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Abstract. In this paper we present properly invariant averaging procedures for symmetric

positive-definite tensors which are based on different measures of nearness of symmetric positive-

definite tensors. These procedures intrinsically account for the positive-definite property of the

tensors to be averaged. They are independent of the coordinate system, preserve material

symmetries, and more importantly, they are invariant under inversion. The results of these

averaging methods are compared with the results of other methods including that proposed by

Cowin and Yang (J. of Elasticity 46 (1997) pp. 151–180.) for the case of the elasticity tensor of

generalized Hooke’s law.

Mathematics Subject Classifications (2000): 74B05, 15A48, 26E60, 47A64.

Key words: symmetric positive-definite tensors, averaging, geometric mean, Kullback–Leibler

mean, elasticity tensor.

1. Introduction

It is widely known that positive-definite tensors play important roles in various

branches of continuum physics. For instance, it is the positive-definite factor in

the polar decomposition frequently used in the analysis of deformations of a

continuous medium. Furthermore, linear constitutive laws generally relate two

tensors of rank k (with k = 1 or 2) via a positive-definite tensor of rank 2k. For

example, Darcy’s law of fluid flow in porous media expresses a linear relation

between the fluid velocity vector and the gradient of the pore pressure through

the second-rank permeability tensor. Similarly, Fourier’s law of heat conduction

states that the second-rank thermal conductivity tensor relates the heat flux vector

to the temperature gradient. More generally, in Fick’s law of diffusion the

second-rank diffusion tensor relates the flux vector to the concentration gradient.

More relevant to the present analysis, in the anisotropic form of Hooke’s law of
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linear elasticity, the fourth-rank elasticity tensor C relates the stress tensor � to

the infinitesimal strain tensor ��, both of which are of second rank, through

� ¼ C��:

If a Cartesian orthogonal reference frame is chosen, then Hooke’s law can be

written in index form as

��ij ¼ Cijkl�kl; 1 � i; j; k; l � 3:

The symmetry of the strain and stress tensors requires that the elasticity tensor

satisfies the symmetries

Cijkl ¼ Cjikl ¼ Cijlk; 1 � i; j; k; l � 3;

known as the minor symmetries. Furthermore, from thermodynamic consider-

ations the elasticity tensor satisfies the symmetry

Cijkl ¼ Cklij; 1 � i; j; k; l � 3;

known as the major symmetry. We note that further restrictions on the elasticity

tensor can be imposed by material symmetries.

In the second-rank tensor notation [16], Hooke’s law takes the form

�̂��� ¼ ĈC�̂���:

Here �̂��� and �̂��� are vectors, and ĈC is a second-rank tensor in a six-dimensional

space whose components are related to the components of the second-rank

tensors � and ��, and the fourth-rank tensor C in the three-dimensional space

through the two-way mappings
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and

Cijkl 1 � i; j; k; l � 3

Cijkl ¼ Cjikl ¼ Cijlk ¼ Cklij

� �
 !
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The multiplicative factors
ffiffiffi
2
p

and 2 in the above ensure that the coefficients ĈCij

represent the components of a second-rank tensor, see [16] for more details. The

second-rank tensor notation is relatively new to the mechanics of solids

community which mainly uses the untensorial notation of Voigt [28]. Hence,

the elasticity tensor can be expressed either as a fourth-rank tensor in the three-

dimensional physical space or as a second-rank tensor in a six-dimensional

space. We will call ĈC the stiffness tensor and its inverse ŜS ¼ ĈC�1 the compliance

tensor.

For later reference we recall the following spectral properties of the stiffness

tensor. The eigenvalues and eigenvectors of the stiffness tensor are called the

Kelvin eigenvalues and Kelvin eigenvectors, respectively. As the number of

distinct eigenvalues is less than or equal to six while for certain material

symmetries the number of distinct elastic constants exceeds six, certain

eigenvectors must depend on some elastic constants. This dependence is through

quantities, called distributors, which are ratios of some elastic constants.

Eigenvectors that are independent of the elastic constants are called simple

eigenvectors, while eigenvectors that depend on the elastic constants through

distributors are called distributor-dependent eigenvectors, or simply distributor

eigenvectors [5].

To summarize, all linear constitutive relations mentioned above can be

formulated as a linear relation between two vectors via a second-rank tensor.

Furthermore, from thermodynamic or energetic considerations this second-rank

tensor is symmetric and positive definite.

The coefficients of these tensors with respect to a coordinate system are

determined experimentally by a variety of methods. Measurements obtained by

different methods for the same material present great variability [7]. One is then

confronted with averaging different experimental data sets. A very simple way to
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average the experimental data is to average each coefficient separately. However,

this method does not take into account that the data are coefficients of positive-

definite tensors. Cowin and Yang [6] described another procedure of averaging

which consists of two steps. In the first step, the bases of eigenvectors for each

matrix of coefficients are averaged. In the second step, the eigenvalues referred

to the averaged basis are averaged. In this paper we present other averaging

procedures that systematically take into account the positive definiteness of the

tensors. These procedures are based on different measures of nearness of

symmetric positive-definite tensors. One important feature of these averaging

methods that makes them attractive is that they are invariant under inversion.

This is very important as some experimental methods give the coefficients of the

elasticity (or stiffness) tensor and others give the coefficients of the compliance

tensor.

The remainder of this paper is organized as follows. In Section 2, we start by

reviewing some geometric properties of the set of symmetric positive-definite

matrices and we discuss appropriate metrics to measure the closeness of elements

of this set of matrices. We also introduce the Kullback–Leibler divergence. We

then use the Euclidean and Riemannian metrics, and the Kullback–Leibler

divergence to define properly invariant means for symmetric positive-definite

matrices. Applications of these means to averaging anisotropic elastic constant

data are presented in Section 3. There the results are compared with those

obtained with other methods of averaging.

2. Metrics and Means for Positive-Definite Matrices

In this section we recall some differential-geometric facts of the space of

symmetric positive-definite matrices that will be used in the present analysis.

