seeking
the solution of the dynamical equations; and, as explained in Section 3 and in
Appendix B, this means finding a solution to Equation (3.18) which can only be done
numerically.

Figure 2 Loading and
relaxation tests for the human
brain tissue: The loading
experiment is cut when
T (ve)(t0) = 0.95 psi and
is pasted to the relaxation
experiment which is recorded
till T (ve)(t1) = 0.32 psi.
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We start out by prescribing the values of c, τ1 and τ2. Using the fastest compression
rate listed in Table 1, we set c = 0.32, τ1 = 0.5 s and τ2 = 80 s, and obtain from
Equation (2.6) the relaxation function:

G(t) = 0.38 + 0.12

[
Ei

(
t

80

)
− Ei

(
t

0.5

)]
. (4.1)

Next we expand the exponential integrals in a power series about t = 0, substitute
into Equation (3.13) and take the Laplace transform of the result; this gives the
Laplace transform of D(t), from which we obtain the creep function upon taking
the inverse Laplace transform. The result is:

D(t) = 0.25e0.12tsin(0.47t) + 1.01e0.12tcos(0.47t) (4.2)

and is plotted in Figure 3 over the normalized, dimensionless, time interval [0, 1].
We notice that D(t) varies from 1.01 to 1.14 over the normalized time interval

[0, 1], which is a variation of about 10%; thus, given the uncertainty about the data,

1.02

1.04

1.06

1.08

1.1

1.12

1.14

Creep Function D(t)

0.2 0.4 0.6 0.8 1
Time t

Figure 3 Creep function versus time.
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we simplify the creep function to the constant D(t) = 1, which says that theviscoelas-
tic stress and the corresponding nonlinear elastic stress are approximately the same.
With this approximation, the equation for A(t) given by (3.18) becomes:

(C01 + C10)

ln

1 +
A(t)

b 2
0

1 +
A(t)

a2
0(t)

 +
1

1 +
A(t)

a2
0(t)

−
1

1 +
A(t)

b 2
0


+

B

2
(
b 2

0 + A(t)
) A(t) −

1

1 +
A(t)

a2
0(t)

(P(t) − P(0)) = 0. (4.3)

Next we need to select values for C01, C10, a0(t), b 0, and B. The first two are already
displayed in Table 1, given by 0.73 and 0.27 psi, respectively. The next three are more
difficult to determine, as we have no experimental values to rely upon, and all we
know from the formulation of our problem is that a0(t) and P(t) must be decreasing
functions of time. We note, however, that the viscoelastic cylinder with a fixed elastic
casing has been well studied [19, 28, 35, 40–42] and for the purpose of our simulation
we introduce the following characteristic quantities: A characteristic length as lc =

a0(0) [length units], a characteristic time tc = 24 [months] [32], and a characteristic
pressure Pc = C01 + C10 = 1 [psi]. The dimensionless quantities of our problem are:

τ =
t
tc

, b̃ 0 =
b 0

lc
= 2, h̃ =

h
lc

= 0.01, ν =
1

2
, Ẽ =

E
Pc

,

Ã(τ ) =
A(τ )

l2
c

, ã0(τ ) =
a0(τ )

lc
=

1√
1 +

(
1 −

a0(0)2

b 2
0

)
τ

,

P̃(0) =
P(0)

Pc
= 0.01, P̃(τ ) =

P(τ )

Pc
= P̃(0)

[
2 +

−1 + e−τ

1 − e−1

]
, (4.4)

and the constant B given by (3.9) becomes in this case:

1

B
≈

1

0.006E
. (4.5)

We assumed that the pressure decreases from twice the normal CSF pressure to the
normal CSF pressure which is 0.01 psi. Finally, we substitute the above quantities into
Equation (4.3) and use Maple VI’s function fsolve [23] to get the numerical values of
Ã(τ ) (and hence the values of A(t)). The parameter B is determined by the Young
modulus E of the elastic casing, which in our application represents the presence of
the skull (at least for hydrocephalus in the adult). Unfortunately, the value of E is
not well known, and so, for the moment, B has to be considered a free parameter.
Nevertheless, we have attempted to determine at least a bound for B in the following
manner.

