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Abstract. In this paper we present properly invariant averaging procedures for symmetric
positive-definite tensors which are based on different measures of nearness of symmetric positive-
definite tensors. These procedures intrinsically account for the positive-definite property of the
tensors to be averaged. They are independent of the coordinate system, preserve material
symmetries, and more importantly, they are invariant under inversion. The results of these
averaging methods are compared with the results of other methods including that proposed by
Cowin and Yang (J. of Elasticity 46 (1997) pp. 151-180.) for the case of the elasticity tensor of
generalized Hooke’s law.
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1. Introduction

It is widely known that positive-definite tensors play important roles in various
branches of continuum physics. For instance, it is the positive-definite factor in
the polar decomposition frequently used in the analysis of deformations of a
continuous medium. Furthermore, linear constitutive laws generally relate two
tensors of rank k£ (with k = 1 or 2) via a positive-definite tensor of rank 2k. For
example, Darcy’s law of fluid flow in porous media expresses a linear relation
between the fluid velocity vector and the gradient of the pore pressure through
the second-rank permeability tensor. Similarly, Fourier’s law of heat conduction
states that the second-rank thermal conductivity tensor relates the heat flux vector
to the temperature gradient. More generally, in Fick’s law of diffusion the
second-rank diffusion tensor relates the flux vector to the concentration gradient.
More relevant to the present analysis, in the anisotropic form of Hooke’s law of
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linear elasticity, the fourth-rank elasticity tensor C relates the stress tensor o to
the infinitesimal strain tensor €, both of which are of second rank, through

o = Ce.

If a Cartesian orthogonal reference frame is chosen, then Hooke’s law can be
written in index form as

o; = Cjuen, 1=<1,j,k1<3.

The symmetry of the strain and stress tensors requires that the elasticity tensor
satisfies the symmetries

Cijkl = qik[ = Cij/ka 1 < iaju k7l < 37

known as the minor symmetries. Furthermore, from thermodynamic consider-
ations the elasticity tensor satisfies the symmetry

Cijkl = Cklij7 1 < i7j7k7l < 37

known as the major symmetry. We note that further restrictions on the elasticity
tensor can be imposed by material symmetries.
In the second-rank tensor notation [16], Hooke’s law takes the form
o = Ce.

Here ¢ and € are vectors, and C is a second-rank tensor in a six-dimensional
space whose components are related to the components of the second-rank
tensors o and €, and the fourth-rank tensor C in the three-dimensional space
through the two-way mappings
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and

szikl 1 <ij k<3 - C31 C32 6733 6734 6735 636
Ciit = Ciin = Cijix = Cyj

Cin Cha Ciiss V2Cis V2Ciis V2Cnhn

Cii2 Cox Coss  V2Cus V2Canis V2Can

— | Cus Cro33 C3 V2Ci3 V2Cis V2Csn
' V2Cis V2Cas V2Cis  2Can 2Cu313 2Cx312
V2Ciis V2Cunis V2Cs13 2Cun13 2Cims 2Cin
V2Cin V2Cunin V2Ci1n 2Cunin 2Ciin 2Chn

The multiplicative factors v/2 and 2 in the above ensure that the coefficients C’,J
represent the components of a second-rank tensor, see [16] for more details. The
second-rank tensor notation is relatively new to the mechanics of solids
community which mainly uses the untensorial notation of Voigt [28]. Hence,
the elasticity tensor can be expressed either as a fourth-rank tensor in the three-
dimensional physical space or as a second-rank tensor in a six-dimensional
space. We will call C the stiffness tensor and its inverse § = C~! the compliance
tensor.

For later reference we recall the following spectral properties of the stiffness
tensor. The eigenvalues and eigenvectors of the stiffness tensor are called the
Kelvin eigenvalues and Kelvin eigenvectors, respectively. As the number of
distinct eigenvalues is less than or equal to six while for certain material
symmetries the number of distinct elastic constants exceeds six, certain
eigenvectors must depend on some elastic constants. This dependence is through
quantities, called distributors, which are ratios of some elastic constants.
Eigenvectors that are independent of the elastic constants are called simple
eigenvectors, while eigenvectors that depend on the elastic constants through
distributors are called distributor-dependent eigenvectors, or simply distributor
eigenvectors [5].

To summarize, all linear constitutive relations mentioned above can be
formulated as a linear relation between two vectors via a second-rank tensor.
Furthermore, from thermodynamic or energetic considerations this second-rank
tensor is symmetric and positive definite.

The coefficients of these tensors with respect to a coordinate system are
determined experimentally by a variety of methods. Measurements obtained by
different methods for the same material present great variability [7]. One is then
confronted with averaging different experimental data sets. A very simple way to
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average the experimental data is to average each coefficient separately. However,
this method does not take into account that the data are coefficients of positive-
definite tensors. Cowin and Yang [6] described another procedure of averaging
which consists of two steps. In the first step, the bases of eigenvectors for each
matrix of coefficients are averaged. In the second step, the eigenvalues referred
to the averaged basis are averaged. In this paper we present other averaging
procedures that systematically take into account the positive definiteness of the
tensors. These procedures are based on different measures of nearness of
symmetric positive-definite tensors. One important feature of these averaging
methods that makes them attractive is that they are invariant under inversion.
This is very important as some experimental methods give the coefficients of the
elasticity (or stiffness) tensor and others give the coefficients of the compliance
tensor.

