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Abstract. This paper is concerned with the quasi-static problem of thermoelasticity. The classical
system of equations of thermoelasticity is a coupling of an elliptic equation with a parabolic equation.
It poses some new mathematical difficulties. Here we study the exponential spatial decay of solutions.
An upper bound for the amplitude in terms of the boundary and initial conditions is obtained. The
extension of the spatial stability results to thermoelasticity of type III is also treated.
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1. Introduction

Many studies on Saint-Venant’s principle in elasticity and spatial decay estimates
have been developed since the 1960’s. Pioneering contributions were focused on
elliptic and parabolic problems. In the 1990s much activity was concerned with
hyperbolic problems. The history of this question is explained in [13] and up-dated
by Horgan in [11, 12].

Here we are concerned with some thermoelastic theories. In [14] Lupoli ob-
tained a spatial decay estimate for the static problem. We also recall the contri-
bution by Bofill and Quintanilla [2]. The system of equations that governs this
problem is a coupling of two elliptic equations. A different question is the dy-
namical one. In this case the couple is formed by a hyperbolic equation and a
parabolic equation. In a recent contribution [16], the author proved that the spatial
behavior of solutions of the dynamical problem of classical thermoelasticity is
identical to that of the parabolic problem. Some extensions of these arguments
to other thermoelastic theories have been proposed recently [17, 18]. But there are
no contributions concerning quasi-static deformations. The quasi-static problem
corresponds to the study of small thermoelastic deformations. The point of view
is that the acceleration is so small that we can consider it to be zero. In the clas-
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sical thermoelastic case the quasi-static problem corresponds to the coupling of
an elliptic and a parabolic equation. This question is new in the context of spatial
stability and poses new analytical difficulties. This kind of coupling has not been
considered previously in the study of spatial decay estimates and so these issues
for the quasi-static problems of thermoelasticity are worthy of investigation.

The major analytical difficulty is the combination of the terms βij θ in the me-
chanical equation and βij u̇i,j in the heat equation (see (2.5), (2.6)). We overcome
this difficulty by means of an idea that is similar to the one used when the logarith-
mic convexity method is applied to several thermoelastic theories [1, 15, 20]. The
idea is to integrate the heat equation with respect to time.

In recent years an intense activity has been developed on alternative formu-
lations of heat conduction in thermomechanics. Two recent surveys on this topic
are the works of Chandrasekharaiah [3] and Hetnarski and Ignaczak [10]. In these
references the authors recall several theories developed by different authors. In
particular the theories proposed by Green and Naghdi [6–9] are considered. These
theories are based on an equality involving the entropy rather than an inequality as
is considered in classical thermoelasticity. Several results concerning these theo-
ries have been obtained recently [15, 19, 20]. Thus, it is natural to consider these
alternative theories when we study thermoelasticity. It is worth recalling another
theory proposed by Green and Lindsay [5]. We have tried to extend our arguments
to other non classical thermoelastic theories. We have been able to extend our
arguments to thermoelasticity of type III [7], but we cannot overcome the diffi-
culties in the generalized thermoelasticity proposed by Green and Lindsay [5] nor
in thermoelasticity without energy dissipation [8].

In this paper we study the quasi-static problem of thermoelastic deformations
in the classical theory of thermoelasticity in two or three dimensions and in ther-
moelasticity of type III. In Section 2, we set down the classical thermomechanical
problem. In Section 3 a spatial estimate for the solutions is obtained. An upper
bound for the amplitude term is obtained in Section 4. In the last section we sketch
the extension of the arguments to thermoelasticity of type III.

In this article we use the summation and differentiation conventions. Summa-
tion over repeated indices is assumed and we use subscripts preceded by a comma
for partial differentiation with respect to the corresponding coordinate. Letters in
boldface stand for vectors or tensors. A superposed dot denotes the derivative with
respect to the time. Greek subscripts mean that they are restricted to the values two
and three.

2. Preliminaries

We consider a thermoelastic beam that occupies the region B = [0, ∞) × D in
the n-dimensional (n = 2, 3) Euclidean space, where D is a bounded domain in
the (n − 1)-dimensional space. We assume that B is sufficiently regular to apply
the divergence theorem. In the two-dimensional case we consider a rectangular
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strip with axis along the x1-direction, but in the three-dimensional case B means a
cylinder with axis along the x1-direction.

