
Vol.: (0123456789)
1 3

https://doi.org/10.1007/s10658-021-02456-9

Effects of nymphal density (Bactericera trigonica) 
and feeding on photosynthetic pigments, proline content 
and phenolic compounds in carrot plants

Soukaina Ben Othmen · Faten Boussaa · 
Lobna Hajji‑Hedfi   · Khaled Abbess · 
Soumaya Dbara · Brahim Chermiti 

Accepted: 22 December 2021 
© Koninklijke Nederlandse Planteziektenkundige Vereniging 2021

while total soluble solids decreased as number of 
attacking insects increased. Results indicate that the 
stress response of carrot plants to psyllid infestation 
depended on nymphal density.
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Introduction

Psyllid species are small insects that feed on plants 
by ingesting phloem sap. Psyllid species are vectors 
of economically important plant diseases, including 
many newly emerging ones. The three ‘Candidatus 
Liberibacter’ species associated with huanglongbing 
(HLB) citrus disease are transmitted by Diaphorina 
citri Kuwayama, Trioza erytreae Del Guercio, and 
Cacopsylla citrisuga. Candidatus Liberibacter sola-
nacearum (CaLsol) is transmitted by Bactericera 
cockereli (Šulc) to potato and tomato plants (Secor 
et  al., 2009). In northern Europe this disease was 
observed in carrot fields and transmitted by Trioza 
apicalis Foerster (Nissinen et  al., 2014). Recently, 
a ‘Candidatus Liberibacter’ species was associated 
with vegetative disorders in carrot fields in Tunisia 
and transmitted by Bactericera trigonica Hodkin-
son (Ben Othmen et al., 2018; Ben et al., 2019). This 
psyllid causes considerable damage to carrots (Dau-
cus carota L) through injection of toxic saliva during 
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feeding. Severe carrot psyllid attacks can lead to seri-
ous yield loss. Because effective management of psyl-
lids is lacking worldwide, it is necessary to determine 
the impact of psyllid feeding on the physiology of 
their host plants.

The chlorophyll content of plant tissues is one 
of the main parameters impacted by interactions 
between host plants and insects. Indeed, chlorophyll 
levels change in response to a wide variety of stresses, 
including biotic stresses such as insect feeding and 
pathogen infection (Goławska et  al., 2010; Heng-
Moss et  al., 2003; Ni et  al., 2001, 2002). However, 
previous studies on Bactericera trigonica on carrots 
mainly focused on the control and biology of the pest. 
Thus, little is known about how psyllid damage may 
affect quantity and quality of carrot yields. Previous 
studies emphasized that carrot psyllid feeding signifi-
cantly affects total sugars and phenolic content of tap-
roots of carrot plants attacked by T. apicalis (Nissinen 
et al., 2012). The aims of the present study are to: i) 
investigate how nymphal density affects carrot yield; 
ii) quantify variation in foliar pigments, phenolic, fla-
vonoids and proline levels in leaf tissues in response 
to increasing nymphal density; and iii) assess whether 
psyllid feeding affects the sugar content of carrot 
roots.

Materials and methods

Plant material and sample processing

The study was carried out in a carrot field located 
in the South Kairouan delegation “Zaafrana area” 
(35°32′31.21"N, 10°04′30.48"E). The field was 
planted with “Arbi Zaafrana” hybrids. The following 
symptoms were frequently observed in this field: gen-
eral stunting, yellowing and curling of leaves. These 
symptoms were associated with the presence of a B. 
trigonica population. After collecting symptomatic 
plants, every five plants with the same nymph density 
were grouped together; in total, six groups of different 
psyllid nymph density were collected. The plant sam-
pling was done according to the degree of damage 
sustained by each plant. Plant samples were immedi-
ately transported to the laboratory. The control group 
was represented by five plants not colonized by psyl-
lid nymphs. To assess leaf damage, leaf pigments 

contents were analyzed using a spectrophotometer 
(ThermoSpectronic Heλios γ, Cambridge, England).

Carrot yield

For each carrot plant, roots were lifted, washed, and 
weighed individually.

Damage estimate

The number of symptomatic leaves and the total num-
ber of leaves of each sampled carrot plant were deter-
mined. If the oldest leaves were yellowish in color 
these were not considered as damaged but a result of 
normal senescence. The fresh weight of total carrot 
leaves was measured for each plant.

