Identification and characterization of *Colletotrichum* species associated with mango anthracnose in Taiwan

Chao-Jung Wu · Hsin-Kuei Chen · Hui-Fang Ni

Accepted: 26 February 2020 / Published online: 17 April 2020 © Koninklijke Nederlandse Planteziektenkundige Vereniging 2020

Abstract Mango is widely grown in Taiwan and anthracnose is one of the most important diseases of this crop. The aim of this study was to investigate Colletotrichum species associated with mango and the pathogenicity of these fungal species. From 2006 to 2017, mango tissue from 33 mango orchards were collected. Eighty-seven isolates associated with mango were analyzed preliminarily by comparing partial glyceraldehyde-3-phosphate dehydrogenase sequences. Four species belonging to C. gloeosporioides complex were preliminarily identified, namely C. asianum (68 isolates), C. fructicola (four isolates), C. siamense (eight isolates) and C. tropicale (two isolates). The other five isolates were identified as belonging to the C. acutatum complex. Ten isolates, belonging to different Colletotrichum species according to glyceraldehyde-3phosphate dehydrogenase sequences prediction, were used for further morphology and multi-gene phylogenetic analysis. Five species were identified, namely C. asianum, C. fructicola, C. siamense, C. tropicale and C. scovillei. All five species showed pathogenicity on fruit, and C. asianum isolates C-1076 and C-1646 as well as C. siamense isolate C-526 caused larger lesions than the other isolates. On mango leaves, C. asianum, C. fructicola, C. siamense and C. scovillei isolates were pathogenic, while C. tropicale isolates, C-141 and C-303, failed to cause significant foliar lesions. In

C.-J. Wu · H.-K. Chen · H.-F. Ni (🖂)

addition, *C. siamense* isolates C-526 and C-848 caused significantly larger lesions on leaves than other isolates. This study reports the identification and pathogenicity of *Colletotrichum* species related to mango anthracnose in Taiwan.

Keywords *Colletotrichum* spp. · Multi-gene phylogenetic analysis · Mango anthracnose · Pathogenicity test

Introduction

Mango (*Mangifera indica*) is an important fruit crop in Taiwan. According to the Agricultural Statistics Yearbook 2018 (https://agrstat.coa.gov. tw/sdweb/public/book/Book.aspx), the total planted area in Taiwan in 2018 was 16,109 ha, and 146,672 metric tons of mango fruits were produced, with the value of over 243 million US dollars. The main mango-planting areas are Tainan, Pingtung, Kaohsiung, and Chiayi Counties.

The main cultivar planted in Taiwan, Irwin, is very sensitive to anthracnose, which is caused by *Colletotrichum* species. The disease attacks the leaves, flowers and fruits of Irwin. On young plant tissues, small red spots appear first, and gradually the spots expand and become larger black necrotic lesions. In addition, post-harvest outbreaks of anthracnose symptoms substantially shorten the shelf life of mature mango fruits (Arauz 2000).

Department of Plant Protection, Chiayi Agricultural Experiment Branch, Taiwan Agricultural Research Institute, Chiayi, Taiwan e-mail: hfni@dns.caes.gov.tw

In the past, morphological characteristics were relied upon to identify Colletotrichum species. However, since the shapes and sizes of spores are similar among Colletotrichum species and colony diversity is observed under different growth conditions, it is hard to distinguish Colletotrichum species solely by morphology. Therefore, multiple-gene phylogenetic analysis has been introduced to separate Colletotrichum species. For example, Weir et al. (2012) used a set of nuclear gene regions, actin (ACT), calmodulin (CAL), chitin synthase (CHS), glyceraldehyde-3-phosphate dehydrogenase (GAPDH), and the ribosomal internal transcribed spacer (ITS) to distinguish species within the C. gloeosporioides complex. On other research, ACT, CHS, GAPDH, histone H3, ITS and beta-tubulin (TUB) were used to analyze species within the C. acutatum complex (Damm et al. 2012).