The remainder of this paper is organized as follows. In Section 2, we start by
reviewing some geometric properties of the set of symmetric positive-definite
matrices and we discuss appropriate metrics to measure the closeness of elements
of this set of matrices. We also introduce the Kullback—Leibler divergence. We
then use the Euclidean and Riemannian metrics, and the Kullback—Leibler
divergence to define properly invariant means for symmetric positive-definite
matrices. Applications of these means to averaging anisotropic elastic constant
data are presented in Section 3. There the results are compared with those
obtained with other methods of averaging.

2. Metrics and Means for Positive-Definite Matrices

In this section we recall some differential-geometric facts of the space of
symmetric positive-definite matrices that will be used in the present analysis.
Further details can be found in [4, 8, 13, 25]. We also describe means for
positive-definite matrices that enjoy certain invariance properties. We only
present results that are pertinent to the present analysis. For a more ample
analysis and proofs of results not proved here the reader is referred to [18, 19].

Let M"*" denote the space of n x n real matrices and let GL(n) denote the
general linear group of all nonsingular matrices in M"*”. On M"*" we have
the Frobenius inner product (4, B)» = tr(4"B), the associated norm ||4||z =
[tr(474)]"%, and the associated metric

dr(A,B) = [|A = B| - (1)

We recall that the exponential map, defined as usual by the absolutely convergent
power series expA = > ,A*/k!, is a differentiable map from M™" onto
GL(n). When a matrix B in GL(n) does not have an eigenvalue in the negative
real line, there exists a unique real logarithm, called the principal logarithm and
denoted by Log B, whose eigenvalues belong to the infinite complex strip
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{zeC:—7m < Im(z) < 7w} [11]. We also recall the general fact that for a
matrix B, such that the principal logarithm is well defined, we have

A Log(B)A™' = Log(ABA™"), (2)

for every invertible matrix A4.

2.1. GEOMETRY OF THE SPACE OF SYMMETRIC POSITIVE-DEFINITE MATRICES

The vector space of symmetric matrices in M"*" is denoted by S(n). For P €
S(n) we say that P is positive semidefinite if the quadratic form x”Px is non-
negative for all x € R”. If P is positive semidefinite and invertible we say that P
is symmetric positive definite and we write P > 0. The subset of S(n) consisting
of all positive-semidefinite matrices is a convex cone whose interior consists of
all positive-definite matrices and is denoted by

P(n) :={A € S(n), A > 0}.

The exponential of any symmetric matrix is a symmetric positive-definite
matrix and the (principal) logarithm of any symmetric positive-definite matrix is
a symmetric matrix. Thus the exponential map from S(n) to P(n) is one-to-one
and onto. It follows that S(n) provides a parametrization of P(n) via the
exponential map. Another possible parameterization of P(n) is given by the
spectral decomposition, i.e., n positive numbers (representing the eigenvalues)
and a special orthogonal matrix (representing the corresponding orthonormal
basis of eigenvectors).

2.2. METRICS ON P(n)

We note that P(n) is a differentiable manifold of dimension n(n + 1)/2. At any
P € P(n) the tangent space Tp is identified with S(n). On Tp we define the inner
product and corresponding norm

_ _ 1/2
(A,B)p=te(P"'AP"'B),  ||A|, = (4,A);, (3)

that depend on the point P [13]. To measure closeness of two positive-definite
matrices P; and P, one can use the Euclidean distance (1) of the ambient space
M de.,

dr(P1,P2) = [Py — Py| . (4)

However, it might be more appropriate to use the Riemannian distance induced
from (3), that is intrinsic to P(n) and defined by

" 1/2
@mm=wwﬁw%m4zw4, (5)

i=1
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where A, i = 1,..., n are the (positive) eigenvalues of P; 'P,. The positivity of
the \,’s is a consequence of the similarity of the (in general non-symmetric)
matrix P; 'P, and the symmetric positive-definite matrix PP PN 1t s
straightforward to see that the Riemannian distance (5) is invariant under
inversion, i.e.,

dR(P_lvg_l) = dR(PaQ)>

and is invariant under congruent transformations, i.e.,

dz(P,Q) = dr(S"PS,S"QS),  forall S € GL(n).

2.3. THE KULLBACK-LEIBLER DIVERGENCE

In information theory, the Kullback—Leibler divergence is used to measure the
difference between two probability distributions [12]. We recall that a divergence
on a space X is a non-negative function J(-,-) on the Cartesian product space X x
X which is zero only on the diagonal, i.e., J(x, y) > 0 for all x and y in X and that
J(x, y) = 0 if and only if x = y. The Kullback—Leibler divergence for a pair of
zero-mean Gaussian distributions with a pair of (positive-definite) covariance
matrices P and Q gives rise to the Kullback—Leibler divergence between the two
matrices P and Q

KL(P,Q) :=tr(Q"'P —I) — log det(Q~'P). (6)
If \,i=1,..., n denote the (positive) eigenvalues of QilP then
KL(P,Q) =) (A —logh — 1), (7)
i=1

Since x — log x — 1 > 0 for all x > 0 with equality holding only when x = 1, it
becomes clear from (7) that KL(-,") defines a divergence on P(n).