Further details can be found in [4, 8, 13, 25]. We also describe means for

positive-definite matrices that enjoy certain invariance properties. We only

present results that are pertinent to the present analysis. For a more ample

analysis and proofs of results not proved here the reader is referred to [18, 19].

Let Mn�n denote the space of n � n real matrices and let GL(n) denote the

general linear group of all nonsingular matrices in Mn�n. On Mn�n we have

the Frobenius inner product bA, BÀF ¼ tr(ATB), the associated norm kAkF ¼
½tr(ATA)�1/2, and the associated metric

dFðA;BÞ ¼ kA� BkF : ð1Þ

We recall that the exponential map, defined as usual by the absolutely convergent

power series exp A ¼
P1

k¼0 Ak=k!, is a differentiable map from Mn�n onto

GL(n). When a matrix B in GL(n) does not have an eigenvalue in the negative

real line, there exists a unique real logarithm, called the principal logarithm and

denoted by Log B, whose eigenvalues belong to the infinite complex strip

276 M. MOAKHER



fz 2 C :� � < ImðzÞ < �g [11]. We also recall the general fact that for a

matrix B, such that the principal logarithm is well defined, we have

A LogðBÞA�1 ¼ LogðABA�1Þ; ð2Þ

for every invertible matrix A.

2.1. GEOMETRY OF THE SPACE OF SYMMETRIC POSITIVE-DEFINITE MATRICES

The vector space of symmetric matrices in Mn�n is denoted by SðnÞ. For P 2
SðnÞ we say that P is positive semidefinite if the quadratic form xTPx is non-

negative for all x 2 Rn. If P is positive semidefinite and invertible we say that P

is symmetric positive definite and we write P > 0. The subset of SðnÞ consisting

of all positive-semidefinite matrices is a convex cone whose interior consists of

all positive-definite matrices and is denoted by

PðnÞ :¼ fA 2 SðnÞ; A > 0g:

The exponential of any symmetric matrix is a symmetric positive-definite

matrix and the (principal) logarithm of any symmetric positive-definite matrix is

a symmetric matrix. Thus the exponential map from SðnÞ to PðnÞ is one-to-one

and onto. It follows that SðnÞ provides a parametrization of PðnÞ via the

exponential map. Another possible parameterization of PðnÞ is given by the

spectral decomposition, i.e., n positive numbers (representing the eigenvalues)

and a special orthogonal matrix (representing the corresponding orthonormal

basis of eigenvectors).

2.2. METRICS ON PðnÞ

We note that PðnÞ is a differentiable manifold of dimension n(n + 1)/2. At any

P 2 PðnÞ the tangent space TP is identified with SðnÞ. On TP we define the inner

product and corresponding norm

A;Bh iP¼ trðP�1AP�1BÞ; kAkP ¼ A;Ah i1=2
P ; ð3Þ

that depend on the point P [13]. To measure closeness of two positive-definite

matrices P1 and P2 one can use the Euclidean distance (1) of the ambient space

Mn�n, i.e.,

dFðP1;P2Þ ¼ kP1 � P2kF : ð4Þ

However, it might be more appropriate to use the Riemannian distance induced

from (3), that is intrinsic to PðnÞ and defined by

dRðP1;P2Þ ¼ kLogðP1=2
2 P�1

1 P
1=2
2 ÞkF ¼

Xn

i¼1

ln2 �i

" #1=2

; ð5Þ
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where �i, i ¼ 1, . . . , n are the (positive) eigenvalues of P1
j1P2. The positivity of

the �i’s is a consequence of the similarity of the (in general non-symmetric)

matrix P1
j1P2 and the symmetric positive-definite matrix P2

1/2P1
j1P2

1/2. It is

straightforward to see that the Riemannian distance (5) is invariant under

inversion, i.e.,

dRðP�1;Q�1Þ ¼ dRðP;QÞ;

and is invariant under congruent transformations, i.e.,

dRðP;QÞ ¼ dRðST PS; ST QSÞ; for all S 2 GLðnÞ:

2.3. THE KULLBACK–LEIBLER DIVERGENCE

In information theory, the Kullback–Leibler divergence is used to measure the

difference between two probability distributions [12]. We recall that a divergence

on a space X is a non-negative function J(I,I) on the Cartesian product space X �
X which is zero only on the diagonal, i.e., J(x, y) Q 0 for all x and y in X and that

J(x, y) ¼ 0 if and only if x ¼ y. The Kullback–Leibler divergence for a pair of

zero-mean Gaussian distributions with a pair of (positive-definite) covariance

matrices P and Q gives rise to the Kullback–Leibler divergence between the two

matrices P and Q

KLðP;QÞ :¼ trðQ�1P� IÞ � log detðQ�1PÞ: ð6Þ

If �i, i ¼ 1, . . . , n denote the (positive) eigenvalues of Qj1P then

KLðP;QÞ ¼
Xn

i¼1

ð�i � log�i � 1Þ: ð7Þ

Since x j log x j 1 Q 0 for all x > 0 with equality holding only when x ¼ 1, it

becomes clear from (7) that KL(I,I) defines a divergence on PðnÞ.
We note here that the Kullback–Leibler divergence (6) is not symmetric with

respect to its two arguments. However, it can easily be symmetrized and its

symmetric form KLsðP;QÞ :¼ 1
2
ðKLðP;QÞ þ KLðQ;PÞÞ can be expressed as

KLsðP;QÞ ¼
1

2
trðQ�1Pþ P�1Q� 2IÞ; ð8Þ

or, in terms of the �i’s, as

KLsðP;QÞ ¼
1

2

Xn

i¼1

ffiffiffiffi
�i

p
� 1ffiffiffiffi

�i

p
� �2

: ð9Þ
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Now the symmetrized Kullback–Leibler divergence (8) has all the properties of a

distance function on PðnÞ except that it does not satisfy the triangle inequality.