RT‑PCR analysis

To confirm that psyllids were responsible for changes 
observed in carrot plants, a real-time PCR assay was 
performed according to Li et al. (2006) using a Light 
Cycler 480 (Roche, Switzerland) to detect the pres-
ence of CaLsol. The reaction mix consisted of 1X 
Quantimix (Biotools, Spain), 0.24 μM of each primer, 
0.12 μM of TaqMan probe and 3 μl of the template 
(purified DNA or direct extraction from the spot) in 
a final volume of 12 μl. The real-time PCR amplifi-
cation protocol included the following steps: 95  °C 
for 20  s followed by 45 cycles of 95 °C for 1  s and 
58  °C for 40  s. Primers and probe sequences were, 
respectively: LsoF, 5’-GTC​GAG​CGC​TTA​TTT​TTA​
AT AGGA-3’; HLBr, 5’-GCG​TTA​TCC​CGT​AGA​
AAA​AGG TAG-3’; and HLBp, 5’FAM-AGA​CGG​
GTG​AGT​AA CGCG-3’BHQ. The positive results (Ct 
values ≤ 40 and exponential curve) and the negative 
results were also checked by the real-time PCR pro-
tocol of Teresani et al. (2014). In this case, the reac-
tion mix consisted of 1X Quantmix (Biotools, Spain), 
0.5 μM of each primer, 0.16 μM TaqMan probe and 
3 μl of the template. The amplification protocol con-
sisted of 95 °C for 10 min followed by 45 cycles of 
95 °C for 15 s and 60 °C for 1 min. Primers and probe 
sequences were the following: CaLsppF, 5’GCA​GGC​
CTA​ACA​CAT​GCA​AGT3’; CaLsppR, 5’GCA​CAC​
GTT​TCC​ATG​CGT​TAT-3’, and the specific TaqMan 
probe CaLsolP, 5` FAM-AGC​GCT​TA TTT​TTA​ATA​
GGA​GCG​GCA​GACG-3` TAMRA (Teresani et  al., 
2014).
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Titratable acidity (TA), pH, total soluble solids (TSS)

Carrot roots were crushed using a juicer. Juice pH 
was measured using a pH-meter (Jenway). The titrata-
ble acidity was determined by acid–based potentiom-
etry (0.1 mol L−1 NaOH up to pH 8.1), expressed as 
g L−1. The TSS content was recorded using a refrac-
tometer (Atago) at 20 °C with values being expressed 
as °Brix.

Extraction and measurement of chlorophylls a, b and 
carotenoids

The determination of chlorophyll was made accord-
ing to Holden (1965). 0.1  g of leaves (± 5 leaves) 
were ground in a mortar with 10 ml of 80% acetone 
(CH3COCH3). The extract was then filtered through 
a 5  µm diameter millipore filter. After 72  h in the 
dark at a temperature of 4  °C, the obtained filtrate 
was used to measure chlorophyll a, chlorophyll b and 
carotenoids using a spectrophotometer (ThermoSpec-
tronic Heλios γ, Cambridge, England). Chlorophyll a 
and chlorophyll b were measured at 645 and 663 nm 
and carotenoids at 470 nm. Each sample measurement 
was performed in three replicates and the pigment 
content was calculated from the following equations:

With: A: absorbance, V: extraction volume 
(10 ml), W: sample mass, e: dilution factor.

Determination of proline content

From each sample, 100  mg of leaves cut into small 
pieces were placed in test tubes containing 2 ml Metha-
nol (40%). The mixture was heated to boiling in a water 
bath at 85 °C for 60 min. After cooling samples, 1 ml of 
the extract was removed from each sample and placed 
into a new tube to which was added: 1 ml of acetic acid, 
1 ml of a solution containing 120 ml H2O, 300 ml ace-
tic acid, 80 ml ortho-phosphoric acid "H3PO4, density 
1.7" and 25 mg of ninhydrin. The mixture was heated 

Chla(mg∕gFW) = [(12.7 × A663) − (2.69 × A645)](V∕1000W) × e

Chlb(mg∕gFW) = [(22.9 × A645) − (4.68 × A663)](V∕1000W) × e

Car(mg∕gFW) = (1000 × A470 − 1.82 × Chla − 85.02 × Chlb∕198 × (v∕1000W) × e

to boiling for 30  min, till the solution turned to red. 
After cooling, 5 ml of toluene was added to each tube 
with stirring for two phases, then the upper phase was 
removed to which a pinch of Na2SO4  was added to 
remove water and the optical density was measured by 
a spectrophotometer at 528 nm (Bagues et al., 2017).