We consider the quasi-static problem. Thus, the displacement (ui(x, t)) and the
temperature θ(x, t) satisfy the system:

τij,j = 0, (2.1)

ρ
∂η

∂t
= qk,k. (2.2)

Here τij is the stress tensor, ρ is the mass density which is assumed to be a strictly
positive function of the material points, η is the entropy and qk is the heat flux
vector.

We assume that the material is linear. Thus, we have the constitutive equations:

τij = Cijrsus,r − βij θ, ρη = βijui,j + cθ, qi = kij θ,j . (2.3)

The constitutive functions Cijrs, βij , c and kij depend on the material points. They
are assumed to be bounded above in B. We assume that the elasticity tensor and
the thermal conductivity tensor satisfy the symmetries

Cijrs = Csrji, kij = kji. (2.4)

If we substitute the constitutive equations (2.4) into the evolution equations (2.1),
(2.2) we obtain the system

(Cijrsus,r − βijθ),j = 0, (2.5)

cθ̇ = −βiju̇i,j + (kijθ,i),j . (2.6)

To complete the problem, we need to impose some boundary conditions:

ui = 0, θ = 0, [0, ∞) × ∂D × [0, ∞), (2.7)

ui = u0
i (x2, x3, t), θ = θ0(x2, x3, t), {0} × D × [0, ∞), (2.8)

and initial conditions:

ui(x, 0) = θ(x, 0) = 0, x ∈ B. (2.9)

We assume the following compatibility conditions:

u0
i (x2, x3, t) = θ0(x2, x3, t) = 0 when (x2, x3) ∈ ∂D. (2.10)

In the next section we obtain a decay estimate for the solutions of the problem
determined by (2.5)–(2.9). We assume that there exist a positive constant C2 such
that

C2Cijklui,jul,k � ui,jui,j . (2.11)
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In this paper we also assume that the thermal conductivity tensor kij is positive
definite with smallest eigenvalue uniformly bounded below by k̄ and that the heat
capacity c(x) is uniformly bounded below by a positive constant constant ĉ.

It is worth noting that the previous conditions imply the existence of a positive
constant C1 such that

τi1τi1 � C1(Cijklui,jul,k + cθ2). (2.12)

3. Spatial Stability

In this section we prove exponential stability of the solutions of the problem deter-
mined by (2.5)–(2.9). To this end, we calculate the integral with respect to time of
equation (2.6). We have

cθ = −βijui,j +
∫ t

0
(kijθ,i(s)),j ds. (3.1)

If we denote

ψ(x, t) =
∫ t

0
θ(x, s) ds, (3.2)

equation (3.1) becomes

cθ = −βijui,j + (kijψ,i),j . (3.3)

We define the function

F(z, t) =
∫ t

0

∫ s

0

∫
D(z)

(τi1ui + ki1ψ,iθ) da dτ ds, (3.4)

where D(z) = {x ∈ B, x1 = z}. Using the divergence theorem we see that

F(z + h, t) − F(z, t)

=
∫ t

0

∫ s

0

∫
B(z+h,z)

(Cijrsui,jus,r + cθ2 + kijψ,iθ,j ) dv dτ ds

=
∫ t

0

∫ s

0

∫
B(z+h,z)

(Cijrsui,jus,r + cθ2) dv dτ ds

+ 1

2

∫ t

0

∫
B(z+h,z)

kijψ,iψ,j dv ds, (3.5)

where B(z + h, z) = {x ∈ B, z + h > x1 > z}. Dividing by h and taking the limit
as h tends to zero we have

∂F

∂z
=

∫ t

0

∫ s

0

∫
D(z)

(Cijrsui,jus,r + cθ2) da dτ ds

+ 1

2

∫ t

0

∫
D(z)

kijψ,iψ,j da ds. (3.6)
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Our next step is to estimate the function F in terms of its spatial derivative. We
have:

|F(z, t)| �
∣∣∣∣
∫ t

0

∫ s

0

∫
D(z)