We point out that the symmetrized Kullback–Leibler divergence (8) is invariant

under inversion, i.e.,

KLsðP�1;Q�1Þ ¼ KLsðP;QÞ;

and is invariant under congruent transformations, i.e.,

KLsðP;QÞ ¼ KLsðST PS;ST QSÞ; for all S 2 GLðnÞ:

2.4. METRIC-BASED MEANS OF SYMMETRIC POSITIVE-DEFINITE MATRICES

The arithmetic mean of m given symmetric positive-definite matrices P1, . . . , Pm

is the symmetric positive-definite matrix

AðP1; . . . ;PmÞ :¼ 1

m

Xm

k¼1

Pk ;

which is the unique solution of the minimization problem

min
P2PðnÞ

Xm

k¼1

dFðP;PkÞ2: ð10Þ

As this mean is associated with the Euclidean distance (4), we therefore also call

it the Euclidean mean. In analogy with this fact and the variational

characterization of various notions of the mean of positive numbers, the author

defined in [18] the following metric-based mean for the space of symmetric

positive-definite matrices.

DEFINITION 2.1 (Riemannian mean). The Riemannian mean, i.e., associated

with the metric (5), of a given set of m symmetric positive-definite matrices

P1, . . . , Pm is defined as

GðP1; . . . ;PmÞ :¼ arg min
P2PðnÞ

Xm

k¼1

dRðP;PkÞ2: ð11Þ

It is clear that this definition ensures that the Riemannian mean is invariant

under reordering of the matrices to be averaged.

Unlike the minimization problem (10) which can be solved in closed form,

the minimization problem (11) for the Riemannian mean leads to a nonlinear

matrix equation that, due to the non-commutative nature of matrix multi-

plications, seems impossible be solved analytically.
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PROPOSITION 2.2 ([18]). The Riemannian mean of m given symmetric

positive-definite matrices P1, . . . , Pm is the unique symmetric positive-definite

solution of the nonlinear matrix equation

Xm

k¼1

LogðP�1
k PÞ ¼ 0: ð12Þ

Except for special cases, there are no known closed-form solution of equation

(12). In the case m = 2, the Riemannian mean of P1 and P2 is given explicitly by

any of the six equivalent expressions [18]

GðP1;P2Þ ¼ P1ðP�1
1 P2Þ1=2 ¼ P2ðP�1

2 P1Þ1=2

¼ ðP2P�1
1 Þ

1=2P1 ¼ ðP1P�1
2 Þ

1=2P2

¼ P
1=2
1 ðP

�1=2
1 P2P

�1=2
1 Þ1=2P

1=2
1

¼ P
1=2
2 ðP

�1=2
2 P1P

�1=2
2 Þ1=2P

1=2
2 :

ð13Þ

The symmetric positive-definite matrix GðP1;P2Þ corresponds to the notion of

geometric mean for a pair of Hermitian operators first introduced by Pusz and

Woronowicz [22] and studied thereafter by Trapp [26]. Furthermore, when all

matrices Pk, k ¼ 1, . . . , m commute, their Riemannian mean is given by

GðP1; . . . ;PmÞ ¼ ðP1 � � �PmÞ1=m ¼ P
1=m
1 � � �P1=m

m :

For these reasons, the Riemannian mean is also called the geometric mean. We

point out that there are other notions of geometric means. Ando et al. [2] defined

the geometric mean of more than two matrices by an iterative process that uses

the explicit expressions (13) of the geometric mean of a pair of matrices. For

example, the geometric mean of three given matrices is obtained by replacing

these matrices by the three geometric means (given explicitly by any of the six

equivalent expressions in (13)) of these matrices taken two by two and then

iterating until the three matrices obtained are identical. Their geometric mean

shares many of the properties of our metric-based geometric mean. However, for

more than two matrices these two geometric means are different in general.

2.4.1. Invariance properties of the geometric mean

The geometric mean satisfies many invariance properties that make it more

attractive than the arithmetic mean. For instance, the invariance under inversion

is a property that the arithmetic mean does not satisfy. Some of these properties

are given in the following propositions. The third one will be of importance to us

in the discussion of material symmetries for the elasticity tensor. The proofs of

the first two follow immediately either from the invariance properties of the
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Riemannian distance or by simple use of equation (2). We only give a proof of

the third one.

PROPOSITION 2.3 (Invariance under congruent transformations). If P is the

geometric mean of the set {Pk}1 e k em of positive-definite matrices, then CPCT is

the geometric mean of the set {CPkC
T}1 e k em, for every C in GL(n).

PROPOSITION 2.4 (Invariance under inversion). If P is the geometric mean of

the set {Pk}1 e k em of positive-definite matrices, then Pj1 is the geometric mean

of the set {Pk
j1}1 e k em.

PROPOSITION 2.5 (Invariance group). Let A be a given set of invertible

matrices in Mn�n. Assume that P1, . . . , Pm are m matrices in PðnÞ that satisfy

Pk ¼ APkA�1; 8A 2 A; k ¼ 1; . . . m:

Then their geometric mean P also satisfies

P ¼ APA�1; 8A 2 A:

Proof. We note in passing that the set A is a subset of a group I , such that

fI;�Ig � I � GLðnÞ, which we call the invariance group for the matrices

P1, . . . , Pm.

Now recall that the geometric mean of P1, . . . , Pm is the unique symmetric

positive-definite tensor, P, solving the matrix equation

Xm

k¼1

LogðP�1
k PÞ ¼ 0:

By left multiplication by A 2 A and right multiplication by Aj1 of this equation

and use of (2) it follows that

Xm

k¼1

LogðAP�1
k A�1APA�1Þ ¼ 0;

which by virtue of the assumption on the Pk’s becomes

Xm

k¼1

LogðP�1
k APA�1Þ ¼ 0:

Then uniqueness of the geometric mean and arbitrariness of A 2 A imply that P

must satisfy

P ¼ APA�1; 8A 2 A: Ì
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2.4.2. Fixed-point algorithm for computing the geometric mean

As stated earlier, the Riemannian mean of a given set of m symmetric positive-

definite matrices P1, . . . , Pm is the unique symmetric positive-definite matrix P

solution to the nonlinear matrix equation (12) and it looks impossible that this

equation can be solved in closed form for m > 2. We here describe a fixed-point

algorithm to numerically solve the geometric mean of a set of symmetric

positive-definite matrices. We mention that other methods such as Newton’s

method on Riemannian manifolds [24] could also be used for the numerical

computation of the geometric mean. However, we found that the fixed-point

algorithm described below is simple to implement, does not require a

sophisticated machinery, and converges rapidly.

