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Abstract. It is demonstrated that a uniform and hyperelastic, but otherwise arbitrary, nonlinear
Cosserat rod subject to appropriate end loadings has equilibria whose center lines form two-parameter
families of helices. The absolute energy minimizer that arises in the absence of any end loading is a
helical equilibrium by the assumption of uniformity, but more generally the helical equilibria arise
for non-vanishing end loads. For inextensible, unshearable rods the two parameters correspond to
arbitrary values of the curvature and torsion of the helix. For non-isotropic rods, each member of
the two-dimensional family of helical center lines has at least two possible equilibrium orientations
of the director frame. The possible orientations are characterized by a pair of finite-dimensional,
dual variational principles involving pointwise values of the strain-energy density and its conjugate
function. For isotropic rods, the characterization of possible equilibrium configurations degenerates,
and in place of a discrete number of two-parameter families of helical equilibria, typically a single
four-parameter family arises. The four continuous parameters correspond to the two of the helical
center lines, a one-parameter family of possible angular phases, and a one-parameter family of
imposed excess twists.

Mathematics Subject Classifications (2000): 74K10.
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1. Introduction

Helices are ubiquitous both in nature and in man-made objects. They can be found
on many different scales ranging from nanostructures, such as α-helices in proteins,
the DNA double helix, the collagen triple helix, and carbon nano-tubes, to macro-
scopic structures such as horns of sheep, tendrils of plants, springs and helical
staircases. Pauling (see [7]) argued that the only configurations that can be adopted
by molecular chains compatible with equivalence are helical ones, while Crane [5]
wrote “any structure that is straight or rod like is probably a structure having a
repetition along a screw axis.”

Helices are merely three-dimensional curves, and their importance in all of
the above mentioned applications is as center lines of slender, three-dimensional
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objects that might reasonably be approximated by a rod theory of some type.
Kirchhoff [12, 13, 2] started the classification of rod equilibria with helical center
lines. He showed that an intrinsically straight, inextensible, unshearable, isotropic,
and uniform rod admits helical solutions under the action of appropriate forces and
torques applied at its ends. Kirchhoff’s theory rests upon the constitutive assump-
tion that the stress couple depends linearly upon the curvature and the twist. Using
the director rod theory of the Cosserats, Antman [1] and Whitman and DeSilva
[16] generalized Kirchhoff’s analysis to the case of a uniform, extensible and
shearable, but still intrinsically straight and isotropic elastic rod. While Whitman
and DeSilva adopted linear constitutive relations, Antman considered nonlinear
constitutive laws. Both studies found that the stretch is constant along the rod, and
that, as in the classic Kirchhoff problem, the end forces and moments needed to
maintain the helical deformation are statically equivalent to a wrench acting along
the helical axis. Both studies exploited an Euler angle parametrization of the direc-
tor frame, and relied on the fact that for a uniform and isotropic rod the resulting
system of equilibrium conditions is explicitly integrable. For a more general class
of non-isotropic hyperelastic materials, Ericksen [6] showed that certain invariance
requirements characterizing a “uniform state” imply that the solutions of the rod
problem must be helical, but, as he observes, “it is impossible to say much about the
existence or multiplicity of these solutions without introducing some assumptions
concerning the form of the strain-energy density function” [6, p. 376].

There have of course been prior analyses of helical equilibria of non-isotropic
rods in various special cases of particular constitutive relations; we cite in partic-
ular the recent work of Goriely and co-workers [8, 9]. However we are unaware
of a prior classification of helical equilibria of the general class of uniform, hy-
perelastic, non-isotropic rods, even in the case of linear constitutive relations. In
the isotropic case the conclusions described below could be extracted from the
coordinate-based approach exploited in [1, 16]. However the analysis that will be
presented here emphasizes the connections between the isotropic and non-isotropic
cases, along with the role of the continuous symmetry of isotropy in forcing de-
generacy and associated non-isolation of critical points within a finite-dimensional
variational characterization of helical equilibria.

In this article we construct, within the Cosserat rod theory and subject to pure
end loading, equilibria with helical center lines as relative equilibria of the balance
laws written in a Hamiltonian form (in which arc length is the time-like variable).
Our analysis applies to uniform, hyperelastic rods, including nonquadratic energies
and uniform (and therefore helical) intrinsic shape. The results encompass the four
cases of rods that are either isotropic or non-isotropic and either extensible and
shearable or inextensible and unshearable. Our conclusions are simplest to state
for the two inextensible, unshearable cases. In the non-isotropic subcase we find
that relative equilibria with helical center lines arise in two-parameter families
corresponding to arbitrarily prescribed radius and pitch (or equivalently curvature
and torsion) of the helical center line, and that for each helical center line there are
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at least two possible orientations of the associated director frame that correspond to
equilibria. For a prescribed helical center line, the possible equilibrium orientations
of the directors are (generically) finite in number. In contrast, for the isotropic
subcase, each helical center line has an associated continuous, two-dimensional
family of equilibrium director frames corresponding to an arbitrary angular phase
and an arbitrary imposed additional twist around the d3 director. Our conclusions
for the case of extensible, shearable rods are essentially the same, but with the
exception that we are unable to conclude globally that the two-parameter family
of helical center lines corresponds to arbitrary radius and pitch. The pitch can be
prescribed, but the constitutive dependence of arc length in the deformed config-
uration prevents us from concluding immediately that an arbitrary radius can be
achieved.

As already mentioned, the main tool we adopt is the observation that the relative
equilibria of a Hamiltonian formulation of the equations governing equilibria of
elastic rods are helices. In the theory of Hamiltonian systems there is a standard
variational characterization of relative equilibria that involves the integrals of the
system. In the context of Cosserat rods this standard variational characterization
is manifested as a finite-dimensional constrained minimization in the space of
stress variables. However, we obtain our existence and multiplicity results from
a non-standard, dual variational formulation in terms of the six strains. This dual
variational principle relies upon the fact that the integrals of the Hamiltonian sys-
tem are quadratic in the phase variables, and involves the inversion of a matrix
of Lagrange multipliers. While both primal and dual characterizations yield in-
formation, the dual formulation in terms of the strains permits a direct analysis
of existence and multiplicity that is particularly simple in the inextensible and
unshearable case.

In Section 2 we present the necessary background material and we set notation.
In Section 3 we classify families of helical equilibria of non-isotropic rods. The
isotropic case is described in Section 4, and in Section 5 we discuss the divers
results. Throughout the presentation we adopt the convention that when one of the
Latin letters i, j, k appears as an index, it takes values in the set {1, 2, 3}. We do not
address minimal regularity assumptions on the various functions that appear; rather
we assume sufficient smoothness to justify all the derivatives that are written down.