We note here that the Kullback—Leibler divergence (6) is not symmetric with
respect to its two arguments. However, it can easily be symmetrized and its
symmetric form KL (P, Q) := 3(KL(P,Q) + KL(Q,P)) can be expressed as

KL(P,Q) = 3 (@ 'P+P'Q 21), Q

or, in terms of the \,’s, as

1< 1)\
KL.(P.Q) =EZ(¢X~ —ﬁ) . 9)
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Now the symmetrized Kullback—Leibler divergence (8) has all the properties of a
distance function on P(n) except that it does not satisfy the triangle inequality.
We point out that the symmetrized Kullback—Leibler divergence (8) is invariant
under inversion, i.e.,

KL(P~',07") = KL,(P,Q),

and is invariant under congruent transformations, i.e.,

KL,(P,Q) = KL,(S"PS,87QS),  for all § € GL(n).

2.4, METRIC-BASED MEANS OF SYMMETRIC POSITIVE-DEFINITE MATRICES

The arithmetic mean of m given symmetric positive-definite matrices Py, ..., P,
is the symmetric positive-definite matrix

1 m
A(Pla"'vpm) ::Ezpka
k=1

which is the unique solution of the minimization problem

m

min > dr(P,Py)’. (10)

PeP(n) —l

As this mean is associated with the Euclidean distance (4), we therefore also call
it the Euclidean mean. In analogy with this fact and the wvariational
characterization of various notions of the mean of positive numbers, the author
defined in [18] the following metric-based mean for the space of symmetric
positive-definite matrices.

DEFINITION 2.1 (Riemannian mean). The Riemannian mean, i.e., associated
with the metric (5), of a given set of m symmetric positive-definite matrices
Py, ..., P, is defined as

G(Py,...,P,) :=argmin > _dg(P,P;)”. (11)
PcP(n) j—

It is clear that this definition ensures that the Riemannian mean is invariant
under reordering of the matrices to be averaged.

Unlike the minimization problem (10) which can be solved in closed form,
the minimization problem (11) for the Riemannian mean leads to a nonlinear
matrix equation that, due to the non-commutative nature of matrix multi-
plications, seems impossible be solved analytically.
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PROPOSITION 2.2 ([18]). The Riemannian mean of m given SsSymmetric
positive-definite matrices Py, ..., P, is the unique symmetric positive-definite
solution of the nonlinear matrix equation

Xm: Log(P;'P) = 0. (12)
k=1

Except for special cases, there are no known closed-form solution of equation
(12). In the case m = 2, the Riemannian mean of P; and P, is given explicitly by
any of the six equivalent expressions [18]

G(P\,P,) =P, (P{'Py)'"? =P,(P;'P))"?
= (P,P")"?Py = (P\P;")?P;
_ P}/z(P;1/2P2P;1/2>l/zpi/z
:P;/z(P;1/2P1P;1/2)1/2Pé/2.

(13)

The symmetric positive-definite matrix G(P;,P;) corresponds to the notion of
geometric mean for a pair of Hermitian operators first introduced by Pusz and
Woronowicz [22] and studied thereafter by Trapp [26]. Furthermore, when all
matrices Py, k = 1,..., m commute, their Riemannian mean is given by

For these reasons, the Riemannian mean is also called the geometric mean. We
point out that there are other notions of geometric means. Ando et al. [2] defined
the geometric mean of more than two matrices by an iterative process that uses
the explicit expressions (13) of the geometric mean of a pair of matrices. For
example, the geometric mean of three given matrices is obtained by replacing
these matrices by the three geometric means (given explicitly by any of the six
equivalent expressions in (13)) of these matrices taken two by two and then
iterating until the three matrices obtained are identical. Their geometric mean
shares many of the properties of our metric-based geometric mean. However, for
more than two matrices these two geometric means are different in general.

2.4.1. Invariance properties of the geometric mean

The geometric mean satisfies many invariance properties that make it more
attractive than the arithmetic mean. For instance, the invariance under inversion
is a property that the arithmetic mean does not satisfy. Some of these properties
are given in the following propositions. The third one will be of importance to us
in the discussion of material symmetries for the elasticity tensor. The proofs of
the first two follow immediately either from the invariance properties of the
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Riemannian distance or by simple use of equation (2). We only give a proof of
the third one.

PROPOSITION 2.3 (Invariance under congruent transformations). If P is the
geometric mean of the set { Py} << of positive-definite matrices, then CPC” is
the geometric mean of the set {CPyC"}, - <. for every C in GL(n).

PROPOSITION 2.4 (Invariance under inversion). If P is the geometric mean of
the set {Py}1 << of positive-definite matrices, then P~ is the geometric mean
of the set {P[:l}lfkgm.

PROPOSITION 2.5 (Invariance group). Let A be a given set of invertible
matrices in M"™". Assume that Py, ..., P, are m matrices in 'P(n) that satisfy

P.=AP A", VYAec A k=1,...m.
Then their geometric mean P also satisfies

P=APA™!, VA c A

Proof. We note in passing that the set A is a subset of a group Z, such that
{I,—I} CZ C GL(n), which we call the invariance group for the matrices
P,...,P,.