By the invariance of the geometric mean under congruent transformations, we

may assume without loss of generality that P1 ¼ I (this can be achieved by left

and right multiplication of each Pk by P1
j1/2). In such a case, equation (12) can be

written as

Log P ¼ �
Xm

k¼2

LogðP�1
k PÞ: ð14Þ

We then left multiply this equation by P1/2 and right multiply it by Pj1/2 to

obtain the equivalent equation

Log P ¼ �
Xm

k¼2

LogðP1=2P�1
k P1=2Þ; ð15Þ

which we exploit to construct the fixed-point algorithm on SðnÞ described below.

Set S = Log P so that equation (15) writes

S ¼ �
Xm

k¼2

LogðexpðS=2Þ P�1
k expðS=2ÞÞ: ð16Þ

We solve this equation by the following fixed-point iterations on SðnÞ

Sð0Þ ¼ 1

m

Xm

k¼1

Log Pk;

Sðlþ1Þ ¼ �Sð1Þ þ ð�� 1Þ
Xm

k¼2

LogðexpðSðlÞ=2ÞP�1
k expðSðlÞ=2ÞÞ; l � 0:

The parameter � has to be chosen so that the mapping

S 7!�Sþ ð�� 1Þ
Xm

k¼2

LogðexpðS=2ÞP�1
k expðS=2ÞÞ; ð17Þ
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is a contraction. By considering the scalar case, to have a contraction mapping

we must have m�1
m

< � < 1. Using ! of the form mþk
mþkþ1

for k > 0, which does

satisfy the above condition, we have found that the fixed-point algorithm does

indeed converge in the matrix case.

2.5. KULLBACK–LEIBLER DIVERGENCE-BASED MEAN

In a similar way to the metric-based means defined with the Euclidean and

Riemannian metrics we define the Kullback–Leibler divergence-based mean.

DEFINITION 2.6. (Kullback–Leibler mean). The Kullback–Leibler mean of m

given symmetric positive-definite matrices P1, . . . , Pm is defined as

KLðP1; . . . ;PmÞ :¼ arg min
P2PðnÞ

Xm

k¼1

KLsðPk ;PÞ: ð18Þ

We note that in the above definition the divergences are not squared.

This minimization problem has a unique solution given explicitly in the fol-

lowing lemma [19].

LEMMA 2.7. The Kullback–Leibler mean of P1, . . . , Pm is given by the

geometric mean of the arithmetic mean of P1, . . . , Pm and the harmonic mean of

P1, . . . , Pm, i.e.,

KLðP1; . . . ;PmÞ ¼ GðAðP1; . . . ;PmÞ;HðP1; . . . ;PmÞÞ;

where

HðP1; . . . ;PmÞ :¼ ðAðP�1
1 ; . . . ;P�1

m ÞÞ
�1:

Invariance of the Kullback–Leibler mean (18) under inversion and under

congruent transformations follows from the invariance of the Kullback–Leibler

divergence (8). Now if P1, . . . , Pm are m matrices in PðnÞ that satisfy

Pk ¼ APkA�1; 8A 2 A; k ¼ 1; . . . m;

where A is a given set of invertible matrices in Mn�n, then their Kullback–

Leibler mean P also satisfies

P ¼ APA�1; 8A 2 A:

It is interesting to see how the Kullback–Leibler mean, which is associated

with a divergence and not a metric, combines the arithmetic and harmonic means

via the geometric mean in such a way that makes it invariant under inversion, a

property that the arithmetic mean does not satisfy. Furthermore, for m = 2 the

Kullback–Leibler mean coincides with the geometric mean [19].
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3. Application to Averaging the Elasticity Tensor

In this section we use the geometric and Kullback–Leibler means for symmetric

positive-definite matrices to average symmetric positive-definite tensors. We also

recall an averaging procedure proposed by Cowin and Yang [6]. We discuss

certain questions related to material symmetries. We mainly work with the

elasticity tensor, but the results apply equally to other symmetric positive-definite

tensors such as diffusion tensors, permeability tensors, conductivity tensors, etc.

Finally, we illustrate the averaging methods discussed here on previously

reported data by Hearmon [7] of elastic constants for some piezoelectric

materials.

3.1. METHODS OF AVERAGING SYMMETRIC POSITIVE-DEFINITE TENSORS

Before we proceed in describing the following methods for averaging elasticity

tensors we would like to clarify how the means of symmetric positive-definite

matrices defined in Section 2 translate into means of symmetric positive-definite

tensors. There are two approaches to looking at this matter. First, as we have

shown, the geometric and Kullback–Leibler means of symmetric positive-

definite matrices are invariant under congruent transformations and in particular

orthogonal transformations. This has the implication that under a change of

coordinates the given matrices and their means transform according to the tensor

rule for coordinate change. Therefore, by the geometric mean (or the Kullback–

Leibler mean) of a set of symmetric positive-definite tensors we mean the tensor

whose matrix in a coordinate system is the geometric mean (or the Kullback–

Leibler mean) of the matrices of the given tensors in this coordinate system.

Second, the same analysis that has been done with symmetric positive-definite

matrices could be carried out for symmetric positive-definite tensors, and all

operations, such as the logarithm, that have been performed on matrices apply to

tensors too.

3.1.1. Method 1: Arithmetic mean

In this method the averaged elasticity tensor is given by the arithmetic mean of

the given elasticity tensors. This method is a general procedure for averaging

tensors that are not necessarily symmetric positive-definite. Here each coefficient

of the stiffness matrix is averaged independently of the other coefficients. If we

average the inverses of the given tensors and then invert the resultant tensor we

get the harmonic mean which is quite different than the arithmetic mean.