2. Background Material

2.1. FRENET–SERRET FRAME OF A SPACE CURVE

A curve in space can be defined by a vector-valued function

r: I ⊂ R → E
3,

which maps some open interval I ∈ R into Euclidean 3-space E
3. At each σ ∈ I ,

the vector r(σ ) gives the position vector from the origin O of the Euclidean space
E

3 to the point of the curve specified by σ . We assume that the curve r is a regular
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curve, i.e., r ′(σ ) �= 0 for every σ ∈ I . Furthermore, we assume, after reparame-
trization if necessary, that the parameter σ is an arc length along the curve, so that
at any σ ∈ I the tangent to the curve is the unit vector τ = r ′(σ ). The curvature of
the curve r(σ ) is the non-negative scalar-valued function κ(σ ) defined by

τ ′ = r ′′(σ ) = κν, (1)

where ν is a unit vector perpendicular to the tangent τ called the principal normal
to the curve. (Note that when τ ′(σ ) = 0, as for straight lines, the curvature is
necessarily zero, and the principal normal is not well defined.) The binormal vector
β is defined so that {ν, β, τ } is a right-handed orthogonal triad of unit vectors, i.e.,
β = τ × ν. This Frenet triad

F := {ν, β, τ }� (2)

is an orthonormal frame at every point σ ∈ I along the curve.
We have the relations

β ′ = −τν, (3)

ν ′ = −κτ + τβ, (4)

where the scalar-valued function τ(σ ) is called the (geometric) torsion of the curve.
Equations (1), (3), and (4) giving the evolution in arc length σ of τ , ν and β along
the curve are called the Frenet–Serret equations. They can be written in compact
form as

[ ν β τ ]′ = [ ν β τ ]

[ 0 −τ κ

τ 0 0
−κ 0 0

]
, or

(5)

F ′ = F

[ 0 −τ κ

τ 0 0
−κ 0 0

]
.

2.2. FRAMED CURVES

In order to discuss the (physical) twist of a rod, it is necessary to add to the space
curve r an additional structure that can model the orientation of the material points
in the cross-section. To do so we introduce the notion of a framed curve. A framed
curve is a space curve r(s) together with a right-handed orthonormal frame {d1(s),
d2(s), d3(s)} defined at each s. In order to account for possible effects of extension
we do not assume that the parameter s is necessarily an arc length. Often, the vector
d3(s) is taken to be the unit tangent vector τ to the (oriented) curve, in which
case the vector d1(s) specifies a particular direction in the normal plane, and the

� We here use the Greek {ν, β, τ } to denote the Frenet frame instead of the more standard notation
{n, b, t} because we reserve the symbol n to denote the net force acting across a cross-section of a
Cosserat rod.
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third vector d2(s) is defined such that {d i (s)} is orthonormal and right handed.
These special cases will be described as adapted framings; both the adapted and
non-adapted cases will be important here.

We stress that in general a framing of a curve, whether adapted or not, contains
information beyond that contained in the curve r(s) itself, and for that reason we
will sometimes refer to extrinsically defined framings. For example, in the context
of rod theories the extrinsically defined framing can be chosen to contain informa-
tion about the deformed configuration of the cross-section of material points that
composed the normal plane in the undeformed reference configuration. In contrast
the Frenet frame is defined entirely in terms of the curve r and its derivatives so
that we refer to it as an intrinsic framing of the curve (which also happens to be an
adapted framing).

As s varies, the orientation of the frame {d i(s)} is assumed to change smoothly
relative to a fixed frame {e1, e2, e3}, and the change can be expressed as a three-
dimensional rotation, or direction cosine matrix d(s). The rate of rotation can
be represented by a vector-valued function u(s) called the Darboux vector. The
evolution of the frame along the curve is governed by the following differential
equations

d ′
i = u × d i ,

or

[ d1 d2 d3 ]′ = [ d1 d2 d3 ]

[ 0 −u3 u2

u3 0 −u1

−u2 u1 0

]
,

(6)

or d ′ = du×,

where, in general, for any triple u of real numbers we adopt the notation

u× ≡
[ 0 −u3 u2

u3 0 −u1

−u2 u1 0

]
, (7)

and specifically here ui = u · d i . In fact,

ui = εijkd
′
j · dk, (8)

where εijk denotes the alternating tensor, or

u× = dTd ′. (9)

The component u3 is called the twist of the frame about d3, which is, in general,
different from the geometric torsion τ , even for adapted framings. Comparison
between (6) and (5) reveals that the Frenet triad is a special adapted framing for
which u1 ≡ 0, u2 ≡ λκ , and u3 ≡ λτ , where the factor λ = σ ′ = dσ/ds accounts
for the fact that s need not be an arc-length parametrization. In the next section
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we will compute the general relations between Darboux vectors of two different
framings.

2.3. RELATIONS BETWEEN DARBOUX VECTORS

Given a curve r(s) and two orthonormal framings {d i(s)} and {Di(s)}, their two
direction cosine matrices d and D are related by a simple rotation

D = dQ, (10)

where each matrix can depend upon s. Relation (10) implies that Qji = Di · dj .
Let u(s) be the Darboux vector defined in (6) associated with the frame {d i (s)}

with components u satisfying (9), and let U(s) be the Darboux vector associated
with the frame {Di (s)}, with components U in the basis Di , satisfying

U× = DTD′. (11)

Trivially we have that

u(s) = U(s) + p(s) (12)

for some vector field p(s) (which is merely an appropriate expression of the fact
that vectors can be added). We next demonstrate that the components p of p in the
{d i (s)} frame satisfy

p× = −Q′QT, (13)

or equivalently

u× = (QU)× − Q′QT. (14)

In fact, differentiation of (10) yields

D′ = d ′Q + dQ′, (15)

which is equivalent to

DU× = dQU× = du×Q + dQ′, (16)

which implies

u× = QU×QT − Q′QT. (17)

A simple computation then yields (14).
We remark that Q′QT is a skew matrix, so that there is a set of three numbers p

such that −Q′QT = p×. The expression (14) then becomes equivalent to

u = QU + p, (18)

which is equivalent to the vector identity (12) expressed in the {di} basis.
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In the particular case that the two frames {Di(s)} and {d i (s)} share a common
vector, say D3(s) ≡ d3(s), as would arise in the case of any two adapted framings,
the rotation matrix Q in (10) takes the particular form

Q(ϕ) =
[ cos ϕ − sin ϕ 0

sin ϕ cos ϕ 0
0 0 1

]
, (19)

and (13) implies that (18) reduces to

u = QU − ϕ′d3 = QU + ϕ′[0, 0, 1]T, (20)

so that p = −ϕ′d3. In particular, u2
1 + u2

2 = U 2
1 + U 2

2 and u3 − U3 = ϕ′.
In the further case that {Di} is the Frenet frame, so that D3 ≡ τ ≡ d3, and

U = λκβ + λττ , we recover the relations

u1 = −λκ sin ϕ, u2 = λκ cos ϕ, u3 = λτ + ϕ′, (21)

where as before, the scalar factor λ = dσ/ds accounts for the fact that s need not be
an arc-length parametrization. In particular, when s is an arc-length parametrization
then λ = 1 and relations (21) are all classic results (cf. [13, p. 383]).