Now recall that the geometric mean of Py,..., P,, is the unique symmetric
positive-definite tensor, P, solving the matrix equation

> Log(P;'P) =0.
k=1

By left multiplication by A € A and right multiplication by 4" of this equation
and use of (2) it follows that

> Log(AP;'A™'APA™") =0,
k=1

which by virtue of the assumption on the P,’s becomes
m
> Log(P;'APA™") = 0.
k=1

Then uniqueness of the geometric mean and arbitrariness of A € A imply that P
must satisfy

P—APA™', VAc A =
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2.4.2. Fixed-point algorithm for computing the geometric mean

As stated earlier, the Riemannian mean of a given set of m symmetric positive-
definite matrices Py, ..., P,, is the unique symmetric positive-definite matrix P
solution to the nonlinear matrix equation (12) and it looks impossible that this
equation can be solved in closed form for m > 2. We here describe a fixed-point
algorithm to numerically solve the geometric mean of a set of symmetric
positive-definite matrices. We mention that other methods such as Newton’s
method on Riemannian manifolds [24] could also be used for the numerical
computation of the geometric mean. However, we found that the fixed-point
algorithm described below is simple to implement, does not require a
sophisticated machinery, and converges rapidly.

By the invariance of the geometric mean under congruent transformations, we
may assume without loss of generality that P; = I (this can be achieved by left
and right multiplication of each P, by P; '/?). In such a case, equation (12) can be
written as

LogP = —)  Log(P;'P). (14)
k=2

We then left multiply this equation by P"? and right multiply it by P~ "2 to
obtain the equivalent equation

Log P = —)  Log(P'/*P.'P'?), (15)
k=2

which we exploit to construct the fixed-point algorithm on S(n) described below.
Set § = Log P so that equation (15) writes

S = —Em: Log(exp(S/2) P! exp(S/2)). (16)
k=2

We solve this equation by the following fixed-point iterations on S(n)

1 m
SO = — ZLong,
ma=

SUY = aSW 4 (o= 1)) Log(exp($" /2)P; " exp(1)/2)), 1> 0.
k=2

The parameter « has to be chosen so that the mapping

S—aS+ (a—1) iLog(exp(S/Z)Pk_1 exp(S/2)), (17)
=2
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is a contraction. By considering the scalar case, to have a contraction mapping
we must have 2= < o < 1. Using a of the form 244 for k > 0, which does
satisfy the above condition, we have found that the fixed-point algorithm does

indeed converge in the matrix case.

2.5. KULLBACK-LEIBLER DIVERGENCE-BASED MEAN

In a similar way to the metric-based means defined with the Euclidean and
Riemannian metrics we define the Kullback—Leibler divergence-based mean.

DEFINITION 2.6. (Kullback-Leibler mean). The Kullback—Leibler mean of m

given symmetric positive-definite matrices P, ..., P,, is defined as
m
KL(Py,...,P,) :=arg min Y _KL(Py,P). (18)
PeP(n) (=1

We note that in the above definition the divergences are not squared.
This minimization problem has a unique solution given explicitly in the fol-
lowing lemma [19].

LEMMA 2.7. The Kullback—Leibler mean of Pi,..., P, is given by the
geometric mean of the arithmetic mean of Py, . .., P,, and the harmonic mean of
Pl,...,Pm, i.e.,

KL(Py,...,Py) = G(A(Py,...,Py),H(P1,...,Py)),

HPy,...,P,) = (AP;',...,P.Y) "

Invariance of the Kullback—Leibler mean (18) under inversion and under
congruent transformations follows from the invariance of the Kullback—Leibler
divergence (8). Now if Py,..., P, are m matrices in P(n) that satisfy

P, =APA7", VAc A k=1,...m,

where A is a given set of invertible matrices in M"*”, then their Kullback—
Leibler mean P also satisfies

P=APA™!', VAc A

It is interesting to see how the Kullback—Leibler mean, which is associated
with a divergence and not a metric, combines the arithmetic and harmonic means
via the geometric mean in such a way that makes it invariant under inversion, a
property that the arithmetic mean does not satisfy. Furthermore, for m = 2 the
Kullback-Leibler mean coincides with the geometric mean [19].
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3. Application to Averaging the Elasticity Tensor

In this section we use the geometric and Kullback—Leibler means for symmetric
positive-definite matrices to average symmetric positive-definite tensors. We also
recall an averaging procedure proposed by Cowin and Yang [6]. We discuss
certain questions related to material symmetries. We mainly work with the
elasticity tensor, but the results apply equally to other symmetric positive-definite
tensors such as diffusion tensors, permeability tensors, conductivity tensors, etc.
Finally, we illustrate the averaging methods discussed here on previously
reported data by Hearmon [7] of elastic constants for some piezoelectric
materials.

3.1. METHODS OF AVERAGING SYMMETRIC POSITIVE-DEFINITE TENSORS

Before we proceed in describing the following methods for averaging elasticity
tensors we would like to clarify how the means of symmetric positive-definite
matrices defined in Section 2 translate into means of symmetric positive-definite
tensors. There are two approaches to looking at this matter. First, as we have
shown, the geometric and Kullback—Leibler means of symmetric positive-
definite matrices are invariant under congruent transformations and in particular
orthogonal transformations. This has the implication that under a change of
coordinates the given matrices and their means transform according to the tensor
rule for coordinate change. Therefore, by the geometric mean (or the Kullback—
Leibler mean) of a set of symmetric positive-definite tensors we mean the tensor
whose matrix in a coordinate system is the geometric mean (or the Kullback—
Leibler mean) of the matrices of the given tensors in this coordinate system.
Second, the same analysis that has been done with symmetric positive-definite
matrices could be carried out for symmetric positive-definite tensors, and all
operations, such as the logarithm, that have been performed on matrices apply to
tensors too.