In the past, mango anthracnose was considered to be caused by C. gloeosporioides and C. acutatum (Dodd et al. 1997; Freeman et al. 1998; Jayasinghe and Fernando 2009), and these species were also reported as the causal agents of mango anthracnose in Taiwan (Ann 1995; Weng and Chuang 1995). However, with the development of phylogenetic analysis, recent studies have demonstrated that mango anthracnose is caused by multiple Colletotrichum species. For instance, in northeastern Brazil, there are five species, C. asianum, C. fructicola, C. tropicale, C. karstii and C. dianesei, responsible for mango anthracnose (Lima et al. 2013). In Guangxi, China, C. asianum, C. fructicola, C. siamense and C. scovillei were reported to cause anthracnose (Mo et al. 2018; Qin et al. 2019). In Taiwan, C. asianum, C. fructicola, C. tropicale and C. siamense have also been indicated as pathogens of mango anthracnose (Lin 2018).

Anthracnose pathogens used in this study were collected from 33 orchards located in main mango producing areas in Taiwan from 2006 to 2017. There were two main objectives in this study. The first objective was to identify the fungal species associated with mango anthracnose in Taiwan by using multi-gene phylogenetic analysis methods, and the second was to evaluate the pathogenicity of different fungal species on leaves and fruits.

Materials and methods

Fungal isolation

Mango fruits, stems and pedicels from diseased and healthy plants were collected from 33 orchards in

different areas in Taiwan in 2006–2017, Chiayi, Tainan, Kaohsiung and Pingtung, and Colletotrichum species were isolated from these plant tissues. For surface disinfection, fruits with anthracnose symptoms were rinsed with 75% ethanol and air-dried. Stems and pedicels were cut into 1-cm-long fragments, soaked for 30 s in 75% ethanol and 30 s in 0.6% NaOCl, and then rinsed twice with sterilized water. After disinfection, the pieces of stem and pedicels were plated onto acidified potato dextrose agar [APDA, 300 mL potato dextrose agar (PDA) with 750 µL 50% (v/v) lactic acid] and incubated for 7 d under 25 °C. The margins of colonies were transferred to PDA. After sporulation, for each isolate, an ooze of spores was mixed with a drop of sterilized water and spread on water agar using a wire loop. A germinating spore was cut from water agar to obtain a single colony.

DNA extraction, PCR and DNA sequencing

For DNA extraction, the mycelium of each isolate was collected from the surface of PDA and ground in 0.5 N NaOH with an electronic grinder. After centrifugation, the supernatant was mixed with 0.1 M Tris buffer (pH 8.0) in a ratio of 1:9 (ν/ν) and used as the DNA template for PCR (White et al. 1990).

PCR amplification of the ACT, CAL, CHS, GAPDH, ITS and TUB genes was carried out using the primer pairs ACT-512F and ACT-783R (Carbone and Kohn 1999), CL1C and CL2C (Weir et al. 2012), CHS-79F and CHS-345R (Carbone and Kohn 1999), GDF and GDR (Templeton et al. 1992), ITS-1F (Gardes and Bruns 1993) and ITS-4 (White et al. 1990), and T1 (O'Donnell and Cigelnik 1997) and Bt2b (Glass and Donaldson 1995), respectively. The PCR mixtures contained 11.9 µL of double-distilled sterilized water, 4 μ L of 5× Phusion HF buffer, 0.4 μ L of dNTPs (2.5 mM each dNTP), 1 µL of each primer (10 µM), 0.2 µL (2 U) of Phusion High-fidelity DNA polymerase (ThermoFisher, USA), and 1.5 µL of DNA template. The reactions were performed in a ThermoFisher SensoQuest Labcycler thermal cycler. The PCR program for all genes was 98 °C for 30 s, followed by 35 cycles of 98 °C for 10 s, 52 °C for 30 s, 72 °C for 30 s, and 72 °C for 10 min. The amplification products were sent to Tri-I Biotech Incorporation Company for purification and sequencing, and the sequences for each isolate in this study were deposited in GenBank (Table 1).

