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Abstract. The phenomenology of concentrated contact interactions, a rare but at times necessary
occurrence to guarantee partwise equilibrium, is illustrated by means of examples taken from two-
dimensional equilibrium problems where concentrated loads are applied to infinite bodies occupying
either a half plane or the whole plane. Although the corresponding three-dimensional problems in
linearly isotropic elasticity have been solved since long past, this phenomenology has remained latent
so far.
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1. Introduction

In continuum mechanics, both a body and its environment and adjacent body parts
are presumed to have contact interactions, which are thought of as accounting for
the short-range forces between neighboring particles envisaged by discrete me-
chanics. In the classical case of simple continuous bodies, these interactions are
modeled by a stress vector field: when evaluated at a point x of a common boundary
surface oriented by the unit normal n̂(x), such field is interpreted as delivering the
force ĉ(x, n̂(x)) per unit area exerted either by the environment over the body or
by the part lying on the positive side of the boundary surface over the adjacent
part. By virtue of Cauchy’s tetrahedron theorem, given the contact force mapping
ĉ(x, ·) at a typical body point x and three mutually orthogonal unit vectors ni , the
construct

Ŝ(x) =
3∑

i=1

ĉ(x,ni ) ⊗ ni (1.1)

defines the value at x of the stress tensor field; conversely, given the latter, its affine
action over the sphere of unit vectors yields the stress vector on the oriented planes
through x:

ĉ(x,n) = Ŝ(x)n. (1.2)
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Thus – and this is the main thrust of Cauchy’s result – the information carried by the
contact-force mapping ĉ and the stress-tensor mapping Ŝ are essentially equivalent.

This equivalence holds, though, for regular contact force and stress fields. It
seems reasonable to ask what can be said about the matters in singular cases, if any.
My concern here is to exhibit and discuss situations when singular contact forces
and stress fields are indeed in order. Precisely, by inspection of certain problems of
pure statics, which are two-dimensional counterparts of the problems in classical
elasticity solved by Flamant, Boussinesq, Cerruti and Kelvin in the last decades of
the XIX century, I demonstrate per exempla that partwise equilibrium of a simple
continuous body may require that adjacent body parts exchange concentrated con-
tact forces. Two concepts in this sentence, ‘partwise equilibrium’ and ‘concentrated
forces’, both central to our present developments, need some discussion.

That whatever part of an equilibrated body must be in equilibrium as well would
be hardly contended by anybody. The widespread and fruitful use of free-body
diagrams in mechanics is based on this assumption, and on the accompanying
presumption that a body part, when ideally isolated from the rest, would be in
equilibrium if it were acted upon by external forces reproducing faithfully the
forces, both external and internal, it directly experiences in reality. Usually, the
subbodies whose equilibrium is characterized in this manner are imagined to have
an everywhere smooth boundary. Not always so here, where consideration of sharp-
cornered parts is at times necessary to exhibit the concentration effects of contact
forces in which we are interested.

Concentrated forces, regarded as convenient idealizations of diffused loads ap-
plied to a small part of a body’s boundary, are of common use in engineering
mechanics. To quote from a popular textbook, “the free-body diagram is the most
important single step in the solution of problems in mechanics” [21, p. 104]);
“modeling the action of forces” “exerted on the body to be isolated, by the body
to be removed” (ibid., p. 105; italics as in the original text) is a mandatory, prelim-
inary step; and those forces, especially but not exclusively in statics, are for most
practical purposes modeled as concentrated.

Diffused contact loads are germane to contact interactions between adjacent
body parts: in fact, when a contact-interaction mapping is specified for a body
class, then it is customarily thought of as delivering both contact interactions, at
interior points, and contact loads, at boundary points.� Concentrated loads, applied
at interior and boundary points, have been often considered in continuum mechan-

� Interestingly, the concept of diffused contact interactions between internal adjacent body parts
begun to condensate in Cauchy’s mind on the basis of a similarity with standard examples of diffused
contact loads exerted on a body by an environment of a different nature, such as the hydrostatic
pressure of a fluid on an immersed solid [11]. Cauchy’s model of internal contact interactions has
been applied without changes to contact interactions of a body with its exterior, with the contact
interaction mapping accounting for both. An implicit drawback of this practice is that no difference
is made between geometrical surfaces obtained by ideal cutting and fabricated surfaces obtained by
actual cutting [13]; moreover, the issue of boundary compatibility of a (body,environment) pair is
completely overlooked [10, 9].
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ics, and carefully modeled mathematically (see [16, Section 52], for the class of
linearly elastic bodies). I see no reason why the germane notion of concentrated
contact interactions should not be introduced. They are not ubiquitous; in fact, they
are a rather rare necessity. Let us revert for a moment to engineering mechanics for
guidance. A judicious practice there is to make sure that the free-body diagram
features all possible forces applied to the isolated body; at times, we find out that
balance and/or symmetry conditions require that some of those forces be null.
Likewise, in continuum mechanics, we should contemplate concentrated contact
interactions by default, because there are cases, no matter how few, when they turn
out to be crucial to guarantee partwise equilibrium.