2.4. CIRCULAR HELICES

A circular helix is a curve in space given by parametric equations of the form

x = r cos θ, y = r sin θ, z = pθ, (22)

where r is the radius of the helix, and p is a constant giving the pitch, so that the
vertical separation between loops along a generator of the helix equals 2πp. When
the pitch tends to zero at constant radius the helix degenerates to a circle, and when
the radius r tends to zero at constant pitch, the helix degenerates to a straight line.
A circular helix has constant curvature κ and torsion τ

κ = r

r2 + p2
, τ = p

r2 + p2
, (23)

which relations can be inverted to parametrize the helix by κ and τ :

r = κ

κ2 + τ 2
, p = τ

κ2 + τ 2
. (24)

2.5. COSSERAT THEORY OF ELASTIC RODS

In this section we review, rather briefly, the theory of elastic rods introduced by the
Cosserat brothers [2, 4]. The configuration of a special Cosserat rod is a smooth
vector function r and a pair of orthonormal vector functions d1, d2 of the single
variable s with 0 � s � L. The vector r(s) gives the position in Euclidean 3-space
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E
3 of a material point s on the rod. The curve {r(s), s ∈ [0, L]} is called the

center line of the rod. The unit vectors d1(s) and d2(s) give information about
the orientation of the material cross-section at s in the deformed configuration. If
we define the additional vector function d3 by d3(s) = d1(s) × d2(s), we obtain
at each s an orthonormal frame {d1(s), d2(s), d3(s)}. The unit vectors d i(s) are
called directors.

The configuration of the rod can alternatively be described by the pair (r , d),
where d is the direction cosine matrix of the d i frame. The kinematics of the rod
are described by two strain vectors v and u through the relations

r ′(s) = v(s), (25a)

d ′
i (s) = u(s) × d i (s), (25b)

where ′ denotes differentiation with respect to the independent variable s.
The components vk = v ·dk of the vector v with respect to the orthonormal basis

{dk} are the strain variables of the axial curve: v1 and v2 are associated with shear,
while v3 is associated with stretch or compression. The components uk = u · dk

of the Darboux vector u are the strain variables of the directors: u1 and u2 are
associated with flexure, and u3 is associated with twist.

The stresses acting across the material cross-section at s are equivalent to a
resultant force n(s) and a resultant moment m(s) applied at r(s). When the only
external loads are couples and forces applied at the ends of the rod, which is
the case of interest here, balance of forces and moments yields the equilibrium
equations

n′(s) = 0, m′(s) + r ′(s) × n(s) = 0. (26)

Figure 1. A ribbon representation of the configuration of an extensible, shearable Cosserat
rod. The center curve is parametrized by undeformed arc length s. The location of the material
point at s is given by its position r(s) with respect to the origin. The orthonormal directors
d1, d2 and d3 describe the orientation of the material cross-section of the rod at s, with d1
determining the ribbon. The components v of r ′ and u of the Darboux vector u (in the di

basis) determine the strains of shear and extension and of flexure and twist.
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Here we shall make the assumption that the rod is uniform and hyperelastic.

DEFINITION 2.1. For a uniform, extensible, shearable, hyperelastic rod, there is
a convex, coercive strain-energy density function W defined on a domain

V = R
3 × R

2 × (−1, ∞) ⊂ R
3 × R

3 (27)

such that (cf. [2, p. 277])

W : V → R
+, (z, w) �→ W(z, w)

and

∂W

∂w
(0, 0) = 0,

∂W

∂z
(0, 0) = 0,

with the property that the triples n and m of components of the resultant force n
and moment m in the director frame {d1, d2, d3} are related to the triples u and v
of components of the strains in the same basis via the constitutive relations

m = ∂W

∂u
(u − û, v − v̂), n = ∂W

∂v
(u − û, v − v̂). (28)

The triples û and v̂ are the strains in the reference configuration and there is no loss
of generality in assuming that

v̂ = [0, 0, 1]T, (29)

so that the parameter s is an arc length in the undeformed configuration. Uniformity
implies that the strain-energy density has no explicit dependence on s and that û is
constant, so that the center line of the reference state is helical.

By coercive we mean that the function W tends to infinity as its argument
approaches the boundary (including points at infinity) of the domain V defined
in (27). In this definition the asymmetry in the last argument is related to the partic-
ular choice (29) for v̂, and the requirement that configurations preserve orientation,
that is we require that

v3 = v · d3 > 0, (30)

in any finite energy configuration of the rod, and with the shifted argument of W ,
consequently arrive at the choice of domain (27). More sophisticated choices of do-
main could also be made to ensure (30) and other physically appropriate kinematic
restrictions; see [2] for a more detailed discussion.

In the case of linear constitutive relations, the function W appearing in Hy-
pothesis 2.1 is quadratic in the strains, and the constitutive relations (28) take the
particular form(

m
n

)
=

(
K G

GT A

)(
u − û
v − v̂

)
, (31)
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where K and A are symmetric positive-definite 3×3 matrices, and the 3×3 matrix G
is such that the 6 × 6 partitioned matrix appearing in (31) is also positive-definite
and symmetric. In many applications this linear case is assumed, but of course the
associated quadratic energy does not, a priori, ensure the constraint (30). Rather it
must be verified, a posteriori, that the solutions that are constructed are physically
reasonable.

Because W is convex and coercive, the constitutive relations (28) can be in-
verted to yield

u = ∂W ∗

∂m
(m, n) + û, v = ∂W ∗

∂n
(m, n) + v̂, (32)

where W ∗(y) is the Legendre transform of W(x), i.e.,

W ∗(y) = sup
x∈R6

{y · x − W(x)}. (33)

Then the Legendre transform of the function W(u − û, v − v̂) of shifted arguments
is the shifted Legendre transform

W ∗(m, n) + m · û + n · v̂. (34)

2.6. INEXTENSIBLE AND UNSHEARABLE RODS

The rod is said to be inextensible if in any configuration |r ′| ≡ 1, and to be
unshearable if v1 := v · d1 ≡ 0 and v2 := v · d2 ≡ 0. Thus, for inextensible
and unshearable rods

v ≡ v̂ := [0, 0, 1]T, (35)

in which case, equation (25a) may be rewritten simply as

r ′(s) = d3(s), (36)

and the parameter s can be interpreted as an arc length in any configuration.

DEFINITION 2.2. For a uniform, inextensible, unshearable, hyperelastic rod,
there is a convex, coercive strain-energy density function W

W : R
3 → R

+, z �→ W(z)

with
∂W

∂z
(0) = 0,

such that the moment m is given by a constitutive relation

m = ∂W

∂u
(u − û). (37)

Uniformity implies that the strain-energy density has no explicit dependence on s

and that û is constant, so that the unstressed state is helical.
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For inextensible, unshearable rods the strain-energy density W is a function of
the strains u only, only the moment m is given via a constitutive relation, and the
force n becomes a reactive parameter that is to be determined from the equilibrium
equations. In the case where the strain-energy density W is quadratic in the strains
u, we obtain a linear constitutive relation of the form

m = K(u − û), (38)

where K is a symmetric 3 × 3 positive-definite matrix. When K is a constant diag-
onal matrix with equal bending rigidities, we recover the classic Kirchhoff theory
of elastic rods.