τi1ui da dτ ds

∣∣∣∣+
∣∣∣∣
∫ t

0

∫ s

0

∫
D(z)

ki1ψ,iθ da dτ ds

∣∣∣∣.
(3.7)

In order to bound the first integral, we have that∣∣∣∣
∫ t

0

∫ s

0

∫
D(z)

τi1ui da dτ ds

∣∣∣∣
�

(∫ t

0

∫ s

0

∫
D(z)

τi1τi1 da dτ ds

)1/2(∫ t

0

∫ s

0

∫
D(z)

uiui da dτ ds

)1/2

�
(∫ t

0

∫ s

0

∫
D(z)

C1(Cijklui,jul,k + cθ2) da dτ ds

)1/2

×
(

λ−1
1

∫ t

0

∫ s

0

∫
D(z)

C2Cijklui,jul,k da dτ ds

)1/2

� (λ−1
1 C1C2)

1/2 ∂F

∂z
. (3.8)

Here λ1 is the first eigenvalue of the problem

	u + λu = 0, in D, u = 0 on ∂D. (3.9)

To bound the second integral on the right-hand side of (3.7), we have∣∣∣∣
∫ t

0

∫ s

0

∫
D(z)

ki1ψ,iθ da dτ ds

∣∣∣∣
�

(∫ t

0

∫
D(z)

(t − s)ψ,iψ,i da ds

)1/2(∫ t

0

∫ s

0

∫
D(z)

ki1ki1θ
2 da dτ ds

)1/2

�
(

t

∫ t

0

∫
D(z)

ψ,iψ,i da ds

)1/2(
k̂

∫ t

0

∫ s

0

∫
D(z)

θ2 da dτ ds

)1/2

.

� 3

2

(
k̂t

ĉk̄

)1/2
∂F

∂z
. (3.10)

Here k̂ is the maximum of ki1ki1.
From (3.6)–(3.8) and (3.10) we can compute two positive constants

M1 = (λ−1
1 C1C2)

1/2, M2 = 3

2

(
k̂

ĉk̄

)1/2

such that

|F(z, t)| �
(
M1 + M2t

1/2
)∂F

∂z
. (3.11)
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The inequality (3.11) is well known in the study of spatial decay estimates
(see [4]). We can conclude that either there exists z0 such that F(z0, t) > 0 and

F(z, t) � F(z0, t) exp

(
1

M1 + M2t1/2
(z − z0)

)
, z � z0, (3.12)

or we obtain the spatial estimate

−F(z, t) � (−F(0, t)) exp

(
− 1

M1 + M2t1/2
z

)
, z � 0. (3.13)

We have proved:

THEOREM 3.1. Let (ui, θ) be a solution of the problem determined by the system
(2.5), (2.6), the boundary conditions (2.7), (2.8) and the initial conditions (2.9).
Then, either the asymptotic condition (3.12) holds or the following inequality

∫ t

0

∫ s

0

∫
B(∞,z)

(Cijrsui,jus,r + cθ2) dv dτ ds + 1

2

∫ t

0

∫
B(∞,z)

kijψ,iψ,j dv ds

�
(∫ t

0

∫ s

0

∫
B

(Cijrsui,jus,r + cθ2) dv dτ ds

+ 1

2

∫ t

0

∫
B

kijψ,iψ,j dv ds

)
exp

(
− z

M1 + M2t1/2

)
, (3.14)

is satisfied for z � 0.

4. The Amplitude Term

The aim of this section is to give an upper bound for the amplitude term multiplying
the exponential on the right-hand side of (3.14), i.e. −F(0, t) by means of the initial
and boundary conditions. Let (vi) and ϑ be two arbitrary functions that satisfy the
boundary and initial conditions (2.7)–(2.9) and tends to zero as x1 goes to infinity.
We have

−F(0, t) = −
∫ t

0

∫ s

0

∫
D(0)

(τi1vi + ki1ψ,iϑ) da dτ ds. (4.1)

Using the divergence theorem, we obtain

−F(0, t) =
∫ t

0

∫ s

0

∫
B

(Cijklui,j vl,k − βijθvi,j + cθϑ + βijϑui,j

+ kijψ,jϑ,i) dv dτ ds. (4.2)