If concentrated contact interactions are considered, an interesting problem to
tackle is, as pointed out in the beginning of this introduction, the conjectural equiv-
alence in information of contact forces, regular and singular, and the accompa-
nying, somewhere singular, stress field. Luckily, concentrated forces, be they ide-
alizations of applied loads or of contact interactions, occur ‘naturally’ in weak
formulations of continuum mechanics. In fact, in such formulations, concentrated
loads are as ‘natural’ as edges and vertices in the domain where a boundary value
problem is formulated. There is no need today to justify consideration of concen-
trated forces, as was done over a century ago, by thinking of them as limits of
smooth distributions of volume or surface forces, just as there is no need to round
off a domain’s corners. In addition, weak formulations relieve us from dealing with
a delicate issue arising when sequences of approximating problems are employed,
namely, to investigate under what hypotheses an associated sequence of smooth
solutions has a unique limit.

The phenomenology of concentrated contact interactions is here illustrated by
means of examples taken from two-dimensional equilibrium problems where con-
centrated loads are applied to infinite bodies occupying either a half plane or the
whole plane. This phenomenology has remained latent so far, so much so that the
currently accepted mathematical models can only handle diffused contact interac-
tions. Recent progresses in geometric calculus (a denomination coined in [17]) and
related issues in continuum physics [22, 23] give grounds for hoping that a full-
fledged theory of contact interactions, diffused and concentrated, will be available
soon.

To minimize computations and facilitate visualization, all examples are worked
out in two space dimensions; such choice of convenience entails no conceptual loss.
We only deal with equilibrium problems in terms of stress; thus, while uniqueness
is not to be expected in general, our conclusions apply to simple continuous bod-
ies of whatever material constitution. Although the problems we consider where
set originally in linear elasticity, the related symmetric-valued stress fields can be
freely interpreted as divergenceless Piola stress fields over a reference shape chosen
as to balance the external loads assigned at the boundary.

The contents of this paper can be summarized as follows. In Section 2, the
statics of the two-dimensional Flamant Problem [14] is discussed, with a view
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toward interpreting the assignment of a concentrated force acting perpendicular to
the Flamant half plane as a weak boundary condition of traction resulting from an
appropriate partwise balance of contact interactions.� In Section 3, it is shown that
there are parts of the Flamant half plane, both finite and infinite, whose free-body
diagram must feature a concentrated contact interaction to guarantee equilibrium.
The rest of the paper is devoted to further substantiate this evidence: in Section 4,
a class of balanced stress fields is characterized, which includes, in addition to
Flamant, the stress fields in the two-dimensional counterparts of two other classical
problems solved in the XIX century, Cerruti’s [12] and Kelvin’s [25]; in Section 5,
related examples of concentrated contact interactions are given.

2. The Stress Field in the Flamant Problem

In 1892 [14], the French mechanist Alfred-Aimé Flamant (1839–1914) solved the
equilibrium problem for a linearly elastic, isotropic body occupying a half space
and being acted upon by a perpendicular line load of constant magnitude per unit
length and infinitely long support. In 1878 [5], Joseph Valentin Boussinesq (1842–
1929), another student of Saint-Venant’s, had considered the case of a concentrated
load perpendicular to a half space, a problem he was to return to repeatedly later
on [6–8]. Both Boussinesq’s and Flamant are relatively easy problems in three-
dimensional elasticity, the first because of its inherent central symmetry, the second
because it admits a plane-strain solution. The ‘Flamant Problem’ we here study can
be regarded as a two-dimensional version of both, indeed, a partial version, because
we only treat the related equilibrium stress field.

We let a concentrated force f = f e1 be applied at point o of the half plane

H+ := {x | (x − o) · e3 = 0, (x − o) · e1 � 0} (2.1)

(Figure 1; the triad of vectors ei , i ∈ {1, 2, 3}, is chosen to be left-handed and
orthonormal). We denote by r := x − o the position vector of point x ∈ H+ with
respect to o; moreover, we set ρ := |r|, e := ρ−1r, ϑ := arcsin((e1 × e) · e3),

whence, in particular, e = ê(ϑ) := cos ϑ e1 + sin ϑ e2.
In terms of the curvilinear coordinates ρ and ϑ , the Flamant stress field in H+

has the form

SF = ŜF (ρ, ϑ) = −2f

πρ
cos ϑ ê(ϑ) ⊗ ê(ϑ),

for ρ ∈ (0,+∞), ϑ ∈
[
−π

2
,+π

2

]
.�� (2.2)

� The mechanical point of view that traction boundary conditions may be generally regarded as
consequences of balancing distance and contact actions on boundary parts has been given a precise
mathematical setting by Marzocchi and Musesti [20].