Determination of total phenolic content

The total phenolic content was determined using the 
Folin–Ciocalteu method (Aryal et  al., 2019). Briefly, 
1  mL of methalonic extract solution was mixed with 
2.5  mL of 10% (w/v) Folin–Ciocalteu reagent. After 
5  min, 2.0  mL of Na2CO3 (75%) were subsequently 
added to the mixture and incubated at 50 °C for 10 min 
with intermittent agitation. The absorbance was meas-
ured utilizing a UV spectrophotometer at 765 nm. The 
results (mean ± standard error) were expressed as mg/g 
of gallic acid equivalents (mg GAE/g).

Determination of flavonoid content

The flavonoid contents were measured as described 
by Aryal et  al. (2019). An aliquot of 1 mL of extract 
solution was mixed with 0.2  mL of 10% (w/v) AlCl3 
solution in methanol, 0.2  mL 1  M potassium acetate 
and 5.6  mL distilled water. The mixture was incu-
bated for 30 min and the absorbance was measured at 
415  nm. The results were expressed as mg quercetin 
equivalent/g.

Statistical analyses

Statistical analyses were performed using one-way 
analysis of variance (ANOVA), and the significant dif-
ferences between means were determined by Duncan’s 
multiple range test using SPSS 20 software. Signifi-
cance was defined at P < 0.05.

Results

CaLsol incidence

The real-time PCR assays were not able to confirm pres-
ence of CaLsol bacteria in any of the tested carrot plants.
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Leaf weight, total number of leaves, number of curled 
leaves, root weight

The weight of fresh leaves decreased with nym-
phal density. A decrease of over 62% of leaf 
weight was observed when psyllid density 
exceeded eight nymphs per plant compared to 
controls. Results also showed that total num-
ber of leaves was significantly affected by psyl-
lid nymph feeding and decreased with nymphal 
density. Also, the number of leaves with curling 
symptoms significantly increased with nymphal 
density. However, when the number of nymphs 
exceeded 8 nymphs per plant, there was no addi-
tional increase in number of symptomatic leaves 
with nymphal density (Table 1).

The root weight of the psyllid-exposed carrots 
significantly decreased as psyllid density increased. 
The psyllid nymphs greatly reduced the root fresh 
weight when their density exceeded eight per plant. 
A density of 15 nymphs per plant caused a decrease 
of over 85% of taproot weight (Table 1).

Changes in foliar pigments

Significant differences were recorded for pig-
ment contents of carrot leaves infested with dif-
ferent densities of B. trigonica nymphs (Table  2). 
The chlorophyll a (Ch a) content was significantly 
lower in infested carrot leaves than that in control 
plants, with Ch a content decreasing as nymphal 
density increased. Also, a decrease of chlorophyll 
b (Ch b) content was recorded as psyllid nymph 

density increased. Chlorophyll b content varied 
from 10.04 mg/g FW in controls to 6.62 mg/g FW in 
plants infested by eight nymphs and 3.43 mg/g FW 
in plants infested with 15 nymphs. Psyllid nymph 
density also had a significant effect on total carote-
noid content. The highest content (891.37 mg/g FW) 
was registered in control plants. However, a decrease 
of 3.46-fold of total carotenoid content was observed 
for plants infested with 15 nymphs compared to 
controls.

Total phenolic content, total flavonoid content, 
proline content

Significant differences in total phenolic, flavonoid 
and proline contents were recorded between infested 
and non-infested leaves (Table 3).

Total phenolic contents (TPC) ranged from 
13.97  mg/100  g F.W for control leaves to 
70.60  mg/100  g FW in leaves infested with 15 B. 
trigonica nymphs. The TPC content showed a con-
sistent increase in response to insect damage. Also, 
the total flavonoid content increased with the rate 
of B. trigonica leaf infection. The TFC content 
varied from 1.06  mg/100  g for control leaves to 
21.44 mg/100 g for leaves infested with 15 nymphs. 
Regarding the proline content, a higher concentra-
tion was observed in infested leaves than in control 
leaves, with the increase proportional to nymphal 
density It varied from 104.04  mg/100  g in con-
trol leaves to 521.87  mg/100  g in leaves infested 
with eight nymphs and 1274.18 mg/100 g in leaves 
infested with 15 nymphs.