3.1.1. Method 1: Arithmetic mean

In this method the averaged elasticity tensor is given by the arithmetic mean of
the given elasticity tensors. This method is a general procedure for averaging
tensors that are not necessarily symmetric positive-definite. Here each coefficient
of the stiffness matrix is averaged independently of the other coefficients. If we
average the inverses of the given tensors and then invert the resultant tensor we
get the harmonic mean which is quite different than the arithmetic mean.

3.1.2. Method 2: Spectral decomposition-based mean

This method was proposed by Cowin and Yang [6] as an alternative to the
classical method of the arithmetic mean which does not take into account the
positive-definiteness property of the given tensors. It is based on the spectral
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decomposition of symmetric positive-definite tensors. It consists of two steps: in
the first step the eigenbases of the given tensors are averaged, and in the second
step the eigenvalues referred to the averaged eigenbasis are then averaged. The
averaging procedure for the eigenbases is based on the mean associated with the
Euclidean distance (1) for the orthogonal matrices of eigenvectors. This mean is
in fact given by the polar factor in the polar decomposition of the arithmetic
mean of the orthogonal matrices of eigenvectors [6, 18]. We note that a modified
version of Cowin and Yang’s method that is based on the Riemannian mean of
orthogonal matrices [17] could also be used for the averaging of symmetric
positive-definite matrices. Once again, using Cowin and Yang’s method the
inverse of the average tensor of the inverse tensors is different than the average
of the tensors.

3.1.3. Method 3: Geometric mean

This method is based on the geometric mean described in this paper. It
intrinsically takes into account the differential-geometrical properties of the
space of symmetric positive-definite tensors. It has the advantage of being
invariant under inversion. This invariance is very important in practical
applications such as the averaging of elasticity tensors that are obtained by
several experimental methods either as stiffness coefficients or as compliance
coefficients. In general, for more than two tensors this mean cannot be given
explicitly and one has to resort to numerical methods, such as the fixed-point
algorithm described earlier, to compute it. Beside accounting for the positive-
definiteness of the tensors, as we shall see later on, the differential-geometric
nature of the Riemannian distance (5) combined with the group property of
material symmetries surprisingly make this method preserve material symmetries.

3.1.4. Method 4: Kullback—Leibler mean

This method is based on the Kullback—Leibler mean and therefore it is invariant
under inversion. Although the (symmetrised) Kullback—Leibler divergence does
not define a metric on the space of symmetric positive-definite tensors, it yields a
notion of mean with many desirable properties. This mean is given in a closed
form as the geometric mean of the arithmetic and harmonic means. Owing to the
fact that the tensors and their inverses have the same structure when it comes to
material symmetries, this method also preserves material symmetries.

3.1.5. Method 5: Harmonic mean

This methods corresponds to taking the arithmetic mean applied on the inverse
tensors and then inverting the result. Like the arithmetic mean, neither is this
mean invariant under inversion nor does it take into account the positive-definite
character of the tensors.
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3.1.6. Method 6: Spectral decomposition-based mean on inverses

This is Cowin and Yang’s method but applied on the inverse tensors. It is not
invariant under inversion. The eigenbasis for the average tensor of this method
is the same as the eigenbasis for the average of method 2. The inverses of the
eigenvalues of the averaged tensor according to this method are given by the
arithmetic average of the inverse eigenvalues referred to the averaged
eigenbasis.

3.2. REMARKS ON AVERAGING METHODS USED FOR POLYCRYSTALS

The problem of estimating the (effective) elastic properties of polycrystals from
those of single crystals is an old one that goes back to Voigt [27] and Reuss [23].
Under appropriate assumptions [14], the elasticity properties can be estimated by
averaging the fourth-rank stiffness (or compliance) tensor with a weight function
describing the distribution of crystallographic orientations [14, 21]

Eyu = / E%(R)f (R)dR.
S0(3)

Here Ej;;; are the components, with respect to an orthonormal coordinate system,
of the averaged stiffness (or compliance) tensor; Egk,(R) are the components,
with respect to the same coordinate system, of the stiffness (or compliance)
tensor for a single crystal with orientation R € SO(3); f(R) is the orientation
distribution function (ODF); and dR is the Harr measure of SO(3).

In the mechanics and physics of solid literature, the method of estimating the
elastic properties by averaging the stiffness tensor is known as Voigt’s average,
and that by averaging the compliance tensor is known as Ruess’ average. Hill [9]
showed that the real average should lie between these two extremes. He
suggested that the arithmetic mean between the elasticity tensor obtained by
Voigt’s method and that by Reuss’ method, usually referred to as Hill’s average,
is a good approximation to the real average tensor. It is noted that none of these
three averages satisfies the physical requirement, known as “Lichtenecker’s
inversion postulate”, that averaging tensors or their inverses should lead to the
same material properties [14]. Hill [9] also suggested that, for the rigidity
modulus, the geometric mean between the Voigt average and the Reuss average
should provide a good approximation to the real average. In this context, we
believe that the geometric mean tensor between the Voigt average tensor and the
Reuss average tensor should provide a good approximation to the real average
tensor. We note that, by construction, this average obeys the inversion
invariance.