Just as in the extensible, shearable case, the Legendre transform of the func-
tion W(u − û) of shifted arguments can be computed to be the shifted Legendre
transform

W ∗(m) + m · û, (39)

u = ∂W ∗

∂m
(m) + û. (40)

2.7. ISOTROPIC RODS

In continuum mechanics, a material is called isotropic if it has no preferred material
direction. If the response of the material is the same for all directions orthogonal
to a given one, then the material is called transversely isotropic. In the theory of
Cosserat rods, the direction defined by the strain v̂ in the reference configuration
is distinct from others, and only transverse isotropy to this direction is a pertinent
notion. Thus in the following, we suppress the adjective transversally and discuss
isotropic or non-isotropic rods.

DEFINITION 2.3. For isotropic, hyperelastic rods, the strain-energy function W

is invariant under rotations of its arguments about v̂ = [0, 0, 1]T. For extensible,
shearable rods this means

∂

∂α
W(Q(α)w, Q(α)z) = 0, (41)

for Q(α) defined in (19) with 0 � α � 2π , and w, z ∈ R
3, while for inextensible,

unshearable rods we require

∂

∂α
W(Q(α)w) = 0. (42)

A rod with v̂ = [0, 0, 1]T, is isotropic if (41), or (42), holds and if, in addition, the
bending strains û1 and û2 in the reference configuration vanish [2].
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We remark that in his work on symmetries of rods, Healey [10] defines isotropic
strain-energy functions to be ones that are invariant under both proper and improper
rotations. He uses the terminology hemitropy to refer to what is called isotropy
here. It is shown by Healey that for inextensible and unshearable rods with linear
constitutive relations, hemitropy and isotropy coincide, but that they can differ in
the case of extensible and shearable rods.

2.8. NONCANONICAL HAMILTONIAN FORMULATION

The equations governing the equilibrium conditions of elastic rods written entirely
in terms of components in the director frame are

m′ = m × u + n × v, n′ = n × u, (43)

which can be recognized as the equations of a Hamiltonian system with associated
Hamiltonian (cf., e.g., [11])

H(m, n) := W ∗(m, n) + m · û + n · v̂ (44)

for extensible, shearable rods, or

H(m, n) := W ∗(m) + m · û + n · v̂ (45)

for inextensible, unshearable rods. Note that for either Hamiltonian the relations
(32), (40) and (35) imply that

∂H

∂m
(m, n) = u,

∂H

∂n
(m, n) = v. (46)

The associated Hamiltonian structure is given by(
m
n

)′
= J(m, n)∇H(m, n), (47)

where J is the skew-symmetric operator defined by

J(m, n) =
(

m× n×
n× 0

)
. (48)

We remark that when |n| �= 0, the null space of J is the two-dimensional space
spanned by(

n
m

)
and

(
0
n

)
.

2.9. ANALYSIS OF INTEGRALS

The integrals of the governing equations can be classified as follows:
− Constitutive-independent integrals. Equations (26) have the integrals
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n(s) = n(0), m(s) + r(s) × n(s) = c. (49)

That is, the three components of force n in the fixed basis {e1, e2, e3} are
constant, due to translational symmetry in space, and the three components of
m + r × n in the fixed basis are constant, as a consequence of rotational sym-
metry about the three fixed axes. For the reduced variables of the noncanonical
Hamiltonian formulation (47), the only integrals that persist are I1 = n ·n and
I2 = m · n, which are functions of the director components m and n only.
The integrals I1 and I2 are sometimes called Casimir functions because their
gradients lie in the null space of the structure matrix (48).

− Constitutive-dependent integrals. Further integrals arise in each of the cases
of a uniform rod, and an isotropic rod. The appropriate Hamiltonian (44) or
(45) is an integral for uniform rods. And if the rod is isotropic then one can
show that the twisting moment m3 = m · d3 = I3 is another independent
integral.

For our analysis the reduced noncanonical Hamiltonian system (47) will prove
to be convenient. In particular the integrals other than the Hamiltonian are quadratic
in the reduced phase variables, and the Hamiltonian itself is also quadratic in the
special case of linear elasticity. As discussed in [11], for example, the remaining
integrals can be used to reconstruct the center line.

3. Relative Equilibria of Non-isotropic Rods

3.1. VARIATIONAL CHARACTERIZATION OF RELATIVE EQUILIBRIA

In general, relative equilibria of an autonomous Hamiltonian system are character-
ized by points z in phase space satisfying the equation

∇H(z) =
N∑

i=1

λi∇Ii(z), (50)

where H(z) is the Hamiltonian and Ii(z) are other integrals of the system. For a
uniform, but non-isotropic rod, we have only the two integrals I1 and I2 with

∇I1 =
(

0
n

)
, ∇I2 =

(
n
m

)
.

Solutions of equation (50) therefore satisfy(
u
v

)
=

(
λ2I 0
λ1I λ2I

) (
n
m

)
. (51)

Here the expression for the gradient of the Hamiltonian follows from (46), and I is
the 3×3 identity matrix. The relation (51) is merely a particular case of the general
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and standard form (50). However, because the integrals I1 and I2 are quadratic in
the Hamiltonian variables m and n, we have the rather special feature that the right-
hand side of equation (51) has the form of a constant-coefficient linear system. In
the following, we suppose that λ2 �= 0; the case λ2 = 0 can be analyzed as a
limit problem in which the strains are u = 0 and v = λ1n, which correspond to
configurations with straight center lines, constant director frame, force parallel to
the center line, and constant moment. For λ2 �= 0, equation (51) is equivalent to(

n
m

)
=

(
µ2I 0
µ1I µ2I

)(
u
v

)
, (52)

or

∂W

∂v
(u − û, v − v̂) = µ2u, (53a)

∂W

∂u
(u − û, v − v̂) = µ1u + µ2v. (53b)

The system (52) can be re-inverted to recover (51) provided that µ2 �= 0. For
µ2 �= 0 �= λ2, the constants µ1 and µ2 are related to λ1 and λ2 via the symmetrically
invertible relations

µ1 = −λ1

λ2
2

, µ2 = 1

λ2
, (54)

λ1 = −µ1

µ2
2

, λ2 = 1

µ2
. (55)

And µ2 = 0 corresponds to n = 0, in which case the system (47) is completely
integrable, and easily analyzed to conclude that solutions of (52) correspond to
helical equilibria with vanishing force.