�� Cf., e.g., [19, equation (8.3.35)]. Needless to say, the three-dimensional problems of the class
to which Flamant belongs are expounded in a number of textbooks in linear elasticity, with variable
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Figure 1. The Flamant half plane: coordinates, base vectors and applied load.

It is straightforward to show that

Div SF = 0 at every interior point of H+.� (2.3)

Thus, the Flamant stress satisfies the standard pointwise equation of force balance;
we now consider in what sense it satisfies the accompanying traction boundary
conditions, for the half space and for its parts.

For any fixed ρ > 0, we consider a half-disk Sρ of radius ρ about o, whose
oriented contour is the union of the half-circle

Cρ :=
{
x | x − o = ρê(ϑ), ϑ ∈

[
−π

2
,+π

2

]}

and the segment

Iρ := {
x | x − o = σ e2, σ ∈ [+ρ,−ρ]}

(Figure 2). It follows from (2.2) that the stress vector field over ∂Sρ is null at points
of Iρ \ {o}, and is

SF e = −2f

πρ
cos ϑ e (2.4)

detail and accuracy; we here quote, in addition to Malvern’s book [19], Barber’s [3], Benvenuto’s [4],
Love’s [18] and Sokolnikoff’s [24].

� By definition,

Div S = S,ρ gρ + S,ϑ gϑ ,

where gρ = e and gϑ = ρ−1e′ are the contravariant base vectors, with e′ = − sin ϑe1 + cos ϑe2
the unit vector obtained by differentiating ê(ϑ). Hence,

SF ,ρ gρ = 2f

πρ2
cos ϑe = −SF ,ϑ gϑ .
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Figure 2. For a half-disk, diffused contact interactions are enough to balance the applied load.

at points of Cρ , so that∫
Cρ

SF e = −f . (2.5)

In view of this result, we are led to interpret the force f concentrated at o as a
Dirac traction tρ applied over the segment Iρ :

f =
∫
Iρ

tρ, tρ(x) := f δ(x − o)e1, x ∈ Iρ. (2.6)

With this interpretation, the relation∫
Cρ

SF e +
∫
Iρ

tρ = 0 (2.7)

expresses the balance of contact interactions, internal and external, applied to the
part Sρ , whatever ρ > 0. Moreover, it follows from a formally stated divergence
theorem and (2.3) that∫

Sρ

Div SF =
∫
Cρ

SFe +
∫
Iρ

SF e1 =
∫
Iρ

(−tρ + SFe1) = 0. (2.8)

We regard the last relation as an appropriate weak version of the traction boundary
condition prevailing over the segment Iρ [20].

REMARK. The last equality in (2.8) shows that, over the straight line bound-
ing H+, the surface traction SFn = −SFe1 is a measure, concentrated at the
point o where the external contact force f is applied [23]. Suppose now that the
Flamant stress field is continuously extended to null to the upper half-plane H−,
and let S̃F denote such extended field over the plane H = H+ ∪H−. Interestingly,
the field S̃F has divergence measure in H, equal to −δ(x − o)f , x ∈ H.� To
interpret the latter result along the same lines we have interpreted the former,
i.e., as a consequence of a force balance, we may consider a disk-shaped part Dρ

of H, of center o and radius ρ, and imagine it as subject to an external distance
� A. Musesti, private communication, June 2004.
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force f applied at o, balanced by diffused tractions being identically null over
∂Dρ ∩ H− and equal to SF e over ∂Dρ ∩ H+. Continuum mechanics provides us
with a unifying format for balance statements that allows for a further, precise
interpretation of these two analytical findings:

A pair ((c, d),S), formed by contact and distance force fields c and d and a
stress field S over a region � with boundary ∂�, is weakly balanced whenever the
stress working equals the distance working plus the contact working, i.e., whenever∫