3.1.2. Method 2: Spectral decomposition-based mean

This method was proposed by Cowin and Yang [6] as an alternative to the

classical method of the arithmetic mean which does not take into account the

positive-definiteness property of the given tensors. It is based on the spectral
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decomposition of symmetric positive-definite tensors. It consists of two steps: in

the first step the eigenbases of the given tensors are averaged, and in the second

step the eigenvalues referred to the averaged eigenbasis are then averaged. The

averaging procedure for the eigenbases is based on the mean associated with the

Euclidean distance (1) for the orthogonal matrices of eigenvectors. This mean is

in fact given by the polar factor in the polar decomposition of the arithmetic

mean of the orthogonal matrices of eigenvectors [6, 18]. We note that a modified

version of Cowin and Yang’s method that is based on the Riemannian mean of

orthogonal matrices [17] could also be used for the averaging of symmetric

positive-definite matrices. Once again, using Cowin and Yang’s method the

inverse of the average tensor of the inverse tensors is different than the average

of the tensors.

3.1.3. Method 3: Geometric mean

This method is based on the geometric mean described in this paper. It

intrinsically takes into account the differential-geometrical properties of the

space of symmetric positive-definite tensors. It has the advantage of being

invariant under inversion. This invariance is very important in practical

applications such as the averaging of elasticity tensors that are obtained by

several experimental methods either as stiffness coefficients or as compliance

coefficients. In general, for more than two tensors this mean cannot be given

explicitly and one has to resort to numerical methods, such as the fixed-point

algorithm described earlier, to compute it. Beside accounting for the positive-

definiteness of the tensors, as we shall see later on, the differential-geometric

nature of the Riemannian distance (5) combined with the group property of

material symmetries surprisingly make this method preserve material symmetries.

3.1.4. Method 4: Kullback–Leibler mean

This method is based on the Kullback–Leibler mean and therefore it is invariant

under inversion. Although the (symmetrised) Kullback–Leibler divergence does

not define a metric on the space of symmetric positive-definite tensors, it yields a

notion of mean with many desirable properties. This mean is given in a closed

form as the geometric mean of the arithmetic and harmonic means. Owing to the

fact that the tensors and their inverses have the same structure when it comes to

material symmetries, this method also preserves material symmetries.

3.1.5. Method 5: Harmonic mean

This methods corresponds to taking the arithmetic mean applied on the inverse

tensors and then inverting the result. Like the arithmetic mean, neither is this

mean invariant under inversion nor does it take into account the positive-definite

character of the tensors.
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3.1.6. Method 6: Spectral decomposition-based mean on inverses

This is Cowin and Yang’s method but applied on the inverse tensors. It is not

invariant under inversion. The eigenbasis for the average tensor of this method

is the same as the eigenbasis for the average of method 2. The inverses of the

eigenvalues of the averaged tensor according to this method are given by the

arithmetic average of the inverse eigenvalues referred to the averaged

eigenbasis.

3.2. REMARKS ON AVERAGING METHODS USED FOR POLYCRYSTALS

The problem of estimating the (effective) elastic properties of polycrystals from

those of single crystals is an old one that goes back to Voigt [27] and Reuss [23].

Under appropriate assumptions [14], the elasticity properties can be estimated by

averaging the fourth-rank stiffness (or compliance) tensor with a weight function

describing the distribution of crystallographic orientations [14, 21]

Eijkl ¼
Z

SOð3Þ
E0

ijklðRÞf ðRÞdR:

Here Eijkl are the components, with respect to an orthonormal coordinate system,

of the averaged stiffness (or compliance) tensor; Eijkl
0 (R) are the components,

with respect to the same coordinate system, of the stiffness (or compliance)

tensor for a single crystal with orientation R 2 SO(3); f(R) is the orientation

distribution function (ODF); and dR is the Harr measure of SO(3).

In the mechanics and physics of solid literature, the method of estimating the

elastic properties by averaging the stiffness tensor is known as Voigt’s average,

and that by averaging the compliance tensor is known as Ruess’ average. Hill [9]

showed that the real average should lie between these two extremes. He

suggested that the arithmetic mean between the elasticity tensor obtained by

Voigt’s method and that by Reuss’ method, usually referred to as Hill’s average,

is a good approximation to the real average tensor. It is noted that none of these

three averages satisfies the physical requirement, known as BLichtenecker’s

inversion postulate’’, that averaging tensors or their inverses should lead to the

same material properties [14]. Hill [9] also suggested that, for the rigidity

modulus, the geometric mean between the Voigt average and the Reuss average

should provide a good approximation to the real average. In this context, we

believe that the geometric mean tensor between the Voigt average tensor and the

Reuss average tensor should provide a good approximation to the real average

tensor. We note that, by construction, this average obeys the inversion

invariance.

Based on a suggestion of Aleksandrov and Aizenberg [1], Morawiec [20] and

later Matthies and Humbert [14] described an averaging procedure for the
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elasticity tensor of textured polycrystals which they termed Bgeometric mean’’.

Essentially, they compute the arithmetic (weighted) average of the logarithms of

the elasticity tensors then they take the exponential of the resultant tensor. Their

Bgeometric mean’’ is different than the geometric mean discussed in this paper,

they coincide only when the tensors to be averaged two-by-two commute under

multiplication. Their geometric mean does satisfy the invariance under inversion;

however, it is not invariant under congruent transformations.

3.3. MATERIAL SYMMETRIES

The material symmetries for an elastic solid material form a multiplicative group,

G, which is a subgroup of the full orthogonal group O(3). In linear elasticity

theory, the restriction on the fourth-rank elasticity tensor C imposed by material

symmetries writes

QðC��ÞQT ¼ CðQ��QT Þ

for every Q in the symmetry group G of the material and any deformation ��. In

the six-dimensional tensorial notation this restriction yields that

ĈC ¼ Q̂Q
T

ĈCQ̂Q; ð19Þ

must be satisfied for every six-dimensional orthogonal transformation Q̂Q
representing a three-dimensional orthogonal transformation Q 2 G. For a

comprehensive account of the representation of three-dimensional orthogonal

transformations (including reflections) by six-dimensional orthogonal trans-

formations see [15].