Accordingly, for given constitutive relations, the variables characterizing rela-
tive equilibria can be identified either as m and n �= 0, or as u �= 0 and v, with the
limit cases µ2 = 0 and λ2 = 0 treated separately. If we introduce the constants C1

and C2

1
2 n · n = 1

2C
2
1 , n · m = C2C1, (56)

we deduce from equations (52) and (56) that

1
2 u · u = 1

2η
2
1, u · v = η2η1, (57)

for some constants η1, η2, with(
λ2 0
λ1 λ2

)(
C2

1
C1C2

)
= µ2

(
η2

1
η1η2

)
, (58)

or, equivalently

λ2

(
C2

1
C1C2

)
=

(
µ2 0
µ1 µ2

)(
η2

1
η1η2

)
. (59)
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Equations (51) are the first-order necessary conditions associated with the vari-
ational problem

Minimize H(m, n) (60)

subject to the constraints (56). On the other hand, with constitutive relations (28),
equations (52) can be recognized as the first-order necessary conditions associated
with the dual variational problem

Minimize W(u − û, v − v̂) (61)

subject to the constraints (57). It is this dual formulation that will be exploited in
our analysis of existence and multiplicity of relative equilibria.

The analysis presented above is for the general case of an extensible, shearable
rod, but the dual formulation is particularly simple in the inextensible, unshearable
case. Then v satisfies the constraint (35), and the characterization (61) reduces to

Minimize W(u − û) (62)

subject to

1
2 u · u = 1

2η
2
1, u · v̂ = η1η2, (63)

whose critical points satisfy (52b), while at relative equilibrium the internal force n
is determined by (52a).

3.2. EXISTENCE AND MULTIPLICITY OF RELATIVE EQUILIBRIA

For any explicitly given strain energy function, locally two-dimensional families of
relative equilibria, i.e., solutions of either the primal or dual first-order necessary
conditions, can (in principle) be found either analytically or numerically in terms
of the two associated Lagrange multipliers. For example, the case of linear, di-
agonal constitutive relations is completely treated in [3]. Here we prefer to use
the dual form of the variational principles described in the previous section to
prove existence and to analyze multiplicity of relative equilibria for general strain
energy functions. The analysis is completely straightforward in the inextensible,
unshearable case, but is slightly more delicate for extensible, shearable rods.

LEMMA 3.1. (i) For any strain energy density function W satisfying Definition 2.2
of an inextensible and unshearable rod, any η1 ∈ (0, ∞), and any η2 ∈ (−1, 1),
there exist at least two critical points of the variational principle (62) subject to
the constraints (63).

(ii) For any strain energy density function W satisfying Definition 2.1 of an
extensible and shearable rod, any η1 ∈ (0, ∞) and any η2 there exists a critical
point of the variational principle (61) subject to the constraints (57), and for |η2|
sufficiently small there exist at least two such critical points.
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Proof. (i) With constraint (35) equation (63b) is equivalent to u3 = η1η2, so that
for any η2 ∈ (−1, 1), u3 takes a prescribed, admissible value. Then the remaining
constraint (63a) can be satisfied via parametrization with a scalar ξ ∈ [0, 2π ] by

u1 = η1

√
1 − η2

2 cos ξ, u2 = η1

√
1 − η2

2 sin ξ. (64)

The constrained variational principle is then reduced to finding unconstrained ex-
trema of the continuous, real-valued, periodic function

W̃ (ξ) := W
(
η1

√
1 − η2

2 cos ξ − û1, η1

√
1 − η2

2 sin ξ − û2, η1η2 − û3

)
(65)

of the real variable ξ . The function W̃ achieves its maximum and minimum so
that there are at least two critical points for each allowable choice of η1 and η2.
There can of course be more than two critical points. Figure 2 illustrates various
possibilities for the particular quadratic, diagonal strain energy density function

W = 1
2

3∑
1

Ki(ui − ûi)
2. (66)

(ii) In the extensible, shearable case we prove existence of solutions for the first-
order necessary conditions (53) from consideration of two successive variational
principles. The first variational problem comprises for each η1 > 0 and each η2,
minimization of the functional

W(u − û, v − v̂)

regarded as a function of v only, and subject to the linear constraints

v̂ · v > 0,
u

η1
·
(

v − η2
u

η1

)
= 0, (67)

where the first constraint is (30), and the second is the second constraint in (57)
re-expressed using the first. Dependent upon u and the sign of η2, the set of v
satisfying constraints (67) is either the empty set or an affine half-space. Because
W is a convex and coercive function of v, and the constraint set is affine and
therefore convex, for each u and η2 such that the constraint is non-empty, there
exists a unique minimizer V(u; η1, η2), which lies in the interior of the domain (27).
Moreover, there is a unique Lagrange multiplier µ2(u; η1, η2) such that

∂W

∂v
(u − û, V(u) − v̂) = µ2u. (68)

Here we suppress the dependence on η1 and η2 because they will be held fixed
throughout, whereas in the second stage u will be allowed to vary. For u for which
it is defined, the function V(u) satisfies both (68) and

u · V(u) = η1η2. (69)
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Figure 2. Illustration of the numbers of critical points of the function W̃ (ξ) defined in (65)
in the particular case of the quadratic, diagonal strain energy density function (66). Each
critical point corresponds to a relative equilibrium, or helical configuration, of the associated
inextensible, unshearable rod. [a]: nonsymmetric case (K1 = 1, K2 = 2, û1 = 1, û2 = 0.8,
û3 = 0) with two critical points. [b]: case of discrete symmetry (K1 = 1, K2 = 2, û1 = 0,
û2 = 0, û3 = 0) with four critical points. [c]: nonsymmetric case (K1 = 1, K2 = 2, û1 = 0,
û2 = 0.2, û3 = 0) with four critical points. [d]: case of continuous symmetry of isotropy
(K1 = 1, K2 = 1, û1 = 0, û2 = 0, û3 = 0) with an orbit of critical points.

The identity (69) can be differentiated with respect to u, to yield

∂VT(u)

∂u
u = −V(u). (70)

The second variational principle then comprises finding extrema over the un-
known u of the composite function

W(u − û, V(u) − v̂) (71)

subject to the constraint

u · u = η2
1.

At any critical point we have the first-order necessary condition

∂W

∂u
(u − û, V(u) − v̂) + ∂VT(u)

∂u

∂W

∂v
= µ1u,

which, with the two properties (68) and (70) of V, is equivalent to

∂W

∂u
(u − û, V(u) − v̂) = µ1u − µ2

∂VT(u)

∂u
u = µ1u + µ2V.
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In other words, the two successive variational principles generate the desired criti-
cal points of the original constrained variational principle.

It therefore only remains to obtain a better understanding of the number of
critical points as a function of η1 and η2. Note that the constant η1 > 0 merely
serves to normalize u. We first consider the case η2 = 0. Then the constraint
set (67) is non-empty provided u �= ±η1v̂. Moreover, as u → ±η1v̂, the com-
posite function (71) approaches infinity, because the entire constraint set satis-
fying (67), and therefore V(u) in particular, approaches the boundary of the do-
main (27) and W is by definition (2.1) coercive. Thus the second variational prin-
ciple involves a potential defined on a sphere except for two poles at antipodal
points. Consequently there is at least one valley separating the two infinities, and
so at least two critical points along the valley, a global minimum and a saddle
point.