The assessment of changes in ventricular volume on serial computed tomography
(CT) and magnetic resonance imaging (MRI) studies is extremely important for
the evolution and treatment of patients with symptoms of recurring hydrocephalus
or possible shunt malfunction. For this reason neurosurgeons have developed over
the years practical and objective methods of making such assessments. One of
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Figure 4 FO ratio estimates of the sigma shunt (solid line) and of our model (dashed line).

these, known as the frontal-occipital (FO) ratio, estimates the ventricular size by
consideration of the arithmetic average of the distance between the frontal and the
occipital horns normalized to the skull’s diameter [32], and a typical result obtained
by this method is shown with a solid line in Figure 4. The straight segments shown
as solid lines in Figure 4 are simple linear interpolations between the experimental
points for the sigma shunt [43], and their slopes can be taken as rough experimental
estimates of the ventricular healing speeds (solid line in Figure 5). Since the FO ratio
corresponding to our model is ã(τ )/b̃ , the ventricular healing speed predicted by our
model is

ṽ(τ ) =
d

dτ

(
ã(τ )

b̃

)
. (4.6)

The result of the comparison between the theoretical and experimental FO ratios
and speeds are shown in Figures 4 and 5, respectively. A value of E ≈ 0.16 × 105 psi
(or E ≈ 11 MPa) gives the best approximation to the data. Since the skull is
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Figure 5 Speed estimates of the sigma shunt (solid line) and of our model (dashed line).

certainly much less stiff than, say, steel (E ≈ 200 GPa) this result is not unreasonable;
nevertheless, we will argue in the next section that it is subject to serious doubts.

5. Discussion and Conclusions

In this work we have presented a method for deriving the constitutive equation for
brain matter, and we have shown how it can be used in shunted hydrocephalus to
predict the speed of points on the ventricular walls resulting from the induced
decompression.

The theory takes into account several important considerations. First, like all
biological tissues, the brain tissue is not elastic, as the strain history affects the
stress distribution. In particular, there is considerable difference in stress response to
loading and unloading [14], and nonlinear effects must be considered due to the large
strains involved in hydrocephalus. Consequently, we have developed a constitutive
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equation (Equations (2.2) or (2.3)) based on the well-known QLV theory [15], in
which the elastic response was modeled with the classical Money–Rivlin approach
(Equations (2.4) and (2.5)) and the reduced relaxation function with the popular
box-shaped spectrum (Equation (2.6)). The resulting five unknown parameters were
determined from the data of [12] and [16] by the fitting protocol developed by [4].
In addition, we assumed that our QLV model of the brain tissue behaves alike in
compression and in decompression.

The same set of data was used in the past to determine the Mooney–Rivlin
parameters C10 and C01 [24] on the assumption that brain tissue can be considered
as an incompressible viscoelastic material under quasi-static loading conditions.
This assumption was later questioned by [25] who fairly pointed out that the high
compression rates used by Estes and McElhaney can hardly be considered suitable
for the determination of static or quasi-static properties of the brain tissue. And in the
intervening years, Miller and collaborators have produced several sets of data taken
at much lower strain rates (as deemed appropriate for surgical procedures), including
data from brain tissue in tension [26].

Unfortunately, these data are not useful to us. The elastic response T (e) in the
QLV theory is the stress generated instantaneously in the tissue when a step function
of stretching λ is imposed on the specimen ([14], p.279). Thus, as already pointed
out, we need loading data at very large strain rates, and, so far as we know, the old
measurements performed by the McElhaney group are the only suitable ones for us,
albeit far from ideal for the following reason.