Based on a suggestion of Aleksandrov and Aizenberg [1], Morawiec [20] and
later Matthies and Humbert [14] described an averaging procedure for the
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elasticity tensor of textured polycrystals which they termed “geometric mean”’.
Essentially, they compute the arithmetic (weighted) average of the logarithms of
the elasticity tensors then they take the exponential of the resultant tensor. Their
“geometric mean’’ is different than the geometric mean discussed in this paper,
they coincide only when the tensors to be averaged two-by-two commute under
multiplication. Their geometric mean does satisfy the invariance under inversion;
however, it is not invariant under congruent transformations.

3.3. MATERIAL SYMMETRIES

The material symmetries for an elastic solid material form a multiplicative group,
G, which is a subgroup of the full orthogonal group O(3). In linear elasticity
theory, the restriction on the fourth-rank elasticity tensor C imposed by material
symmetries writes

Q(Ce)Q" = C(QeQ")

for every Q in the symmetry group G of the material and any deformation e. In
the six-dimensional tensorial notation this restriction yields that

AT A A

C=0C0, (19)

must be satisfied for every six-dimensional orthogonal transformation Q
representing a three-dimensional orthogonal transformation Q € G. For a
comprehensive account of the representation of three-dimensional orthogonal
transformations (including reflections) by six-dimensional orthogonal trans-
formations see [15].

Now the following fundamental question arises. Do the different notions of
mean described earlier of a given set of elasticity tensors belonging to a certain
class of material symmetry belong to that class? It is clear that the arithmetic,
harmonic and the spectral decomposition-based means preserve material
symmetries. However, this is not obvious for the geometric and the Kullback—
Leibler means. Indeed, the answer to this question for these two means is
affirmative and is given in the following corollary.

COROLLARY 3.1. The geometric and Kullback—Leibler means of a set of
elasticity tensors belonging to a class of material symmetry inherit the same

symmetry.
Proof. The proof follows immediately from Proposition 2.5 and the similar
statement for the Kullback—Leibler mean. |

In what follows we recall the restrictions on the elasticity tensor for some
material symmetries and briefly comment on what coefficients of the stiffness
matrix can be given explicitly for the different means.
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3.3.1. Isotropy and cubic symmetry

In an appropriate coordinate system, the matrix of coefficients of the stiffness
tensor for cubic symmetry has the form

Ch Cip Cio O

Cno Cn Ciz O

Co Co Cu 0
0 0 0 Cu
0 0 0 0
0 0 0 0

(@}
Il

(When Ciu = C1 — Cpa, we reduce to the isotropic symmetry.) It has three
distinct eigenvalues given by Cn —1—2612, C’H - Clz and C44 which are of
multiplicity one, two and three, respectively. Furthermore, all eigenvectors are
independent of the elasticity constants. Consequently, the tensors to be averaged
have the same eigenbasis and therefore for these two cases of material symmetry,
the averaged tensors of methods 1 and 2 coincide and the average tensor of
method 3 is given in closed form

. 1 . N 2 . .

Cu = gg(clfl +2CH) + gg(clﬂ —C), (21a)

- 1 . . 1 . .

Cn = gg(C’fl + chfz) - gg(lel - lez)a (21b)

Cu = g(Cly), (21c)
where

g(X*) = ,”‘/ﬁ)(k.
k=1

As for the coefficients of the averaged elastic tensor using method 4 they are
given by

- 1. . 2. R
Cu = 11(Ch +204) + 218 - ¢, (223
- 1. A 1. . .
Cro = 11(Ch +20%) ~ (@ - €, (220)

Cas = T(Cly), (22¢)
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where

3.3.2. Tetragonal symmetry

In an appropriate coordinate system, the matrix of coefficients of the stiffness
tensor for tetragonal symmetry has the form

Cu (:312 (:313 0 0 0
Cpo Cn Csz 0 0 0
; C C 0 0 0
C = 13 13 33 R 23
0 0 0 Cu 0 0 (23)
0 0 0 0 Cu 0
0 0 0 0 0 Ce

The three non-trivial (i.e., of the upper-left 3-by-3 block) eigenvalues are

1 “ N N N - - - ~ ~
5 (Cii+C3+C) £ \/(Cn +Cip — C33)2 +8C%4 |, and Cyy — Cha.

Two of the eigenvectors are distributor eigenvectors. Nevertheless, the average
eigenbasis for the eigenbases of eigenvectors can be given explicitly, see [6].

Therefore the average tensor using method 2 can be computed analytically. On

the other hand, only the coefficients C44 and C66 and the difference C11 - Clz
can be given explicitly for method 3 and method 4. For method 3 we have

Cus = o(CLy), (24a)
6766 = Q(Cga)a (24b)
611 - 612 = g(élﬁ - C']fz)7 (24c)

and for method 4 we have

Caq = §(Chy), (25a)
Cos = T(Che), (25b)

611 - 612 = T(C]fl - lez) (25(2)
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The other coefficients can be determined by the geometric mean or the
Kullback—Leibler mean in P(2) of the matrices

(Clﬁ + ¢y \/EC@)
V20t Cl3

3.3.3. Trigonal symmetry

In an appropriate coordinate system, the matrix of coefficients of the stiffness
tensor for trigonal symmetry has the form

Ci Cin Ciz Cu 0

Co Cn Ciz —Cu 0
c—|€s Cis Cs 0 0

Cy —Cuy O Cug 0 A

0 0 0 0 Cuy V2Ci4
0 0 0 0 V2C4 Cpn-Cn

SO OO

(26)

The eigenvalues are

1 “ ~ ~ N N N N
E[(Cll +Cy3+C) £ \/(Cll +Cip — (733)2 + 8Cf3] ;