Now the following fundamental question arises. Do the different notions of

mean described earlier of a given set of elasticity tensors belonging to a certain

class of material symmetry belong to that class? It is clear that the arithmetic,

harmonic and the spectral decomposition-based means preserve material

symmetries. However, this is not obvious for the geometric and the Kullback–

Leibler means. Indeed, the answer to this question for these two means is

affirmative and is given in the following corollary.

COROLLARY 3.1. The geometric and Kullback–Leibler means of a set of

elasticity tensors belonging to a class of material symmetry inherit the same

symmetry.

Proof. The proof follows immediately from Proposition 2.5 and the similar

statement for the Kullback–Leibler mean. Ì

In what follows we recall the restrictions on the elasticity tensor for some

material symmetries and briefly comment on what coefficients of the stiffness

matrix can be given explicitly for the different means.
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3.3.1. Isotropy and cubic symmetry

In an appropriate coordinate system, the matrix of coefficients of the stiffness

tensor for cubic symmetry has the form

ĈC ¼

ĈC11 ĈC12 ĈC12 0 0 0

ĈC12 ĈC11 ĈC12 0 0 0

ĈC12 ĈC12 ĈC11 0 0 0

0 0 0 ĈC44 0 0

0 0 0 0 ĈC44 0

0 0 0 0 0 ĈC44

0
BBBBBB@

1
CCCCCCA
: ð20Þ

(When ĈC44 ¼ ĈC11 � ĈC12, we reduce to the isotropic symmetry.) It has three

distinct eigenvalues given by ĈC11 þ 2ĈC12, ĈC11 � ĈC12 and ĈC44 which are of

multiplicity one, two and three, respectively. Furthermore, all eigenvectors are

independent of the elasticity constants. Consequently, the tensors to be averaged

have the same eigenbasis and therefore for these two cases of material symmetry,

the averaged tensors of methods 1 and 2 coincide and the average tensor of

method 3 is given in closed form

ĈC11 ¼
1

3
gðĈCk

11 þ 2ĈCk
12Þ þ

2

3
gðĈCk

11 � ĈCk
12Þ; ð21aÞ

ĈC12 ¼
1

3
gðĈCk

11 þ 2ĈCk
12Þ �

1

3
gðĈCk

11 � ĈCk
12Þ; ð21bÞ

ĈC44 ¼ gðĈCk
44Þ; ð21cÞ

where

gðX kÞ :¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiYm
k¼1

X km

s
:

As for the coefficients of the averaged elastic tensor using method 4 they are

given by

ĈC11 ¼
1

3
fðĈCk

11 þ 2ĈCk
12Þ þ

2

3
fðĈCk

11 � ĈCk
12Þ; ð22aÞ

ĈC12 ¼
1

3
fðĈCk

11 þ 2ĈCk
12Þ �

1

3
fðĈCk

11 � ĈCk
12Þ; ð22bÞ

ĈC44 ¼ fðĈCk
44Þ; ð22cÞ
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where

fðX kÞ :¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Xm

k¼1

X k

 ! Xm

k¼1

ðX kÞ�1

 !�1
vuut :

3.3.2. Tetragonal symmetry

In an appropriate coordinate system, the matrix of coefficients of the stiffness

tensor for tetragonal symmetry has the form

ĈC ¼

ĈC11 ĈC12 ĈC13 0 0 0

ĈC12 ĈC11 ĈC13 0 0 0

ĈC13 ĈC13 ĈC33 0 0 0

0 0 0 ĈC44 0 0

0 0 0 0 ĈC44 0

0 0 0 0 0 ĈC66

0
BBBBBB@

1
CCCCCCA
: ð23Þ

The three non-trivial (i.e., of the upper-left 3-by-3 block) eigenvalues are

1

2
ðĈC11 þ ĈC33 þ ĈC12Þ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðĈC11 þ ĈC12 � ĈC33Þ2 þ 8ĈC2

13

q� �
; and ĈC11 � ĈC12:

Two of the eigenvectors are distributor eigenvectors. Nevertheless, the average

eigenbasis for the eigenbases of eigenvectors can be given explicitly, see [6].

Therefore the average tensor using method 2 can be computed analytically. On

the other hand, only the coefficients ĈC44 and ĈC66 and the difference ĈC11 � ĈC12

can be given explicitly for method 3 and method 4. For method 3 we have

ĈC44 ¼ gðĈCk
44Þ; ð24aÞ

ĈC66 ¼ gðĈCk
66Þ; ð24bÞ

ĈC11 � ĈC12 ¼ gðĈCk
11 � ĈCk

12Þ; ð24cÞ

and for method 4 we have

ĈC44 ¼ fðĈCk
44Þ; ð25aÞ

ĈC66 ¼ fðĈCk
66Þ; ð25bÞ

ĈC11 � ĈC12 ¼ fðĈCk
11 � ĈCk

12Þ: ð25cÞ
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The other coefficients can be determined by the geometric mean or the

Kullback–Leibler mean in Pð2Þ of the matrices

ĈCk
11 þ ĈCk

12

ffiffiffi
2
p

ĈCk
13ffiffiffi

2
p

ĈCk
13 ĈCk

33

 !
:

3.3.3. Trigonal symmetry

In an appropriate coordinate system, the matrix of coefficients of the stiffness

tensor for trigonal symmetry has the form

ĈC ¼

ĈC11 ĈC12 ĈC13 ĈC14 0 0

ĈC12 ĈC11 ĈC13 �ĈC14 0 0

ĈC13 ĈC13 ĈC33 0 0 0

ĈC14 �ĈC14 0 ĈC44 0 0

0 0 0 0 ĈC44

ffiffiffi
2
p

ĈC14

0 0 0 0
ffiffiffi
2
p

ĈC14 ĈC11 � ĈC12

0
BBBBBB@

1
CCCCCCA
: ð26Þ

The eigenvalues are

1

2
ðĈC11 þ ĈC33 þ ĈC12Þ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðĈC11 þ ĈC12 � ĈC33Þ2 þ 8ĈC2

13

q� �
;

1

2
ðĈC11 � ĈC12 þ ĈC44Þ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðĈC11 � ĈC12 � ĈC44Þ2 þ 8ĈC2

14

q� �
;

with multiplicity one, one, two and two. All eigenvectors are distributor

eigenvectors [6]. Similar to the case of tetragonal symmetry, the average

eigenbasis for the eigenbases of eigenvectors can be given explicitly, see [6].