The clever method of parameter fitting developed by [4] – and reviewed in
Appendix A – bypasses the problem of having to decide whether relaxation stops
when the experiment stops, or else of having to wait for an inordinately long amount
of time. However, it requires the procedure to be based on a load-and-hold type of
experiment, which does not appear to have been the case in the data of McElhaney
and collaborators. Hence, we have used the cut-and-paste procedure explained in
Section 4 in order to illustrate our procedure for the extraction of the material
parameters values listed in Table 1. This means, of course, that these values must
be taken with a grain of salt, and we are looking forward to new and appropriate data
which would permit an accurate determination of these very important parameters.

A second crucial feature of our theory is its ability to handle the complicated
boundary value problem arising from the dynamics (Equations (3.6)–(3.8)). As is
frequently the case with this type of problem, the difficulty lies in the form of the
boundary conditions, which embody much of the physics and are to be enforced on
time-dependent surfaces. If, despite the time dependence, the boundary surfaces do
not change form, then the powerful correspondence principle can be used to solve the
problem [13, 17]. In our case, however, the principle does not apply, for the matching
of the radial stress and the ventricular pressure must be maintained on the healing
surface whose shape changes in time, as Equation (3.7) shows. Fortunately, by using
the relation between the creep and the relaxation functions (3.13) and properties of
the convolution operation, we were able to solve our viscoelastic problem (3.6)–(3.8)
by transforming it into a boundary value problem for the corresponding hyper-elastic
body (3.14)–(3.16).

A third aspect of this work is rather technical, but all the same quite important.
As is well known, the deformation of an elastic or viscoelastic body can be described
with respect to a reference configuration or with respect to the current (deformed)
configuration. The former description is generically known as the Lagrangian
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representation while the latter is called Eulerian; and each one has its own ex-
pressions for the stress and the strain tensors. When the mathematical theory is
linear, there is no difference in the form of the stress and strain tensors in the two
representations; but when we deal with large deformations we must include nonlinear
terms, and then the stress and the strain tensors are quite different, and one must
use one representation or the other in a mathematically consistent fashion. It is
unfortunate that there is a certain amount of confusion in the literature about this
point. For example, in some interesting work on the development of approximate
constitutive equations for nonlinear viscoelastic materials done a few decades ago
[19] there is confusion between the Cauchy and Piola stress tensors, and the confusion
persists in subsequent works [40–42].

We have been careful to use the appropriate tensor representation at each stage
of the calculation, and to make sure that the reader appreciates that different names
are used in the biomechanics literature for the same mathematical object. Thus,
for example, the Lagrangian stress tensor, the first Piola–Kirchhoff tensor, and the
’engineering stress tensor’ refer to the same object, namely the expression of the
stress components in the reference configuration. Furthermore, the components of a
tensor do not necessarily have the same physical dimensions, and we can illustrate
this by showing the form of the Green strain tensor for our viscoelastic cylinder [9];
that is, the non-zero components of the strain tensor E in the reference configuration
are given by

ERR = −
A(t)

2(R2 + A(t))
, E22 =

A(t)
2

, (5.1)

where it is obvious that the physical dimensions are different (pure number (or scalar)
versus area). Instead, we have used the so-called physical components of the strain

[11], where the second relation in Equation (5.1) is replaced by E22 =
A(t)
2R2

, which

is also a scalar.
In conclusion, the theory presented here represents, in our view, a substantial step

forward in the area of Brain Biomechanics. Because of the manner in which the con-
stitutive equation was derived, the theory is general enough to cover high-frequency
(trauma) as well as low-frequency (hydrocephalus) phenomena. Furthermore, the
method of parameter extraction is robust, in that it does not depend crucially on the
experimental way in which relaxation data are collected. The weakness only resides
in the lack of appropriate data, but we are hopeful that this work will stimulate the
experimental researchers in this area to soon remedy this situation.
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Appendix A: Parameter Estimation