�

S · ∇v =
∫

�

d · v +
∫

∂�

c · v, for all smooth test fields v; (2.9)

moreover, in view of a standard differential identity,∫
�

S · ∇v =
∫

�

(−Div S) · v +
∫

∂�

(Sn) · v, (2.10)

so that we can regard −Div S as the distance force, and Sn as the contact force,
associated to a given stress field S. If we apply this balance format to the parts Sρ

of H+ and Dρ of H, we find that∫
Sρ

SF · ∇v −
∫
Cρ

SF e · v = f · v(o) =
∫
Dρ

S̃F · ∇v −
∫
Cρ

SF e · v; (2.11)

in plain words, that the working of the external force applied at o equals the dif-
ference between the stress working and the contact working over Cρ . In the case of
Sρ , we may write

f · v(o) =
∫
Iρ

SF n · v = the contact working over Iρ; (2.12)

in the case of Dρ ,

f · v(o) =
∫
Dρ

(−Div S̃F ) · v = the distance working over Dρ. (2.13)

3. Concentrated Contact Interactions in the Flamant Problem

That concentrated contact interactions are in order between adjacent parts of the
Flamant half plane is easily demonstrated by the use of free-body diagrams.

3.1. EXAMPLE 1

Consider the quarter-disk Pρ sketched in Figure 3. When part Pρ is ideally cut
away from the rest of H+, then it must be in equilibrium under the action of:
(i) the concentrated force (1/2)f e1; (ii) the diffused contact force SFe exerted by
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Figure 3. For a quarter-disk, a concentrated contact interaction is needed to balance the
applied load.

the right adjacent part Q(r) (the same as the internal contact interaction between the
two parts before the cut!), which, in view of (2.4), is equipollent to the concentrated
force ∫

(1/2)Cρ

SF e = −1

2
f e1 − 1

π
f e2, (3.1)

applied at o; (iii) the contact action exerted by the left adjacent part Q(l). Now, the
diffused contact force −SF e2 exerted by Q(l) on Pρ is everywhere null along their
common boundary:

ŜF (σ, 0)e2 ≡ 0 for σ ∈ [0, ρ], (3.2)

just as their internal contact interaction is before the cut. Then, to guarantee the
free-body equilibrium of Pρ , we are driven to admit that the cut operation brings
into evidence an internal concentrated contact interaction

f̂ (Pρ,Q(l)) = −f̂ (Q(l),Pρ) = 1

π
f e2 (3.3)

at point o.�

REMARKS. 1. This result is neither dependent on the parameter ρ nor on which-
ever curve from point (ρ, 0) to point (0, ρ) we pick to bound part Pρ . Indeed, if
r = r(ϑ)e(ϑ) is the position vector of a typical point x on such a curve, denoted
by C in Figure 4, then the vectors r ′ = r ′e + re′ and n = |r ′|−1r ′ × e3 are,
respectively, tangent and normal to C; in particular, then, e · n = |r ′|−1r. The total

� Here f̂ (A,B) denotes the total contact force exerted by part B over part A over their common
boundary.
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Figure 4. The concentrated contact interaction is the same whatever the curve C joining (ρ, 0)

to (0, ρ).

contact action exerted along any chosen portion of the curve C is then the same as
the contact action exerted on the corresponding portion of 1

2Cρ :

∫
[C]ϑ1

ϑ0

SF n =
∫ ϑ1

ϑ0

(e · n)SF e|r ′| dϑ =
∫ ϑ1

ϑ0

SFe r dϑ =
∫

[(1/2)Cρ ]ϑ1
ϑ0

SFe.

Thus, the concentrated contact force arising at point o is a local effect, in the sense
that it is a manifestation (in this case, the only manifestation) of the interaction
between any two adjacent body parts sharing the segment {x | x − o = σ e1, σ ∈
[+ρ,−ρ]} as a common boundary, whatever ρ > 0. Note also that this effect
concentrates at a point that belongs to the topological boundary of part Pρ , but not
to its reduced boundary.�

2. Assuming that the vertical external force on part Pρ be (1/2)f may seem
arbitrary and ponderous, but in fact it is not. To see this, imagine to ideally cut the
half-disk of Figure 2 into two identical quarter-disks, with a view toward sketch-
ing a free-body diagram for each of the latter: symmetry then requires that the
concentrated external force is split equal.

3. That the concentrated interaction forces at the vertex of the right angle, both
in part Pρ and in its complement, should be those shown in Figure 3 can be seen
also by a limit argument suggested by Roger Fosdick.�� With reference to Figure 5,
we let

g(ρ̄, ϑ̄) = −
∫

[Cρ ]ϑ̄−π/2

SF e (3.4)

� Roughly speaking, the reduced boundary of a set – a measure-theoretic notion carefully intro-
duced in [2, p. 154] – is the subset of all points of the topological boundary where a (inner) normal
is well defined.