For 0 < η2 < 1 the constraint set (67) is non-empty provided u �= −η1v̂, and
as u → −η1v̂, the composite function (71) approaches infinity. Now the potential
remains finite as u → +η1v̂, but by continuity the potential will be large there,
and so for η2 sufficiently small there will be at least three critical points, a global
minimum, a saddle along a valley, and a local maximum close to u = η1v̂. However
as η2 increases, it is possible that the saddle and local maximum merge to leave
a potential function on the sphere with a single pole and a single critical point,
namely, the global minimum. The behavior for η2 < 0 is analogous, but with the
roles of v̂ and −v̂ reversed. �

It is instructive to consider the form of the function (71) in the particular case of
a quadratic strain energy with coefficient matrix as in (31). As already remarked in
Section 2.5, in the case of a quadratic energy the constraint (30) is not implied by
finiteness of the energy, and must instead be verified a posteriori. Nevertheless in
the case of a quadratic energy, or equivalently linear constitutive relations, the func-
tion (71) can be calculated explicitly. A short computation yields the nonquadratic
function

1
2(u − û) · [

K − GA−1GT
]
(u − û) + (η1η2 − u · v̂ + u · A−1GT(u − û))2

u · A−1u
.

(72)

The matrix [K−GA−1GT] is a Schur complement and it is a standard result that it is
positive-definite because the matrix appearing in (31) is positive-definite. For rods
that are close to inextensible and unshearable, i.e., rods for which the matrix A−1

has small norm, the term (η1η2 − u · v̂)2/u · A−1u will dominate, and for |η2| < 1
the low energy regions will be close to the circle (η1η2 − u · v̂) = 0. In particular,
there will be a nearby valley along which there are two critical points. It may also
be observed, at least formally, that in limits A−1 → 0, only the finite-energy critical
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points will satisfy the constraint (63b), and the inextensible, unshearable variational
principle of minimizing (62) subject to constraints (63) is recovered.

3.3. PROPERTIES OF RELATIVE EQUILIBRIA

With the existence of relative equilibria in hand, we now turn to a description of
the properties of such configurations.

LEMMA 3.2. At relative equilibrium, the director components m(s), n(s), u(s),
and v(s) of the vectors m(s), n(s), u(s) and v(s) are constant,

m(s) = m0, n(s) = n0, (73a)

u(s) = u0, v(s) = v0. (73b)

Proof. Relative equilibria are solutions of the equation

∇H(z) = λ1

(
0
n

)
+ λ2

(
n
m

)
, (74)

where z = [m, n]T. Multiplication of both sides of equation (74) by the 6×6 matrix
J defined in (48), and use of the fact that 1

2 n · n and m · n are Casimir functions,
implies

z′(s) = 0, (75)

i.e., the director-frame components m(s) and n(s) are constant. And (73b) follow
directly from the (uniform) constitutive relations (32). �

Lemma 3.2 gives an explicit characterization of relative equilibria for uniform,
hyperelastic rods, as being equilibria in which the director-components of both the
strains and the stresses are constant. We shall refer to such solutions as d-uniform.
We next characterize all d-uniform equilibria. Note that because the rod is assumed
to be uniform it is easy to use the constitutive relations to verify that a configuration
is d-uniform in m and n if and only if it is d-uniform in u and v.

LEMMA 3.3. (i) There is a family of d-uniform equilibria with u = 0. For
inextensible, unshearable rods there is no remaining freedom in the strains. For ex-
tensible, shearable rods the strain v is a critical point of the constrained variational
principle

Minimize W(−û, v − v̂), (76)

for v in the domain (27) and subject to the constraint

|v| = α, α > 0.
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These equilibria have the force n parallel to a straight center line, and a uniformly
translating director frame.

(ii) There are (at least) two families of d-uniform equilibria with n = 0, which
are characterized by the moment m being a critical point of the constrained varia-
tional principle

Minimize H(m, 0), (77)

subject to the constraint

|m| = β, β > 0.

These families have Darboux vector u parallel to the moment m, and include the
unstressed configuration u = û, v = v̂ in the limit β → 0.

(iii) The minimizing families of parts (i) and (ii) intersect at a unique d-uniform
configuration (with n = 0 = u) characterized by m satisfying (77) (with no con-
straint), and, for extensible, shearable rods, v satisfying (76) (with no constraint).

(iv) All other d-uniform equilibria are relative equilibria that satisfy equa-
tions (51) and (52) with λ2 �= 0 �= µ2.

Proof. (i) In the inextensible, unshearable case the condition u = 0 completely
specifies the configuration of the rod. Its center line is necessarily straight, and
the balance laws (43) are satisfied for any uniform n (possibly vanishing) that is
parallel to the tangent v̂.

In the extensible, shearable case, for each α > 0 the function W achieves its
minimum on the intersection of the constraint ball and the domain (27). The first-
order necessary conditions for the constrained variational principle taken with the
constitutive relations generate a pair (n, v) with n (possibly vanishing) parallel to v.
Given this v and u = 0 the constitutive relations can be used again to find m. It
can be verified directly that such configurations also satisfy the balance laws (43).
Thus they are d-uniform equilibria.

(ii) For each β > 0 the Hamiltonian H achieves its maximum and minimum
on the ball. The first-order necessary conditions for the constrained variational
principle therefore generate at least two d-uniform configurations satisfying the
constitutive relations, of the form (m, 0, u, v) with u (possibly vanishing) parallel
to m. It can be verified directly that such configurations also satisfy the balance
laws (43). Thus they are d-uniform equilibria.

For β = 0 the variational principle collapses, as there is only one possible com-
petitor m = 0. However, the unstressed configuration (0, 0, û, v̂) is an equilibrium,
and it is approached smoothly in the limit β → 0 along each family because as
the moment m → 0, the strain u → û, with the associated Lagrange multiplier
tending to ±|û|.

(iii) The unconstrained minimization principles (76) and (77) generate the
unique strain v and moment m corresponding, via the constitutive relations, to
n = 0 = u. We remark that the associated norms |v| and |m| are the values
of α and β for which the Lagrange multipliers in the corresponding constrained
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variational principles vanish. If û = 0, then α = 1, β = 0, and it is the unstressed
configuration that arises at the intersection of the two families.

(iv) By definition d-uniform equilibria satisfy (75). It has already been argued
that if n �= 0, then all solutions of (75) satisfy (74), i.e., they all are relative
equilibria. The conditions n �= 0 �= u rule out the cases λ2 = 0 or µ2 = 0 in
equations (51) and (52). �

We describe relative equilibria with λ2 �= 0 �= µ2 as nondegenerate. On nonde-
generate relative equilibria u vanishes precisely if n vanishes. We next demonstrate
that d-uniform configurations have either straight or helical center lines.