Table 1   Effects of psyllid nymphal density on carrot root weight, leaf fresh weight, total number of leaves and number of curled 
leaves

Values are means of fifteen replicates ± standard error. Means followed by the different letter within a same column indicate signifi-
cant differences according to Duncan test. Significance of F ratio: ** P < 0.017

Number of nymphs Leaf weight
(g)

Total number of leaves Number of curled leaves Root weight
(g)

Control 30.66 ± 1.45 a 14.33 ± 0.47 a 0.00 d 212.76 ± 7.05 a
3 26.31 ± 0.95 b 10.00 ± 0.81 b 1.33 ± 0.47c 141.39 ± 3.10 b
5 20.97 ± 0.94 c 9.33 ± 1.24bc 1.67 ± 0.47bc 131.40 ± 5.06b
8 18.75 ± 0.48 c 7.67 ± 0.94 cd 2.33 ± 0.47 b 105.30 ± 7.57 c
10 16.00 ± 0.99 d 6.33 ± 0.47 d 3.33 ± 0.47 a 81.63 ± 8.10 d
12 14.17 ± 0.44 d 6.00 ± 0.81 d 3.33 ± 0.47 a 62.93 ± 4.00 e
15 11.60 ± 1.77 e 4.00 ± 0.81 e 3.67 ± 0.47 a 31.10 ± 7.47 f
Significance ** ** ** **
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pH, titratable acidity (TA), total soluble solids (TSS)

The pH value of carrot juices made from infested and 
control plants ranged from 6.36 to 6.93. The juice 
pH decreased significantly with psyllid density. The 
lowest pH value was observed in carrot juice from 
plants infested with 15 nymphs. The titratable acidity 
showed a significant variation between infested and 
non-infested plants (Table  4). A significant increase 
of TA values was associated with the increase of 
psyllid nymph density. The values ranged from 0.03 
for controls to 0.19 in the most infested plants (15 
nymphs). Bactericera trigonica infestation also sig-
nificantly affected total soluble solids (TSS) values in 
carrot juice (Table  4). The TSS values ranged from 
3.67°Brix to 7.90°Brix. The control plants had higher 
total soluble solids content than infested plants. A 
decrease of TSS values was noted with the increase 
of insect damage. The most exposed carrot plants (15 
nymphs) had the lowest total soluble solids content.

Discussion

Bactericera trigonica is the most abundant insect spe-
cies in carrot fields (occurring from crop emergence 
to harvest). This psyllid causes direct damage to car-
rot (Ben Othmen et al., 2018).

In this study, a significant decrease of root fresh 
weight was observed in response to increasing psyllid 
density. Feeding also significantly affected leaf fresh 
weight. Number of curled leaves increased with num-
ber of nymphs suggesting that leaf-curling is caused 
by psyllid feeding. Previous studies reported also that 
nymphs feeding at high density leads to a dramatic 
reduction in yield and leaf curling (Nissinen et  al., 
2007, 2012).

Changes in chlorophyll (Cha and Chb) and carot-
enoid contents in carrot leaves were associated with 
psyllid density. These contents decreased as num-
ber of nymphs increased. Similar results from other 
studies have revealed a significant reduction in total 

Table 2   Changes of Chlorophyll contents (Ch a, Ch b) and total carotenoid content in carrot leaves according to psyllid nymphal 
density

Values are means of fifteen replicates ± standard error. Means followed by the different letter within a same column indicate signifi-
cant differences according to Duncan test. Significance of F ratio: ** P < 0.01

Number of nymphs Chlorophyll a (mg/g FW) Chlorophyll b
(mg/g FW)

Total carotenoids
(mg/g FW)

Control 0.10 ± 0.01a 10.04 ± 0.51a 891.37 ± 14.65a
3 0.09 ± 0.01b 9.02 ± 0.21ab 830.50 ± 13.46ab
5 0.01 ± 0.01c 7.84 ± 1.26bc 756.36 ± 17.49b
8 0.01 ± 0.00c 6.62 ± 0.40 cd 597.81 ± 34.90c
10 0.00 ± 0.01c 5.39 ± 1.07de 539.30 ± 63.81c
12 0.00 ± 0.01c 4.73 ± 0.20de 431.03 ± 17.46d
15 0.00 ± 0.00d 3.43 ± 0.59e 257.36 ± 6.24e
Significance ** ** **