There is no way to obtain the coefficients of the average tensor by method 3 and

method 4 but to compute them numerically. However, we can reduce the

problem to that of the geometric mean or the Kullback–Leibler mean on a subset

of Pð4Þ, i.e., for the matrices

ĈCk
11 ĈCk

12 ĈCk
13 ĈCk

14

ĈCk
12 ĈCk

11 ĈCk
13 �ĈCk

14

ĈCk
13 ĈCk

13 ĈCk
33 0

ĈC
k

14 �ĈCk
14 0 ĈCk

44

0
BBBBBB@

1
CCCCCCA
:

It is rather remarkable that the geometric and Kullback–Leibler means are

invariant under this class of material symmetry, but as we have shown this is

built in.
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3.3.4. Orthotropic symmetry

In an appropriate coordinate system, the matrix of coefficients of the stiffness

tensor for orthotropic symmetry has the form

ĈC ¼

ĈC11 ĈC12 ĈC13 0 0 0

ĈC12 ĈC22 ĈC23 0 0 0

ĈC13 ĈC23 ĈC33 0 0 0

0 0 0 ĈC44 0 0

0 0 0 0 ĈC55 0

0 0 0 0 0 ĈC66

0
BBBBBB@

1
CCCCCCA
: ð27Þ

In this case only the coefficients ĈC44, ĈC55 and ĈC66 can be given explicitly for

methods 3 and 4. For method 3 we have

ĈC44 ¼ gðĈCk
44Þ; ð28aÞ

ĈC55 ¼ gðĈCk
55Þ; ð28bÞ

ĈC66 ¼ gðĈCk
66Þ; ð28cÞ

and for method 4 we have

ĈC44 ¼ fðĈCk
44Þ; ð29aÞ

ĈC55 ¼ fðĈCk
66Þ; ð29bÞ

ĈC66 ¼ fðĈCk
66Þ: ð29cÞ

The other coefficients have to be computed.

3.4. AVERAGING HEARMON’S DATA

We illustrate the use of means of symmetric positive-definite tensors discussed

above for averaging data for the elasticity constants previously reported by

Hearmon [7] and used by Cowin and Yang [6] in their analysis. The data are for

piezoelectric crystals with cubic, tetragonal, trigonal and orthotropic symmetries.

3.4.1. Hearmon’s data

In Table I we give Hearmon’s data for the coefficients of the stiffness tensor ĈC.

We refer the reader to [7] for the origin of the data and the experimental method

by which they were obtained. We remark that some data are obtained directly as

stiffnesses and other are obtained as compliances and then converted to

stiffnesses by Hearmon.

ON THE AVERAGING OF SYMMETRIC POSITIVE-DEFINITE TENSORS 291



Table I. Stiffness constants (units are 1011 dynes/cm2) from Hearmon [7, Extracted from Tables

2–6, pp. 120–122].

ĈC11 ĈC44=2 ĈC12

a) NaClO3 (cubic symmetry)

4.90 1.17 1.39

4.92 1.19 1.45

5.09 1.18 1.55

4.89 1.17 1.39

4.99 1.17 1.41

ĈC11 ĈC33 ĈC44=2 ĈC66=2 ĈC12 ĈC13

b) Ammonium dihydrogen phosphate (tetragonal symmetry)

7.58 2.96 0.87 0.614 j2.43 1.30

6.17 3.28 0.85 0.592 0.72 1.94

6.89 3.35 0.856 0.595 0.40 1.89

6.77 3.38 0.868 0.608 0.59 1.99

ĈC11 ĈC33 ĈC44=2 ĈC66=2 ĈC12 ĈC13

c) Potassium dihydrogen phosphate (tetragonal symmetry)

7.8 7.7 1.27 0.61 3.23 3.84

6.91 5.56 1.29 0.600 j0.600 1.22

7.08 5.84 1.28 0.633 j0.383 1.55

7.14 5.61 1.27 0.628 j0.49 1.29

ĈC11 ĈC33 ĈC44=2 ĈC12 ĈC13 ĈC14=
ffiffiffi
2
p

d) Quartz (trigonal symmetry)

8.51 10.55 5.70 0.70 1.41 j1.69

8.67 10.68 5.79 0.69 1.13 j1.80

8.61 10.71 5.87 0.51 1.05 j1.83

8.69 10.68 5.76 0.69 1.56 j1.74

8.67 10.72 5.80 0.71 1.19 j1.78

8.64 10.46 5.66 0.79 1.36 j1.73

ĈC11 ĈC22 ĈC33 ĈC44=2 ĈC55=2 ĈC66=2 ĈC12 ĈC13 ĈC23

e) Rochelle salt (orthotropic symmetry) a

6.82 10.31 9.66 1.04 0.297 0.848 6.83 6.38 7.83

4.25 5.15 6.29 1.25 0.304 0.996 2.96 3.57 3.42

4.06 5.20 6.40 1.22 0.300 0.95 2.56 3.46 3.20

2.55 3.81 3.71 1.34 0.321 0.979 1.41 1.16 1.46

a The first and last data sets reported by Hearmon are omitted here. The first because of outliers

and the last because it is incomplete.
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Table II. Stiffness constants of the average elasticity tensors according to methods 1 to 6.