Following Carew et al. [4] we rewrite the elastic response T (e) given by Equation (2.5)
in a form more convenient to the fitting protocol, namely

T (e)
= β

σ E(λ)

σ E(λ0)
, (A.1)



J Elasticity (2006) 85: 65–83 81

where

σ E(λ) = C̄10

(
λ2

−
1

λ

)
+C̄01

(
λ −

1

λ2

)
, (A.2)

and

C̄10 = 2C10σ
E(λ0)/β, C̄01 = 2C01σ

E(λ0)/β. (A.3)

The parameter β = T (e)(λ0) is the instantaneous elastic stress due to the step-stretch
ratio λ0, and the function σ E(λ) can be fitted to the measured stress-stretch ratio data,
which are then scaled up by an amount equal to the ratio of instantaneous measured
stress at stretch λ0.

Similarly, the reduced relaxation function G(t) given by Equation (2.6) is rewritten
as

G(t) = σ r(t, λ0)/σ
r(0, λ0), (A.4)

where

σ r(t, λ) = α

{
1 + c

[
Ei

(
t
τ2

)
− Ei

(
t
τ1

)]}
(A.5)

and the parameter α is the stress remaining in the material after relaxation. Further-
more, by imposing continuity of the elastic response and the relaxation function at
t = 0, λ = λ0, we obtain the consistency equation

T (ve)
= σ r(0, λ0) = α{1 + c ln(τ2/τ1)} = T (e)(λ0) = β, (A.6)

which follows by substitution of Equations (A.1) and (A.4) into Equation (2.3) of the
text.

The algorithm for finding the material parameters is then the following:

Step 1: Fit the fast strain-rate loading data to σ E(λ) in order to obtain C̄10 and C̄01.
Only β is then required for the complete specification of the elastic response.

Step 2: Fit the relaxation data to Equation (A.5) and get α(1), (αc)(1), τ
(1)
1 , and

τ
(1)
2 , where the superscripts represent the number of updates to those para-

meters. The corresponding β(1) is obtained from the consistency condition
(A.6).

Step 3: Since in Step 2 the fitting algorithm is more sensitive to the initial values of
τ2 and (αc), we fix α and τ1 to α(1) and τ

(1)
1 , and update β, (αc), and τ2. As

explained in the main text after Equation (2.8), we impose the constitutive
Equation (2.3) at time t0 and obtain the relation

T0 = β + (αc)I0(t0, τ1, τ2)/T0, (A.7)

where

I0 =

∫ t0

0
σ E(λ(t0 − s))(exp(−s/τ1) − exp(−s/τ2))/sds (A.8)

and λ(t) = 1 +
v

L
t, with v the loading speed (see below).

Next, the constitutive equation is imposed at t1, leading to

T1 = β + (αc)
[
I01(t0, t1, τ1, τ2) + I1(t0, t1, τ1, τ2)/T0

]
, (A.9)
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where

I01 =

∫ t1−t0

0
(exp(−s/τ1) − exp(−s/τ2))/sds (A.10)

and

I1 =

∫ t1

t1−t0
σ E(λ(t1 − s))(exp(−s/τ1) − exp(−s/τ2))/sds. (A.11)

It is then clear that the three Equations (A.6), (A.7), and (A.9) form a nonlinear
system which can be solved by the Newton–Raphson method for the three unknowns
β, (αc), and τ2. Convergence of β(n), (αc)(n), and τ

(n)
2 occur after a few iterations

(the number depending on a given tolerance) and the parameter c(n) is obtained
from the ratio (αc)(n)/α(1). The above algorithm was coded and implemented on
Maple VI [23], and we refer the reader to Drapaca [8] for the details. It is clear
that the implementation of this algorithm requires loading data at fast strain rates.
To our knowledge, the only work of this type was published long ago by Estes and
McElhaney [12], and so that is what we used. As for the relaxation, we have used
data obtained by the same laboratory but published separately [16], with the method
discussed in Section 4.
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