%[(CH —Cip+ Cyy) = \/(Cn —Cpp — C44)2 + 8C124] ;

with multiplicity one, one, two and two. All eigenvectors are distributor
eigenvectors [6]. Similar to the case of tetragonal symmetry, the average
eigenbasis for the eigenbases of eigenvectors can be given explicitly, see [6].
There is no way to obtain the coefficients of the average tensor by method 3 and
method 4 but to compute them numerically. However, we can reduce the
problem to that of the geometric mean or the Kullback—Leibler mean on a subset

of P(4), i.e., for the matrices
cn, Ch o O
Ch Cf G -Gy
Ciy C4 0
Cy —Cy 0 Cly
It is rather remarkable that the geometric and Kullback—Leibler means are

invariant under this class of material symmetry, but as we have shown this is
built in.
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3.3.4. Orthotropic symmetry

In an appropriate coordinate system, the matrix of coefficients of the stiffness
tensor for orthotropic symmetry has the form

Cll Clz @13 0 0 0
Co Cp C3 0 0 0
¢ Cs Cyx C3 O 0 0
C = A 27
0 0 0 Cu 0 0 27)
0 0 0 0 &5 0
0 0 0 0 0 Ce

In this case only the coefficients C‘44, C'55 and 6?66 can be given explicitly for
methods 3 and 4. For method 3 we have

644 = 9(C§4)7 (28a)
Css = 9(@(5), (28b)
é66 = g(C’éé), (28¢)

and for method 4 we have

Cas = (Chy), (29a)
Css = (Cts), (29b)
666 = T(C’&) (290)

The other coefficients have to be computed.

3.4. AVERAGING HEARMON’S DATA

We illustrate the use of means of symmetric positive-definite tensors discussed
above for averaging data for the elasticity constants previously reported by
Hearmon [7] and used by Cowin and Yang [6] in their analysis. The data are for
piezoelectric crystals with cubic, tetragonal, trigonal and orthotropic symmetries.

3.4.1. Hearmon's data

In Table I we give Hearmon’s data for the coefficients of the stiffness tensor C.
We refer the reader to [7] for the origin of the data and the experimental method
by which they were obtained. We remark that some data are obtained directly as
stiffnesses and other are obtained as compliances and then converted to
stiffnesses by Hearmon.
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Table I. Stiffness constants (units are 10'" dynes/cm?) from Hearmon [7, Extracted from Tables
2-6, pp. 120-122].

611 644/2 CIZ

a) NaClOj3 (cubic symmetry)

4.90 1.17 1.39
4.92 1.19 1.45
5.09 1.18 1.55
4.89 1.17 1.39
4.99 1.17 1.41
Cu Cs3 Cus/2 Cos/2 Ciz Ci3

b) Ammonium dihydrogen phosphate (tetragonal symmetry)

7.58 2.96 0.87 0.614 —2.43 1.30
6.17 3.28 0.85 0.592 0.72 1.94
6.89 3.35 0.856 0.595 0.40 1.89
6.77 3.38 0.868 0.608 0.59 1.99
Cui Cs Cus/2 Cos/2 Ciz Cis
c) Potassium dihydrogen phosphate (tetragonal symmetry)

7.8 7.7 1.27 0.61 3.23 3.84
6.91 5.56 1.29 0.600 —0.600 1.22
7.08 5.84 1.28 0.633 —0.383 1.55
7.14 5.61 1.27 0.628 —0.49 1.29
Cn Cs3 Cua/2 Ci Cis Cia/V2
d) Quartz (trigonal symmetry)

8.51 10.55 5.70 0.70 1.41 —1.69
8.67 10.68 5.79 0.69 1.13 —1.80
8.61 10.71 5.87 0.51 1.05 —1.83
8.69 10.68 5.76 0.69 1.56 —1.74
8.67 10.72 5.80 0.71 1.19 —1.78
8.64 10.46 5.66 0.79 1.36 -1.73
Ci Cus/2 Css/2 Ces/2 Cr2 Cis Cos
e) Rochelle salt (orthotropic symmetry) *

6.82 1.04 0.297 0.848 6.83 6.38 7.83
425 1.25 0.304 0.996 2.96 3.57 3.42
4.06 1.22 0.300 0.95 2.56 3.46 3.20
2.55 1.34 0.321 0.979 1.41 1.16 1.46

? The first and last data sets reported by Hearmon are omitted here. The first because of outliers
and the last because it is incomplete.
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Table II. Stiffness constants of the average elasticity tensors according to methods 1 to 6.

Cu Cua/2 Cn

a) NaClOj3 (cubic symmetry)

4.958 1.176 1.438
4.958 1.176 1.438
4.957 1.176 1.437
4.957 1.176 1.437
4.956 1.176 1.437
4.956 1.176 1.437
Cn Css Cua/2 Cos/2 Ci Cis

b) Ammonium dihydrogen phosphate (tetragonal symmetry)

6.853 3.242 0.861 0.602 —0.180 1.780
6.845 3.257 0.861 0.602 —0.187 1.787
6.721 3.229 0.861 0.602 —=0.118 1.760
6.725 3.228 0.861 0.602 —0.126 1.759
6.601 3214 0.861 0.602 —0.074 1.737
6.600 3.216 0.861 0.602 —0.075 1.738
Cn Css Cua/2 Cos/2 Cp Cis

c) Potassium dihydrogen phosphate (tetragonal symmetry)