�� Private communication, August 2004.
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Figure 5. Free-body diagram for a part of the Flamant half-plane in the form of a “nosed piece
of pie”.

denote the total force equipollent with respect to point o to the diffused interac-
tion force exerted by the “nosed” part on the right over its complement along the
common boundary curve through points a, b, and c; and we compute

g
(
ρ̄, ϑ̄

) = 1

2
f

(
1 + 2

π

(
ϑ̄ + sin ϑ̄ cos ϑ̄

))
e1 − 1

π
f

(
1 − sin2 ϑ̄

)
e2. (3.5)

Not surprisingly, in the light of Remark 1, this force is independent of the parame-
ter ρ̄, and reduces to the expected vector for ϑ̄ = 0.

3.2. EXAMPLE 2

The magnitude of the Flamant stress tensor is constant at those points of H+ where

ρ−1 cos ϑ = (2c)−1 = a positive constant; (3.6)

it is not difficult to see that those points lie on the circumference Cc of a circle of
center (c, 0) and radius c (Figure 6). At a point of Cc, the outer unit normal is

n = (1 + tan2 ϑ)−1/2(e + tan ϑe′); (3.7)

Figure 6. For a part whose contour is a locus of constant stress-magnitude, the contact
interactions are exclusively diffused.
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hence, the stress vector turns out to be

SF n = − f

πc

1

(1 + tan2 ϑ)1/2
e. (3.8)

We think of the part Pc of H+ bounded by Cc as being balanced under the combined
action of such diffused force and the concentrated load f ; consistently, we think of
the complementary part H+ \ Pc as subject to diffused contact interactions only.

3.3. EXAMPLE 3

For another example of concentrated contact interaction, consider the stress field
in the whole plane which results from ‘suturing’ two mirror-symmetric Flamant
stress fields (Figure 7). The stress is then identically null along the suture line, and
there are no concentrated loads. In particular, the disk Dρ , if isolated from the rest
by means of an ideal cut, would be in equilibrium under a distribution of Flamant
boundary tractions of type (2.4), as sketched in the figure. However, were the two
half-disks composing Dρ separated by a further ideal cut along the suture line,
then their individual equilibrium would require concentrated contact interactions,
in fact, the mirror-symmetric concentrated forces of the two Flamant problems we
begun our construction with.� Interestingly, at variance with the previous example,
the concentrated interaction now arises at an interior point, not at an end point, of
the common boundary with the adjacent part applying it to the part of interest.

Figure 7. Contact interactions on a centered circular part of two sutured mirror-symmetric
Flamant half-planes.

� More generally, the only contact force on the half plane

{x | (x − o) · h(ϑ0) � 0, h(ϑ0) = − sin ϑ0e1 + cos ϑ0e2}

is the force

2f

π
((ϑ0 + sin ϑ0 cos ϑ0)e1 − (1 − sin2 ϑ0)e2),

concentrated at the origin.
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3.4. DISCUSSION

The free-body diagram shown in Figure 3 can be thought of as obtained by com-
bining two ideal cuts, the one rectilinear through points (0, 0) and (ρ, 0) of the
Flamant half plane, the other semi-circular through points (ρ, 0) and (0, ρ). Ex-
ample 1 suggests that, if an ideal cut passes through a point such as (0, 0) where a
concentrated force is applied to a body by its environment, then a contact interac-
tion concentrated at that same point should be included in the free-body diagram,
the most general concentrated interaction compatible with partwise equilibrium
and symmetry conditions, if any. A need for concentrated interactions is also indi-
cated by Example 3, whenever an ideal cut is drawn through a focal point for the
given stress field.

Example 2 seems to contradict the expectation raised by Example 1, since the
equilibrium of the part Pc isolated by the single circular cut of radius c centered at
(0, c) requires only diffused contact interactions (but a further vertical cut through
(0, 0) would entail horizontal concentrated interactions at that point). A difference
between the two cases is that, in Example 2, the point of application of the concen-
trated force, when regarded as a point of the boundary of part H+ \ Pc, does not
possess the cone property.�

We shall have more examples to discuss after we review, in the next section, the
two-dimensional static versions of Cerruti’s and Kelvin’s problems.