SPATIAL STABILITY IN THERMOELASTICITY 99

Repeated use of the Holder inequality gives
∫ t

0

∫ s

0

∫
B

Cijklui,j vl,k dv dτ ds

�
(∫ t

0

∫ s

0

∫
B

Cijklui,jul,k dv dτ ds

)1/2(∫ t

0

∫ s

0

∫
B

Cijklvi,j vl,k dv dτ ds

)1/2

�
(−F(0, t)

)1/2
(∫ t

0

∫ s

0

∫
B

Cijklvi,j vl,k dv dτ ds

)1/2

, (4.3)

∫ t

0

∫ s

0

∫
B

cθϑ dv dτ ds

�
(∫ t

0

∫ s

0

∫
B

cθ2 dv dτ ds

)1/2(∫ t

0

∫ s

0

∫
B

cϑ2 dv dτ ds

)1/2

�
(−F(0, t)

)1/2
(∫ t

0

∫ s

0

∫
B

cϑ2 dv dτ ds

)1/2

, (4.4)

−
∫ t

0

∫ s

0

∫
B

βijθvi,j dv dτ ds

�
(∫ t

0

∫ s

0

∫
B

βijβijθ
2 dv dτ ds

)1/2(∫ t

0

∫ s

0

∫
B

vi,j vi,j dv dτ ds

)1/2

� β1/2
(−F(0, t)

)1/2
(∫ t

0

∫ s

0

∫
B

vi,j vi,j dv dτ ds

)1/2

, (4.5)

∫ t

0

∫ s

0

∫
B

βijϑui,j dv dτ ds

�
(∫ t

0

∫ s

0

∫
B

βijβijϑ
2 dv dτ ds

)1/2(∫ t

0

∫ s

0

∫
B

ui,jui,j dv dτ ds

)1/2

� C
1/2
2

(−F(0, t)
)1/2

(∫ t

0

∫ s

0

∫
B

βijβijϑ
2 dv dτ ds

)1/2

, (4.6)

∫ t

0

∫ s

0

∫
B

kijψ,jϑ,i dv dτ ds

�
(∫ t

0

∫ s

0

∫
B

kijψ,jψ,i dv dτ ds

)1/2(∫ t

0

∫ s

0

∫
B

kijϑ,jϑ,i dv dτ ds

)1/2

�
(

t

∫ t

0

∫
B

kijψ,jψ,i dv ds

)1/2(∫ t

0

∫ s

0

∫
B

kijϑ,jϑ,i dv dτ ds

)1/2

�
(−tF (0, t)

)1/2
(

2
∫ t

0

∫ s

0

∫
B

kijϑ,jϑ,i dv dτ ds

)1/2

. (4.7)
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In (4.5) the parameter β can be obtained in terms of the tensor βij and c. From
(4.1)–(4.7), we have that

−F(0, t) �
(−F(0, t)

)1/2(
I

1/2
1 + I

1/2
2 + β1/2I

1/2
3

+ C
1/2
2 I

1/2
4 + (2t)1/2I

1/2
5

)
,

where

I1 =
∫ t

0

∫ s

0

∫
B

Cijklvi,j vl,k dv dτ ds, (4.8)

I2 =
∫ t

0

∫ s

0

∫
B

cϑ2 dv dτ ds, (4.9)

I3 =
∫ t

0

∫ s

0

∫
B

vi,j vi,j dv dτ ds, (4.10)

I4 =
∫ t

0

∫ s

0

∫
B

βijβijϑ
2 dv dτ ds, (4.11)

I5 =
∫ t

0

∫ s

0

∫
B

kijϑ,jϑ,i dv dτ ds. (4.12)

Thus, we can compute two positive constants N1 = 5(1 + β + C2), N2 = 10 (for
instance) such that

−F(0, t) � (N2t + N1)(I1 + I2 + I3 + I4 + I5). (4.13)

There exist constants C∗, c∗, β∗, k∗ such that the following inequalities

I1 � C∗
∫ t

0

∫ s

0

∫
B

vi,j vi,j dv dτ ds, (4.14)