LEMMA 3.4. Framed curves satisfying the kinematics (25) with u(s) ≡ u0 and
v(s) ≡ v0 �= 0 have either (i) straight center lines when u0 × v0 = 0, or (ii)
circular helices as center lines when u0 × v0 �= 0.

The helices are parametrized by λ = |v0| and the constants η1 > 0 and η2,
with |η2| < |v0|, appearing in the constraints (57). Specifically the curvature and
torsion are

κ = η1

λ

√(
1 − η2

2

λ2

)
, τ = η1η2

λ2
. (78)

Moreover the direction cosine matrices of the director frame d and the Frenet
frame F defined in (2) of the helix are related by

d(s) ≡ F (s)RT, (79)

with R a constant rotation matrix.
Proof. (i) Trivially the case u0 × v0 = 0 with v0 �= 0 corresponds to a framed

curve with a straight center line, with the director frame uniformly twisting about
the constant tangent direction. We note that by definition the constant η2 satisfies
|η2| � |v0|, with equality only possible when u0 is parallel to v0, i.e., when the
center line is straight.

(ii) When u0 × v0 �= 0 the vectors with components[
u0 × v0

|u0 × v0|
(u0 − (u0 · v0/(v0 · v0))v0)

|(u0 − (u0 · v0/(v0 · v0))v0)|
v0

|v0|
]

(80)

in the director frame d(s) form an orthonormal triad f (s). We now demonstrate
that f is, in fact, the Frenet frame F of r . We first observe that the third vector of
f is by construction parallel to r ′, and the normalization by λ = |v0| corresponds
to switching to arc length in the deformed configuration. Then, since f (s) is a
constant rotation R from d(s), we remark that the two frames share the common
Darboux vector u(s), and by construction u has vanishing f 1-component. This
suffices to prove that f (s) is in fact the Frenet frame, and computation of the f 2
and f 3 components of u scaled by λ = |v0| gives the expressions for curvature
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and torsion detailed in (78). Since the curvature and torsion are constant, it is
a standard result of differential geometry (or indeed just uniqueness for linear,
constant-coefficient systems of ordinary differential equations) that the center line
is a circular helix. �

LEMMA 3.5. Relative equilibria of uniform, hyperelastic rods have either straight
or helical center lines, and in the helical case are both d-uniform and F -uniform
(where F is the Frenet frame defined in (2) of the helix). The force vector n is
parallel to the axis of the helix, while the moment vector m(s) is orthogonal to the
principal normal ν(s) of the helix.

Proof. By Lemma 3.2 relative equilibria are d-uniform, and so by Lemma 3.4
have either straight or helical center lines. And in the helical case the Frenet frame
is a constant rotation of the director frame. The components of any vector in the
Frenet frame are therefore a constant rotation of the components in the director
frame, and so relative equilibria are also F -uniform. For a helix the Darboux vector
of the Frenet frame is parallel to the axis of the helix, and for relative equilibria
the Darboux vector of the Frenet frame coincides with the Darboux vector u of the
director frame. The first-order necessary condition (52a) is the statement, expressed
in director components, that the force and Darboux vectors n and u are parallel,
so that for a helix, n is also parallel to the axis. Similarly, the first-order necessary
condition (52b) implies that the moment vector m(s) is a (constant) linear combi-
nation of the Darboux vector and the tangent vector, and is therefore orthogonal to
the principal normal of the helix at each s. �

Lemmas 3.1–3.5 provide a characterization of relative equilibria that is particu-
larly simple in the case λ = 1 of an inextensible, unshearable rod. Then each pair
(η1, η2) with η1 > 0 and |η2| < 1 prescribes a particular helical center line with
curvature and torsion given by (78). And for each helical center line there are at
least two equilibrium configurations of the director frame d with differing angular
phases around the tangent d3 to the helix. For η2 > 0 the helix is right-handed,
for η2 < 0 the helix is left-handed, and η2 = 0 is the degenerate case of a circular
center line. In the limit η2 = ±1 with η1 > 0 the degenerate case of a straight
center line is obtained. Relations (78) can be inverted to yield

η1 = λ
√

κ2 + τ 2, η2 = λτ√
κ2 + τ 2

. (81)

Thus we see that in the λ = 1 case there is a unique η1 > 0 and η2 ∈ (−1, 1) for
each value of curvature κ > 0 and torsion τ .

The case of extensible, shearable rods is slightly more complicated. According
to Lemma 3.1 each pair (η1, η2) with η1 > 0 and |η2| sufficiently small, generate
at least two helical equilibria, but the curvature and torsion given by (78) are not
set until λ = |v| is known, and λ depends upon the particular constitutive relation.
(Note that constraint (57b) implies that λ � |η2| so that the square roots appear-
ing in (78) are real-valued, and moreover the relative equilibria involve extension
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whenever |η2| > 1.) Indeed, it seems that for two different, relative equilibria
corresponding to the same (η1, η2) pair, λ could take two different values, so that
the pair have different helical center lines. Somewhat curiously one can observe
from (81) and (24) that the ratio η2/η1 uniquely determines the pitch of all helical
center lines corresponding to the pair(η1, η2), but that the corresponding radius
depends upon λ. As before, η2 > 0 implies that the helix is right-handed, η2 < 0
implies that the helix is left-handed, and for η2 = 0 the center line degenerates to
a circle. And when η2 = ±λ with η1 > 0 the degenerate cases of twisted rods with
straight center lines are obtained.

Finally, formulas (78) imply the identities

κ2 + τ 2 = η2
1

λ2
, (82)

κ2 +
(

τ − η1

2η2

)2

= η2
1

4η2
2

. (83)

The two circles (82) and (83) in (κ, τ )-space intersect by the inequality λ � |η2|,
with the unique intersection point in the half-plane κ > 0 being given by (78).
From (83) it may be observed that for given η1 and η2, the curvature and torsion
are bounded 0 < κ � η1/(2η2) and 0 � |τ | � η1/|η2|, with τ and η2 taking the
same sign.

4. Relative Equilibria of Isotropic Rods

The analysis of the previous section remains valid if the strain energy density
function W is isotropic in the sense of Definition 2.3. There are, however, two
important differences. First, in all three of the variational principles (60) subject to
(56), (61) subject to (57), and (62) subject to (63) that were introduced in section
3, the critical points now arise in non-isolated one-dimensional families whenever
either u or v is not parallel to the symmetry axis v̂. This can be seen because both
the function W and all the constraints (56), (57) and (63) are invariant under the
isotropy transformation introduced in Definition 2.3. Thus critical points typically
arise in non-isolated families generated by the action of the symmetry. One ex-
ample is illustrated in Figure 2(d). The exceptional cases, namely twisted straight
lines, are fixed points of the symmetry.