Table 3   Changes of total 
phenolic content, total 
flavonoid content, and 
proline content according to 
psyllid nymphal density
Values are means of fifteen 
replicates ± standard error. 
Means followed by the 
different letter within a 
same column indicate 
significant differences 
according to Duncan test. 
Significance of F ratio: ** 
P < 0.01

Number of nymphs Total phenolic content
(mg GAE.g−1)

Total flavonoid content
(mg QE. g−1)

Proline
(mg/100 g)

Control 13.97 ± 0.36f 1.06 ± 0.06f 104.04 ± 6. 68 g
3 17.73 ± 0.54f 1.73 ± 0.14f 245.66 ± 16.31f
5 24.17 ± 2.20e 4.20 ± 0.29e 426.76 ± 5.34e
8 30.08 ± 0.39d 6.52 ± 0.54d 521.87 ± 2.08d
10 47.90 ± 2.82c 8.40 ± 0.67c 687.17 ± 10.01c
12 61.58 ± 0.41b 10.55 ± 0.04b 1074.54 ± 24.05b
15 70.60 ± 3.88a 21.44 ± 1.32a 1274.18 ± 28.15a
Significance ** ** **
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chlorophyll and carotenoid content in response to her-
bivore attack (Blanchfield et al., 2005, 2007; Kumar 
& Sharma, 2014). Grape leaves infested by phyllox-
era (Daktulospharia vitifoliae Fitch) had significantly 
lower contents of total chlorophyll and carotenoid 
than those in the control (Blanchfield et  al., 2005, 
2007). Huang et al. (2014) also reported that relative 
chlorophyll loss on Brassicaceous plant species was 
related to the feeding damage caused by Bagrada 
hilaris Burmeister. However, as psyllids are phloem 
feeders they are often thought to cause less severe 
damage to leaves then other groups of herbivores. 
Nevertheless, it was shown that Diaphorina citri 
(Kuwayama) and Aonidella orientalis (Newstead) 
are able to decrease the total chlorophyll and carot-
enoid contents in citrus and guava leaves, respectively 
(Killiny and Nehela, 2017; Kumar & Sharm, 2014). 
Dai et al. (2009) also reported that Hypericum samp-
soni Hance plants synthesized less chlorophyll pig-
ment in leaves infested with Thrips tabaci (Linder-
man) compared to control leaves. In fact, chlorophyll 
degradation is a complex phenomenon that is often 
linked to insect feeding damage to plants (Ni et  al., 
2001). Therefore, these changes have often been 
regarded as a relatively late mechanism of photosyn-
thetic adaptation (Anderson et al., 1995). Golan et al. 
(2014) reported that Coccus hesperidum L. feeding 
induced a stress response in host plants, represented 
by a decrease in chlorophyll and carotenoid content 
and photosynthesis in response to increasing insect 
density.

In this study, psyllid infestation affected the total 
phenolic content of carrot leaves, which increased in 
response to B. trigonica feeding. These results are 
consistent with those reported by Talcott and Howard 
(1999) and Nissinen et al. (2012). Often, plants may 

respond to pathogen and insect infestations by pro-
ducing greater levels of secondary metabolites such 
as certain phenolics and terpenoids (Wallis et  al., 
2008). Plant phenols constitute one of the most com-
mon and widespread groups of defensive compounds, 
which play a major role in host plant resistance (HPR) 
against herbivores including insects (Sharma, 2008; 
Usha et  al., 2010; War et  al., 2011). Previous stud-
ies also reported that increased levels of polyphenolic 
molecules in the leaves increase defense response 
or resistance in several plants (Felton & Duffey, 
1990; Miles & Oertli, 1993). Lattanzio et al. (2009) 
revealed that polyphenolic molecules in plants have 
been reported to fluctuate in response to insect dam-
age. A defense mechanism occurs after pathogen or 
insect damage and may involve the activation of phe-
nylalanine ammonia-lyase (PAL) (Felton et al., 1999). 
This enzyme acts as a catalyst in phenylpropanoid 
biosynthesis. Similar results revealed that PAL activ-
ity correlated with elevated concentration of phenols 
was strongly elevated in  Chrysanthemum during the 
early period (0.5 to 6  h) after aphid infestation (He 
et al., 2011) and in kale after P. brassicae herbivory 
(Ibrahim et al., 2018).