I2 � c∗
∫ t

0

∫ s

0

∫
B

ϑ2 dv dτ ds, (4.15)

I4 � β∗
∫ t

0

∫ s

0

∫
B

ϑ2 dv dτ ds, (4.16)

I5 � k∗
∫ t

0

∫ s

0

∫
B

ϑ,iϑ,i dv dτ ds (4.17)

are satisfied.
Now, we choose

vi(x, t) = exp(−νx1)u
0
i (x2, x3, t),

ϑ(x, t) = exp(−νx1)θ
0(x2, x3, t), (4.18)

where ν is an arbitrary positive constant and the functions u0
i (x2, x3, t) and

θ0(x2, x3, t) are defined in (2.8). Thus, the functions vi and ϑ satisfy the required
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conditions. We easily derive that

I1 + I3 � (1 + C∗)
2ν

∫ t

0

∫ s

0

∫
D(0)

(
u0

i,αu
0
i,α + ν2u0

i u
0
i

)
da dτ ds, (4.19)

I2 + I4 � (c∗ + β∗)
2ν

∫ t

0

∫ s

0

∫
D(0)

(θ0)2 da dτ ds, (4.20)

I5 � k∗

2ν

∫ t

0

∫ s

0

∫
D(0)

(
θ0
,αθ

0
,α + ν2(θ0)2

)
da dτ ds. (4.21)

The estimates (4.19)–(4.21) and (4.13) give an upper bound for the amplitude term
in terms of the boundary data.

5. Thermoelasticity of Type III

The aim of this section is to extend the arguments on spatial stability to thermoelas-
ticity of type III. We recall that the equations which govern the quasi-static problem
of thermoelasticity of type III are (see [7]):

(Cijrsus,r − βijθ),j = 0, (5.1)

cθ̇ = −βiju̇i,j + (kijθ,i),j + (bijα,i),j . (5.2)

Here the variable α is defined by

α̇ = θ. (5.3)

In view of equality (3.2) we note that

α(x, t) = ψ(x, t) + α(x, 0).

From the point of view of Green and Naghdi α is regarded as representing some
“mean” thermal displacement magnitude, and for brevity is usually referred to as
the “thermal displacement”.

In this section, we assume conditions (2.11) and (2.12), and, in addition, we also
assume that the tensor bij is positive definite. It is worth noting that this condition
implies the existence of a positive constant γ such that the tensor γ kij − 2bij is
positive definite.

In order to define the problem, we need to impose initial and boundary con-
ditions for the thermal displacement. We assume conditions (2.7)–(2.10) (but not
(2.8)2) and

ui = 0, α = 0, [0, ∞) × ∂D × [0, ∞), (5.4)

α = α0(x2, x3, t), {0} × D × [0, ∞), (5.5)

and initial conditions:

α(x, 0) = 0, x ∈ B. (5.6)
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It is worth noting that in view of (5.6) we have that α(x, t) = ψ(x, t) and that
we do not impose boundary conditions on the temperature because we impose the
boundary conditions on α.

We assume compatibility conditions. Thus, we have that

α0(x2, x3, t) = 0 when (x2, x3) ∈ ∂D. (5.7)

Integrating Equation (5.2) with respect to time, we have

cθ = −βijui,j + (kijψ,i),j +
(∫ t

0
bijψ,i(s) ds

)
,j

. (5.8)

If we denote

φ(x, t) =
∫ t

0
ψ(x, s) ds, (5.9)

Equation (5.8) becomes

cθ = −βijui,j + (kijψ,i),j + (bijφ,i),j . (5.10)

We define the function

Fγ (z, t) =
∫ t

0

∫ s

0

∫
D(z)

exp(−γ τ)
(
τi1ui + ki1ψ,iθ + bi1φ,iθ

)
da dτ ds.