Second, the same symmetry of isotropy generates an additional integral I3(m, n)

≡ m · d3 of the balance laws that is constant along any equilibrium configuration.
In this case the general definition (50) of relative equilibria involves a sum over
N = 3 integrals. In our context the specific form of these first-order necessary
conditions becomes(

ū
v

)
=

(
λ2I 0
λ1I λ2I

) (
n
m

)
, (84)
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where

ū = [u1, u2, u3 − λ3]T. (85)

The introduction of the variable ū is useful because the gradient

∇I3(m, n) = d3 = [0, 0, 1]T

is constant.
The computation of the dual form of the variational principles is unaltered. The

case λ2 = 0 again corresponds to special configurations with straight center lines,
while for λ2 �= 0 we obtain the dual first-order conditions(

n
m

)
=

(
µ2I 0
µ1I µ2I

)(
ū
v

)
, (86)

associated with the dual variational characterization

Minimize W(u − û, v − v̂) (87)

subject to

1
2 ū · ū = 1

2η
2
1, ū · v = η1η2. (88)

The final step is to introduce a rotated frame D(s) via a particular case of the
transformation (10)

D(s) = d(s)QT(λ3s + δ), (89)

with Q defined in (19), and δ being a constant phase shift. According to the kine-
matics (20) and the Definition 2.3 of isotropy , the variational principle (87), (88)
then transforms to

Minimize W(Ū − û, V̄ − v̂) (90)

subject to

1
2 Ū · Ū = 1

2η
2
1, Ū · V̄ = η1η2, (91)

where Ū and V̄ are respectively the components of the Darboux vector of the frame
D and the tangent vector r ′ expressed in the frame D. For inextensible, unshearable
rods the analogous computations lead to the variational principle

Minimize W(Ū − û) (92)

subject to

1
2 Ū · Ū = 1

2η
2
1, Ū · v̂ = η1η2. (93)

The two variational principles (90) subject to constraints (91), or (92) subject
to constraints (93), corresponding respectively to the cases of extensible, shearable
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or inextensible, unshearable rods, are of precisely the same form as the original (in
general non-isotropic) variational principles (61) subject to (57), and (62) subject
to (63) that were introduced in Section 3, but now applied to the framing D of
the center line. Lemmas 3.1–3.5 therefore all carry over, but with two provisos.
First, the conclusions apply to the framing D, so that, for example, the relative
equilibria are D-uniform and not necessarily d-uniform. Second, as explained at
the beginning of this section, the critical points will typically arise in non-isolated
families due to the symmetry of isotropy. More specifically we have:

LEMMA 4.1. A hyperelastic uniform rod satisfying Definition 2.1 or 2.2 and the
appropriate associated version of Definition 2.3 of isotropy, has equilibria with
helical center lines in which the director components m(s), n(s), u(s) and v(s) of
the vectors m(s), n(s), u(s) and v(s) are simply related to their values at s = 0,

m(s) = QT(λ3s)m0, n(s) = QT(λ3s)n0, (94a)

u(s) = QT(λ3s)u0, v(s) = QT(λ3s)v0, (94b)

where Q is defined in (19), and λ3 is an arbitrary constant. Moreover

d(s) = D(s)Q(λ3s + δ) = F (s)RTQ(λ3s + δ), (95)

where δ is an arbitrary phase, R is a constant matrix, and the equilibrium is
uniform in both the D frame and Frenet frame F .

Proof. The conclusions follow from the kinematic relation (20) between the
frames d and D. For isotropic rods there are always straight, twisted equilibria
with m, n, u and v all parallel to the symmetry axis v̂. However for |η2| sufficiently
small (|η2| < 1 for inextensible, unshearable rods), there are relative equilibria
with u and v not parallel. These configurations have helical center lines, and they
arise in four parameter families corresponding to η1, η2, the excess twist λ3 and a
phase δ along the family of non-isolated critical points. �

5. Conclusion and Discussion

We have exploited the noncanonical Hamiltonian formulation of the equations
governing the equilibria of a uniform, hyperelastic rod to construct families of
solutions with helical center lines. For inextensible, unshearable rods the conclu-
sions are rather explicit. For non-isotropic rods, and for each prescribed (positive)
curvature and torsion, there are two or more helical configurations, in which the
physical twist of the rod equals the geometric torsion of the center line. On these
helical solutions the components of the moment, force and strains in both the
director and Frenet frames are all constant. For isotropic rods, and again for each
curvature and torsion, there is a single two-dimensional family corresponding to an
arbitrary prescribed difference between physical twist and geometric torsion, and
an arbitrary angular phase. The Frenet components of moment, force and strain
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are again constant, but when there is an excess twist the director components vary,
albeit in a simple, specific way.

For extensible, shearable rods we obtain similar results, but with the caveats that
the conclusions hold only for the constant |η2| sufficiently small, or equivalently
for helices of sufficiently small pitch, and that curvature and torsion cannot be con-
trolled independently. This weakening of our conclusions is a direct consequence
of the constitutive dependence on deformed arc length.

Our analysis characterizes all equilibria of a uniform rod that are d-uniform, i.e.,
having constant components of stress and strain in the director frame, as having
straight or helical center lines. Moreover we presented finite-dimensional varia-
tional principles to be able to construct all such solutions explicitly for any given
strain-energy density function. In this sense we can claim to have completed the
program initiated by Kirchhoff. We have not, however, classified all constitutive
relations of a uniform, non-isotropic, hyperelastic rod with the property that all
equilibria with a helical segment of center line are in fact d-uniform. In simple
cases of strain-energy density functions this converse conclusion is valid, but a
general result remains elusive. Such a result would certainly have to exploit both
uniformity and a strong notion of non-isotropy, because if a rod were isotropic over
even a limited range of angles, then counter examples could be constructed using
the analysis developed here.

It would also be natural to pose the question of which amongst the solutions
we have constructed are stable. This question certainly depends upon the specific
fashion in which the end loadings are applied, and there does not appear to be
one particularly appropriate choice. One available conclusion is that for complete
displacement, or hard, loading in which the center line and director frame are held
fixed at both extremities, a sufficiently short segment of all of the equilibria that we
have constructed will realize a local minimum of the total elastic energy. A further
discussion of such issues can be found in [3].

Amongst the uniform solutions that we classify, there are some particularly
simple ones. First, there is a family of helical equilibria with vanishing force n = 0.
Starting, for example, from the unstressed shape, pure end moments can be applied
in such a way as to evolve along a one-parameter family of helical equilibria.
This family includes a unique member with a straight, untwisted center line. And
this equilibrium is itself a member of another one-dimensional family of ‘trivial’
solutions with straight center lines, and applied force parallel to the axis of the
rod. Thus buckling analyses and computations such as [15] could be generalized
to a boundary value problem involving a hyperelastic rod with a helical unstressed
state. Similarly, the solutions that we construct with η2 = 0 are circular helices with
vanishing torsion, i.e., arcs of circles, with the Darboux vector u perpendicular to
the plane of the circle. Thus our analysis reveals that a hyperelastic rod with a
helical unstressed state of arbitrary undeformed arc length, can be closed on itself,
and will have two or more equilibrium configurations with circular center lines and
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vanishing twist. Thus buckling and stability analysis for rings of the type developed
in [14] could be extended to rods with helical unstressed states.
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