ĈC11 ĈC44=2 ĈC12

a) NaClO3 (cubic symmetry)

4.958 1.176 1.438

4.958 1.176 1.438

4.957 1.176 1.437

4.957 1.176 1.437

4.956 1.176 1.437

4.956 1.176 1.437

ĈC11 ĈC33 ĈC44=2 ĈC66=2 ĈC12 ĈC13

b) Ammonium dihydrogen phosphate (tetragonal symmetry)

6.853 3.242 0.861 0.602 j0.180 1.780

6.845 3.257 0.861 0.602 j0.187 1.787

6.721 3.229 0.861 0.602 j0.118 1.760

6.725 3.228 0.861 0.602 j0.126 1.759

6.601 3.214 0.861 0.602 j0.074 1.737

6.600 3.216 0.861 0.602 j0.075 1.738

ĈC11 ĈC33 ĈC44=2 ĈC66=2 ĈC12 ĈC13

c) Potassium dihydrogen phosphate (tetragonal symmetry)

7.232 6.178 1.277 0.618 0.439 1.957

7.210 6.222 1.277 0.618 0.417 1.983

7.030 6.041 1.277 0.618 0.381 1.846

7.035 6.052 1.277 0.618 0.399 1.858

6.844 5.931 1.277 0.617 0.361 1.744

6.835 5.948 1.277 0.617 0.352 1.747

ĈC11 ĈC33 ĈC44=2 ĈC12 ĈC13 ĈC14=
ffiffiffi
2
p

d) Quartz (trigonal symmetry)

8.632 10.633 5.763 0.682 1.283 j1.762

8.625 10.646 5.764 0.676 1.280 j1.762

8.630 10.629 5.763 0.680 1.284 j1.761

8.630 10.629 5.763 0.680 1.284 j1.761

8.627 10.625 5.762 0.679 1.284 j1.761

8.621 10.639 5.762 0.672 1.280 j1.761

ĈC11 ĈC22 ĈC33 ĈC44=2 ĈC55=2 ĈC66=2 ĈC12 ĈC13 ĈC23

e) Rochelle salt (orthotropic symmetry)

4.420 6.117 6.515 1.212 0.305 0.943 3.440 3.643 3.978

4.831 6.003 6.218 1.212 0.305 0.943 3.632 3.734 3.774

4.031 5.573 5.978 1.207 0.305 0.941 2.997 3.191 3.461

4.031 5.595 5.971 1.207 0.305 0.941 3.006 3.188 3.468

3.685 5.128 5.485 1.202 0.305 0.940 2.620 2.782 3.015

4.016 4.993 5.152 1.202 0.305 0.940 2.760 2.838 2.785
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The first data set reported here is for NaClO3 which is a material with cubic

symmetry. The second and third data sets, both of which are for elastic materials

with tetragonal symmetry, correspond to ammonium dihydrogen phosphate and

potassium dihydrogen phosphate, respectively. The fourth data set is for Quartz

which is a material with trigonal symmetry. The last data set is for Rochelle salt

which is an orthotropic elastic material.

3.4.2. Results and discussion

In Table II we give the averaged coefficients of the stiffness tensor ĈC for the

different data sets given in Table I. For each material we give the coefficients of

the stiffness tensor averaged by the arithmetic mean, Cowin and Yang’s mean,

geometric mean, Kullback–Leibler mean, harmonic mean and the inverse of

Cowin and Yang’s mean applied on the compliance tensors.

When the data are clustered, as is the case of (a), (b), (c) and (d), the

difference between the coefficients of the average elasticity tensor for the

different procedures is relatively small. In contrast, the data for Roshelle salt

present a great variability and as a consequence there is a big difference between

the different average tensors.

If we denote by A, CY, G, KL, H and YC the average elasticity tensor

obtained by the averaging methods 1 to 6 then we have found that

H < G < A; and KL < A; ð30Þ

where < stands for the Löwner order for symmetric positive-definite tensors, i.e.,

X < Y means that Y j X > 0. The inequality (30)1 (with < replaced by e and

equality holds only if all tensors to be averaged are equal) is of course similar to

the harmonic-arithmetic-geometric mean inequality of positive numbers. Here

the statements in (30) hold for the given data and might not be true in general.

However, the statements in (30) hold true for the means of a pair of symmetric

positive-definite tensors. This fact can be proved for example by using the

inequality for scalars, the existence of a common orthogonal tensor that

Table III. Relative Euclidean and Riemannian distances between the indicated means of the

elasticity tensors.

dFðA;HÞ=kAkF dFðCY;YCÞ=kCYkF dRðA;HÞ dRðCY;YCÞ

a) 0.0004 0.0004 0.0006 0.0006

b) 0.0355 0.0355 0.0570 0.0565

c) 0.0582 0.0582 0.0879 0.0876

d) 0.0005 0.0005 0.0012 0.0012

e) 0.1949 0.2037 0.2360 0.2425
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simultaneously diagonalizes the two given tensors, and the equality of G and KL

for the case two tensors.

Finally, in Table III we present the difference in the Frobenius and geometric

norms between A and H, and CY and YC. Once again, these distances are small

except for Rochelle salt where these relative measures can be up to 24%. Thus,

when some of data are obtained as stiffnesses and the others as compliances

averaging methods that are invariant under inversion, such as the geometric

mean and the Kullback–Leibler mean, could be the right ones to use.

4. Conclusion and Perspectives

In this paper several methods of averaging anisotropic elastic constant data are

discussed and are used to average anisotropic elasticity constants. All of these

methods preserve material symmetries but only two of them are invariant under

inversion. These are the geometric mean and the Kullback–Leibler mean.

Another application of the averaging procedures will be the determination of

effective diffusion (stiffness, permeability, conductivity, etc.) tensors for

heterogeneous or composite materials. Two-dimensional analyses of effective

tensors for random or chess-board structure indicate that the geometric mean

may arise for certain composition structure. In fact, the effective diffusion tensor

for a heterogeneous two-dimensional material made of two isotropic materials of

different diffusivities with random or chess-board structure is shown to be an

isotropic tensor with diffusivity equal to the (scalar) geometric mean of the

diffusivities of the composing materials, see for example [10, pp. 37 and 236].

Last but not least, the geometric mean can be used to intrinsically interpolate

and smooth diffusion tensor fields from diffusion tensor magnetic resonance

imaging (DT-MRI) [3, 19]. In this area there are still many things to explore.
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