7.232 6.178 1.277 0.618 0.439 1.957
7.210 6.222 1.277 0.618 0.417 1.983
7.030 6.041 1.277 0.618 0.381 1.846
7.035 6.052 1.277 0.618 0.399 1.858
6.844 5.931 1.277 0.617 0.361 1.744
6.835 5.948 1.277 0.617 0.352 1.747
Cn Cs3 Cus/2 Cn Ci3 Cia/V2
d) Quartz (trigonal symmetry)

8.632 10.633 5.763 0.682 1.283 —1.762
8.625 10.646 5.764 0.676 1.280 —1.762
8.630 10.629 5.763 0.680 1.284 —1.761
8.630 10.629 5.763 0.680 1.284 —1.761
8.627 10.625 5.762 0.679 1.284 —1.761
8.621 10.639 5.762 0.672 1.280 —1.761
Cn Cx Css Cua/2 Css/2 Ces/2 Cn Ci3 o
e) Rochelle salt (orthotropic symmetry)

4.420 6.117 6.515 1.212 0.305 0.943 3.440 3.643 3.978
4.831 6.003 6.218 1.212 0.305 0.943 3.632 3.734 3.774
4.031 5.573 5.978 1.207 0.305 0.941 2.997 3.191 3.461
4.031 5.595 5.971 1.207 0.305 0.941 3.006 3.188 3.468
3.685 5.128 5.485 1.202 0.305 0.940 2.620 2.782 3.015
4.016 4.993 5.152 1.202 0.305 0.940 2.760 2.838 2.785
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Table III. Relative Euclidean and Riemannian distances between the indicated means of the
elasticity tensors.

dr(A,H)/[|Allp dr(CY.YCO)/|CY || dr(4, H) dr(CY,YC)
a) 0.0004 0.0004 0.0006 0.0006
b) 0.0355 0.0355 0.0570 0.0565
c) 0.0582 0.0582 0.0879 0.0876
d) 0.0005 0.0005 0.0012 0.0012
e) 0.1949 0.2037 0.2360 0.2425

The first data set reported here is for NaClO; which is a material with cubic
symmetry. The second and third data sets, both of which are for elastic materials
with tetragonal symmetry, correspond to ammonium dihydrogen phosphate and
potassium dihydrogen phosphate, respectively. The fourth data set is for Quartz
which is a material with trigonal symmetry. The last data set is for Rochelle salt
which is an orthotropic elastic material.

3.4.2. Results and discussion

In Table II we give the averaged coefficients of the stiffness tensor C for the
different data sets given in Table I. For each material we give the coefficients of
the stiffness tensor averaged by the arithmetic mean, Cowin and Yang’s mean,
geometric mean, Kullback—Leibler mean, harmonic mean and the inverse of
Cowin and Yang’s mean applied on the compliance tensors.

When the data are clustered, as is the case of (a), (b), (¢) and (d), the
difference between the coefficients of the average elasticity tensor for the
different procedures is relatively small. In contrast, the data for Roshelle salt
present a great variability and as a consequence there is a big difference between
the different average tensors.

If we denote by A, CY, G, KL, H and YC the average elasticity tensor
obtained by the averaging methods 1 to 6 then we have found that

H < G< A, and KL < A, (30)

where < stands for the Lowner order for symmetric positive-definite tensors, i.e.,
X < Y means that ¥ — X > 0. The inequality (30); (with < replaced by < and
equality holds only if all tensors to be averaged are equal) is of course similar to
the harmonic-arithmetic-geometric mean inequality of positive numbers. Here
the statements in (30) hold for the given data and might not be true in general.
However, the statements in (30) hold true for the means of a pair of symmetric
positive-definite tensors. This fact can be proved for example by using the
inequality for scalars, the existence of a common orthogonal tensor that
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simultaneously diagonalizes the two given tensors, and the equality of G'and KL
for the case two tensors.

Finally, in Table III we present the difference in the Frobenius and geometric
norms between A and H, and CY and YC. Once again, these distances are small
except for Rochelle salt where these relative measures can be up to 24%. Thus,
when some of data are obtained as stiffnesses and the others as compliances
averaging methods that are invariant under inversion, such as the geometric
mean and the Kullback-Leibler mean, could be the right ones to use.

4. Conclusion and Perspectives

In this paper several methods of averaging anisotropic elastic constant data are
discussed and are used to average anisotropic elasticity constants. All of these
methods preserve material symmetries but only two of them are invariant under
inversion. These are the geometric mean and the Kullback—Leibler mean.
Another application of the averaging procedures will be the determination of
effective diffusion (stiffness, permeability, conductivity, etc.) tensors for
heterogeneous or composite materials. Two-dimensional analyses of effective
tensors for random or chess-board structure indicate that the geometric mean
may arise for certain composition structure. In fact, the effective diffusion tensor
for a heterogeneous two-dimensional material made of two isotropic materials of
different diffusivities with random or chess-board structure is shown to be an
isotropic tensor with diffusivity equal to the (scalar) geometric mean of the
diffusivities of the composing materials, see for example [10, pp. 37 and 236].
Last but not least, the geometric mean can be used to intrinsically interpolate
and smooth diffusion tensor fields from diffusion tensor magnetic resonance
imaging (DT-MRI) [3, 19]. In this area there are still many things to explore.
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