4. Plane Stress Fields, Balanced and Separable

A plane stress field

Ŝ(ρ, ϑ)= α̂(ρ, ϑ)ê(ϑ) ⊗ ê(ϑ) + β̂(ρ, ϑ)ê′(ϑ) ⊗ ê′(ϑ)

+ γ̂ (ρ, ϑ)(ê(ϑ) ⊗ ê′(ϑ) + ê′(ϑ) ⊗ ê(ϑ)) (4.1)

is termed balanced (for null distance loads) whenever it is divergenceless, i.e.,
granted smoothness, whenever the scalar fields entering the representation (4.1)
satisfy the following system of PDE’s:

α,ρ +ρ−1(α − β + γ,ϑ ) = 0,

γ ,ρ +ρ−1(β,ϑ +2γ ) = 0.
(4.2)

All the two-dimensional, purely static counterparts of the ‘named problems’ in
classical elasticity we here study fall within the following fully separable class:

α̂(ρ, ϑ) = α0ρ
−1â(ϑ), β̂(ρ, ϑ) = β0ρ

−1b̂(ϑ),
(4.3)

γ̂ (ρ, ϑ) = γ0ρ
−1ĉ(ϑ),

� Various types of cone conditions, detailed, e.g., in [1] and [15], find an use in the regularization
at the boundary of elliptic equations and systems. Roughly speaking, a set � possesses the (interior)
cone property whenever at each point of its boundary there is a finite right cone K with vertex in x

which is contained in the closure of �.
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for which system (4.2) reduces to

β0b − γ0c
′ = 0,

β0b
′ + γ0c = 0.

(4.4)

There are three basic types of solutions to this system, namely,

β0 = γ0 = 0; (4.5)

β0b̂(ϑ) = γ0 cos ϑ, ĉ(ϑ) = sin ϑ; (4.6)

β0b̂(ϑ) = −γ0 sin ϑ, ĉ(ϑ) = cos ϑ. (4.7)

If we pick (4.5), the Flamant stress field (2.2) follows from (4.1) and (4.3), provided
we choose

α0 â(ϑ) = −2f

π
cos ϑ. (4.8)

The two other named problems important to our present developments are consid-
ered in the next subsections.

4.1. THE STRESS FIELD IN THE CERRUTI PROBLEM

The two-dimensional version of the equilibrium problem solved by the Italian
mechanist Valentino Cerruti (1850–1909), in a paper which appeared ten years
before Flamant’s [12], concerns a half-plane acted upon at point o by a tangent
force f = f e2. The related balanced stress field of type (4.1), (4.3) again follows
from (4.5), together with

α0 â(ϑ) = −2f

π
sin ϑ (4.9)

in the place of (4.8); it has the form

ŜC(ρ, ϑ) = −2f

πρ
sin ϑ ê(ϑ) ⊗ ê(ϑ), for ρ ∈ (0,+∞), ϑ ∈

[
−π

2
,+π

2

]
(4.10)

(Figure 8).

REMARKS. 1. Let the wedge

Wϑ0 := {
x | x − o = ρê(ϑ), ê(ϑ) · e3 = 0, |ê(ϑ) · e1| � | cos ϑ0|

}
be acted upon at its vertex by a concentrated force (Figure 9). Due to its focal sym-
metry, the Flamant stress field solves the equilibrium problem on the left, whatever
the vertex angle 2ϑ0 ∈ (0, 2π); likewise, the Cerruti stress field solves the right
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Figure 8. Contact interactions on half- and quarter-disk parts of the Cerruti half-plane.

equilibrium problem. The stress fields in the wedge turn out to be, respectively,

ŜWF (ρ, ϑ) = − f

ϑ0 ρ
cos ϑ ê(ϑ) ⊗ ê(ϑ) (4.11)

and

ŜWC(ρ, ϑ) = − f

ϑ0 ρ
sin ϑ ê(ϑ) ⊗ ê(ϑ), (4.12)

for ρ ∈ (0,+∞), ϑ ∈ [−ϑ0,+ϑ0].
2. A linear combination of the Flamant and Cerruti stress fields yields a stress

field balancing an oblique applied force, both for a half plane and for a wedge.

4.2. THE STRESS FIELD IN THE KELVIN PROBLEM

Lord Kelvin (William Thompson, 1824–1907) solved the problem that was later
named after him in 1848 [25]. The problem consists of finding the equilibrium
state of an elastic space subject to a concentrated load. Here, we are only concerned
with the stress field(s) encountered in the two-dimensional version of this problem.

Figure 9. Flamant’s and Cerruti’s wedges.



CONCENTRATED CONTACT INTERACTIONS IN SIMPLE BODIES 181

Without any loss of generality, we suppose that a load f = f e1 is applied at
point o. Then, it is not difficult to see that each stress field of the one-parameter
family

SK = ŜK(ρ, ϑ; e1) = α0

ρ
cos ϑ ê(ϑ) ⊗ ê(ϑ) + γ0

ρ
cos ϑ ê′(ϑ) ⊗ ê′(ϑ)

+ γ0

ρ
sin ϑ(ê(ϑ) ⊗ ê′(ϑ) + ê′(ϑ) ⊗ ê(ϑ)), α0 − γ0 = −f

π
, (4.13)

is balanced, and solves the Kelvin problem in the plane H in the sense that∫
∂Dρ

SKe = −f e1, (4.14)

where

SKe = ŜK(ρ, ϑ; e1)e(ϑ) = α0

ρ
cos ϑ ê(ϑ) + γ0

ρ
sin ϑ ê′(ϑ), (4.15)

and where the integration path is the contour ∂Dρ of the disk Dρ of center o and
radius ρ (cf., e.g., [24, Section 78]).