Total flavonoid contents were higher in infested 
leaves compared to non-infested ones. Beyond their 
well-known antioxidant properties, flavonoids also 
play an important role in insect–plant interactions 
(Kovalikova et al., 2019). They are generally involved 
in plant resistance to insects. In the present study, 
carrot plants responded to B. trigonica feeding by 
increasing flavonoid production. The onset of heavy 
infestations was observed in conjunction with higher 
levels of flavonoids.

An increase of proline content was also noted 
under the stress of psyllid feeding. A positive 

Table 4   Changes of pH, 
titratable acidity and total 
soluble solids (TSS) in 
carrot juice according to 
nymphal density
Values are means of fifteen 
replicates ± standard error. 
Means followed by the 
different letter within a 
same column indicate 
significant differences 
according to Duncan test. 
Significance of F ratio: ** 
P < 0.01

Number of nymphs pH Titratable acidity
(g.l-1)

TSS
(°Brix)

Control 6.93 ± 0.15a 0.03 ± 0.002d 7.90 ± 0.12a
3 6.82 ± 0.02ab 0.04 ± 0.01d 6.00 ± 0.080b
5 6.52 ± 0.02bc 0.08 ± 0.001c 5.50 ± 0.0.15c
8 6.50 ± 0.10bc 0.10 ± 0.005b 5.13 ± 0.06d
10 6.45 ± 0.29c 0.12 ± 0.01b 4.80 ± 0.1e
12 6.41 ± 0.25c 0.18 ± 0.01a 4.20 ± 0.01f
15 6.36 ± 0.24c 0.19 ± 0.01a 3.66 ± 0.13 g
Significance ** ** **
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correlation was recorded between proline content and 
number of psyllid nymphs.

This may indicate that proline accumulation is a 
defensive response to insect herbivory as proline is 
a tissue-repairing metabolite. Similar results have 
been reported in eucalypt leaves infested with xylem-
feeding insects (Khattab, 2005). Proline is a universal 
osmolyte accumulated in response to several stresses 
(Öncel et  al., 1996) and may have a role in plant 
defense reactions (Ding et al., 2000; Stevenson et al., 
2009). The excessive proline accumulation in propor-
tion to number of attacking insects suggest that pro-
line estimates may be used to determine the extent of 
herbivory in carrot and other plants. Such increases 
in total phenols, flavonoids and proline contents are 
considered elements of induced resistance in hosts 
against herbivory.

Changes of physico-chemical properties in carrot 
juices under insect stress were also determined. A 
decrease of juice pH was observed.

However, increasing psyllid density led to an 
increase in titratable acidity. Similarly, psyllid feed-
ing was shown to increase orange juice acidity as 
reported by Plotto et al. (2010).

Total soluble solids (TSS) decreased as nymph 
density increased. This decrease may be due to a 
reduction in the surface area of the leaf exposed to 
light due to the damage associated with increased 
insect pest populations (Zubair et  al., 2015). Zubair 
et  al. (2017) reported that carbohydrates and total 
soluble solids also decreased due to stress induced 
by insect attack, which led to the reduction of pro-
spective growth and ultimate juice content in citrus 
fruits. Thus, the reduction in sugar content caused 
by psyllid attack indicates increased respiration and 
carbohydrate consumption due to stress and wound-
healing activity by the plant. This is confirmed by 
results from other studies of psyllid-exposed carrots 
(Nissinen et al., 2012).

Conclusion

Psyllid infestation causeds physiological and bio-
chemical changes to carrot plants. A decrease in the 
photosynthetic pigments (chlorophyll a, chlorophyll 
b and carotenoid content) was associated with psyllid 
nymph feeding. Proline content increased in response 

to B. trigonica infestation. Infested leaves also 
showed higher phenol and flavonoid contents. Feed-
ing by nymphs of B. trigonica also caused changes 
to parameters associated with carrot juice quality 
such as pH, TSS and titratable acidity. These changes 
could be considered as a result of the host’s defense 
response.

All the tested carrot samples were negative for 
the presence of “Ca. L. solanacearum”. Thus, the 
obtained results were mainly caused by nymph feed-
ing. However, further studies are required to examine 
how carrot host chemistry can be affected by ‘Ca. L. 
solanacearum’ which may contribute to developing a 
clear picture of carrot host responses to ‘Ca. L. solan-
acearum’ or psyllids.
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