(5.11)

We have

Fγ (z + h, t) − Fγ (z, t)

=
∫ t

0

∫ s

0

∫
B(z+h,z)

exp(−γ τ)

(
Cijrsui,jus,r + cθ2

+
(

γ

2
kij − bij

)
ψ,iψ,j + γ 2

2
bijφ,iφ,j

)
dv dτ ds

+
∫ t

0

∫
B(z+h,z)

exp(−γ s)

(
1

2
kijψ,iψ,j + γ bijφ,iφ,j

)
dv ds

+
∫

B(z+h,z)

exp(−γ t)
bij

2
φ,iφ,j dv. (5.12)

Thus

∂Fγ

∂z
=

∫ t

0

∫ s

0

∫
D(z)

exp(−γ τ)

(
Cijrsui,jus,r + cθ2

+
(

γ

2
kij − bij

)
ψ,iψ,j + γ 2

2
bijφ,iφ,j

)
da dτ ds

+
∫ t

0

∫
D(z)

exp(−γ s)

(
1

2
kijψ,iψ,j + γ bijφ,iφ,j

)
da ds

+
∫

D(z)

exp(−γ t)
bij

2
φ,iφ,j da. (5.13)



SPATIAL STABILITY IN THERMOELASTICITY 103

Now, we can use a similar argument to the one used for classical thermoelasticity.
We can compute two positive constants M3, M4 such that

|Fγ (t, z)| �
(
M3 + M4t

1/2
)∂Fγ

∂z
. (5.14)

We can conclude that either there exists a z0 such that Fγ (z0, t) > 0 and

Fγ (z, t) � Fγ (z0, t) exp

(
1

M3 + M4t1/2
(z − z0)

)
, z � z0, (5.15)

or we obtain the spatial estimate

−Fγ (z, t) � (−Fγ (0, t)) exp

(
− 1

M3 + M4t1/2
z

)
, z � 0. (5.16)

Estimates (5.15) and (5.16) describe the spatial behavior of the solutions of the
quasi-static problem of the thermoelasticity of type III. It is worth noting that (5.16)
can be written as∫ t

0

∫ s

0

∫
B(∞,z)

exp(−γ τ)

(
Cijrsui,jus,r + cθ2 +

(
γ

2
kij − bij

)
ψ,iψ,j

+ γ 2

2
bijφ,iφ,j

)
dv dτ ds

+
∫ t

0

∫
B(∞,z)

exp(−γ s)

(
1

2
kijψ,iψ,j + γ bijφ,iφ,j

)
dv ds

+
∫

B(∞,z)

exp(−γ t)
bij

2
φ,iφ,j dv

�
(∫ t

0

∫ s

0

∫
B

exp(−γ τ)

(
Cijrsui,jus,r + cθ2 +

(
γ

2
kij − bij

)
ψ,iψ,j

+ γ 2

2
bijφ,iφ,j

)
dv dτ ds

+
∫ t

0

∫
B

exp(−γ s)

(
1

2
kijψ,iψ,j + γ bijφ,iφ,j

)
dv ds

+
∫

B

exp(−γ t)
bij

2
φ,iφ,j dv

)
exp

(
− 1

M3 + M4t1/2
z

)
, z � 0.

(5.17)

It follows that∫ t

0

∫ s

0

∫
B(∞,z)

(
Cijrsui,jus,r + cθ2 +

(
γ

2
kij − bij

)
ψ,iψ,j

+ γ 2

2
bijφ,iφ,j

)
dv dτ ds +

∫ t

0

∫
B(∞,z)

(
1

2
kijψ,iψ,j + γ bijφ,iφ,j

)
dv ds
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+
∫

B(∞,z)

bij

2
φ,iφ,j dv

�
(∫ t

0

∫ s

0

∫
B

(
Cijrsui,jus,r + cθ2 +

(
γ

2
kij − bij

)
ψ,iψ,j

+ γ 2

2
bijφ,iφ,j

)
dv dτ ds +

∫ t

0

∫
B

(
1

2
kijψ,iψ,j + γ bijφ,iφ,j

)
dv ds

+
∫

B

bij

2
φ,iφ,j dv

)
exp

(
γ t − 1

M3 + M4t1/2
z

)
, z � 0. (5.18)

Estimate (5.18) is the counterpart of the estimate (3.14) obtained for classical
thermoelasticity. An upper bound for the amplitude term −Fγ (0, t) can be obtained
as in Section 4, but we omit the details.
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