REMARKS. 1. With the use of the second of (4.13), it is not difficult to transform
(4.15) into

ŜK(ρ, ϑ; e1)e(ϑ) = α0

ρ
ê(2ϑ) + f

πρ
sin ϑ ê′(ϑ), (4.16)

which allows for an easier visualization of the stress vector at any point of ∂Dρ ;
note that the first addendum does not contribute to the integral in (4.14).

2. The stress fields (4.13) are derived from (4.1) and (4.3) when the scalar fields
β̂ and γ̂ are chosen as in (4.6), with β0 = γ0. The choice specified by (4.7) leads
instead to the Kelvin stress fields for the load f = f e2, namely,

ŜK(ρ, ϑ; e2)

= α0

ρ
sin ϑ ê(ϑ) ⊗ ê(ϑ) − γ0

ρ
sin ϑ ê′(ϑ) ⊗ ê′(ϑ)

+ γ0

ρ
cos ϑ(ê(ϑ) ⊗ ê′(ϑ) + ê′(ϑ) ⊗ ê(ϑ)), α0 + γ0 = −f

π
. (4.17)

5. Other Examples of Concentrated Contact Interactions

5.1. EXAMPLE 4

It is not difficult to construct a balanced and separable stress field, different from
Kelvin’s, induced in the whole plane by a force concentrated at the origin: one ‘su-
tures’ two antimirror-symmetric Flamant stress fields or, alternatively, two mirror-
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Figure 10. Contact interactions on a centered circular part of either two sutured antimir-
ror-symmetric Flamant half-planes or two sutured mirror-symmetric Cerruti’s half-planes.

symmetric Cerruti stress fields (Figure 10; note that, in both cases, the stress field
is identically null along the suture line, and continuous through it).

Each of the two different traction fields, Kelvin’s and Flamant–Cerruti’s, over
the contour of a disk Dρ centered at the origin o is equipollent to the concentrated
force f = f e1 applied at o. However, a diametral Euler–Cauchy cut splitting Dρ

in two halves gives rise to different contact interactions (see Figure 11, where only
diametral contact interactions are shown): whatever the diameter chosen for the cut,
the contact interaction consists of the concentrated force (1/2)f in the Flamant–
Cerruti case, of that concentrated force plus a diffused force g(σ ) = −γ0 σ−1e2,

σ ∈ [−ρ,+ρ], in the Kelvin case. What makes for the interest of the latter is
precisely the simultaneous occurrence of both concentrated and diffused contact
interactions.

5.2. EXAMPLE 5

Suppose the half plane H+ in the Flamant problem is ideally split in a centered
wedge Wϑ1 , with ϑ1 = π/2 − 2ϑ0, and two complementing mirror-symmetric
wedges of opening 2ϑ0. One can think of the latter two wedges as acted upon by
centered forces g(l) = g(sin ϑ0e1 − cos ϑ0e2) and g(r) = g(sin ϑ0e1 + cos ϑ0e2),

Figure 11. Diametral contact interactions for a centered circular part of a Flamant–Cerruti
and a Kelvin plane.
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Figure 12. Contact interactions for a wedgewise symmetric decomposition of a half-circle
part of the Flamant half-plane.

respectively; and of Wϑ1 as acted upon by a vertical force h = he1 (Figure 12).
These forces are to be chosen equipollent to the Flamant force f = f e1, that is to
say, such that

2 sin ϑ0 g + h = f, (5.1)

and, in addition, such as to guarantee continuity of the stress field for ϑ =
±(π/2 − 2ϑ0), which is tantamount as requiring that(

π

2
− 2ϑ0

)
g − 2ϑ0 sin ϑ0h = 0. (5.2)

Note that adjacent wedges do not exchange contact interactions, whatever the open-
ing angle ϑ0. In particular, for ϑ0 = π/4, we have that g = (1/

√
2) f and h = 0:

see Figure 13, where the forces applied to the quarter-disk part Pρ in the present
case are compared with the forces on that part in the Flamant case.

6. Scholion: Euler–Cauchy Cuts and Free-Body Diagrams

The continuum mechanical roots of the engineering practice with free-body dia-
grams (stress or) cut principle of Euler and Cauchy. At variance with free-body
diagrams, where both diffused and concentrated contact interactions have citizen-
ship, this principle only concerns the mathematical description of diffused contact

Figure 13. The concentrated interactions on a quarter-disk part are different for the Flamant
and the wedgewise stress fields.
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interactions: concentrated contact interactions are simply not contemplated. Here
is how the principle is enunciated in two wellknown textbooks.

“The stress principle specifies the nature of contact loads. It asserts that upon
any imagined closed diaphragm S within a body there exists a field of stress
vectors t(n), where n is the unit normal; this field is equipollent to the loads
exerted by the material outside upon the material inside, or, in case S is a
boundary, to the applied loads.” (From [27, Section 200]. The stress principle
of Euler and Cauchy.)

“According to (3)2 the resultant contact force fr
C is an absolutely continuous

function of the area of the bounding surface ∂χ(P) on which it acts.� The
surface density t∂χ(P) is called the traction field on ∂χ(P). If that field be
known, the resultant contact force is determined and is independent of whatever
may be occurring at places not laying upon ∂χ(P). In this sense, the traction
field is equipollent to the action upon P of the bodies outside P and adjacent
to it. The assumption that the contact force is of this kind is the cut principle
of Euler and Cauchy: Within the shape of a body at any given time, conceive
a smooth, closed diaphragm; then the action of the part of the body outside
that diaphragm and adjacent to the part inside is equipollent to that of a field
of vectors defined on the diaphragm.” (From [26, p. 154]; italic and boldface
types as in the original text.)

Apart for differences in wording and coverage,�� if attention is restricted to
interior parts of a material body, the two quotations are in remarkable agreement.
I find them both vague about the concept, in what they say and, more important, in
what they do not.

As to the first quotation, in the case when (a portion or, for what it matters, all
of) an “imagined closed diaphragm S” “is a boundary”, why should we assume that
there is upon S a “field equipollent to the loads exerted by the material outside upon
the material inside” instead of a field coinciding pointwise with the given applied
load? A remark – not a criticism – prompted by the second quotation is that in it
the resultant force on a body part and its density with respect to the area measure
are notions with a different statute: the former is regarded as a primitive element of
the mechanics of continuous bodies, represented by the value of a surface integral
whose integrand, the latter, is not regarded as primitive, in that it can be picked
at will in the equipollency class of vector fields determined by the former. In fact,

� Relation (3)2 reads as follows:

frC(P) =
∫
∂χ(P)

t∂χ(P) dA.

�� As to wording, the ‘contact loads’ in the first quotation are the same as the ‘contact forces’ in the
second; likewise, ‘field of stress vectors’ ≡ ‘traction field’ and ‘loads exerted by the material outside
upon the material inside’ ≡ ‘action of the part of the body outside [the] diaphragm and adjacent to
the part inside’.

As to coverage, the italicized statement in the second quotation appears to concern only interior
body parts.
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any chosen “smooth, closed diaphragm” “[w]ithin the shape of a body at any time”
is there regarded as the support of a vector field that must be “equipollent” (but
not necessarily pointwise equal) to “the action of the part of the body outside
that diaphragm and adjacent to the part inside”. The resulting specification of such
action – an information item of paramount interest – is looser than desirable and
possible: strictly speaking, the equipollency condition could be met by an action
whose mathematical description requires more than one vector field having the
nature of force per unit area.

Ignore for simplicity distance forces, whatever their kind, and consider a body
in balanced contact interaction with its environment. A cut principle based only
on partwise equipollency is of scarce help to specify the actual contact action
experienced by a body part. Not so if the requirement of partwise balance typ-
ical of free-body diagrams is introduced, because such requirement sets a direct
quantitative restriction on the contact actions over the body part whose contour
coincides with the chosen imaginary diaphragm. Such an ‘augmented’ cut principle
is best envisaged as an operation of mental surgery, a Gedanken Experiment with
the purpose of evaluating the contact interactions that the body part singled out by
the cut exchanges with its complement with respect to the body itself. The eval-
uation is performed as follows: (i) an arbitrary part P of body B is distinguished
from the rest by an ‘ideal’ cut, that is to say, a cut leaving all mechanical actions
and interactions unaltered (something that no real cut, no matter how carefully
executed, could achieve); (ii) the part’s environment E(P) := (B \ P) ∪ E(B),
where E(B) is the environment of B, is thought of as applying to P over its
boundary ∂P a load t(P, E(P)) pointwise identical to the contact interaction P
was subjected to before the cut, be it either a known applied load, if ∂P and ∂B
have a measurable intersection where external loads are assigned, or the unknown
contact load t(P,B \ P) exerted by B \ P; (iii) the field t(P, E(P)) is required to
be balanced, whence a generally partial specification of the field t(P,B \ P).
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