aiwan, that were used in this study, and their GenBank accession numbers	
in T	
obtained from mango	
pp.,	I
^c Colletotrichum s	
ss of	
sample of isolate	
sut	
1 A	
Table	

		Culture accession numbers ^z		Genbank acce	ssion number ^y				
Isolate	Location		Tissues	ACT	CAL	CHS-1	GAPDH	ITS	TUB
C. asianum									
C-1076	Jiadong, Pingtung	FU31254	young fruit ^x	MK462966	MK497049	MK347246	MK376934	MK318769	Ι
C-1646	Yujing, Tainan	FU31255	mature fruit	MK462967	MK497050	MK347247	MK376935	MK326570	Ι
C. fructicolı	1								
C-517	Chiayi County, Chiayi	FU31256	mature fruit	MK358124	MK497051	MK347248	MK473907	MK326583	I
C-557	Chiayi County, Chiayi	FU31257	mature fruit	MK358125	MK497052	MK347249	MK473908	Mk326868	I
C. siamense									
C-526	Guantian, Tainan	FU31252	mature fruit	MK358126	MK387144	MK347250	MK473909	MK326903	I
C-848	Fangshan, Pingtung	FU31253	mature fruit	MK358127	MK387145	MK347251	MK473910	MK326904	I
C. tropicale									
C-141	Yujing, Tainan	FU31250	pedicel	MK358128	MK387146	MK520816	MK376936	MK329245	I
C-303	Jiali, Tainan	FU31251	mature fruit	MK358129	MK387147	MK520817	MK376937	MK327139	I
C. scovillei									
C-212	Jiaxian, Kaohsiung	FU31258	mature fruit	MK462968	Ι	Ι	MK473911	MK327142	MK462970
C-1428	Chiayi Agricultural Experiment Station	FU31259	young fruit	MK462969	I	I	MK473912	MK329246	MK462971
^z Culture act	cession numbers were prov gene, CAL calmodulin gene	ided by Bioresource Collection at , CHS chitin synthetase gene, GA	nd Research Cent APDH glyceralder	ter, Hsinchu, Tai 1yde-3-phosphat	wan e dehydrogenase	gene, ITS riboso	mal internal trans	scribed spacer re	gion, TUB β-

tubulin gene

 $^{\mathrm{x}}$ Young fruit are green fruit with diameter about 1 cm; mature fruit indicates post-harvest mature fruit

Phylogenetic analysis

Bayesian inference was used to construct phylogenetic trees. The ACT, CAL, CHS, GAPDH and ITS nuclear gene regions were used in C. gloeosporioides species complex analysis, and ACT, ITS and TUB were used in C. acutatum species complex analysis. Sequences of Colletotrichum-type species from the GenBank database were included in the analysis (Table 2). Multiple sequence alignment of each gene was conducted using ClustalX v. 2.1 (Larkin et al. 2007), and these alignments were concatenated using SequenceMatrix v. 1.7.8 (Vaidya et al. 2011). jModeltest (Posada 2008) was used to choose the best-fit DNA substitution model under the Bayesian information criterion (BIC) (Table 3). Phylogenetic tree construction was conducted with MrBayes v. 3.2.6 (Ronquist et al. 2012). The analysis was run twice for 5×10^7 generations, and samples were taken from the posterior every 10,000 generations. The first 25% of generations were discarded as burn-in. Convergence of all parameters was checked using the Tracer program (Rambaut and Drummond 2007).

Morphology

For colony observation, isolates were grown on PDA (Merck, Germany) for 7 days at 25 °C under near-UV fluorescent tubes (12 h light/12 h dark). The lengths and widths of 50 conidia from each isolate grown on PDA were observed and measured. To measure the growth rate, five plates of each isolate were incubated at 25 °C in darkness, and the diameters of colonies were measured after 5 and 7 days of incubation. These values were used to calculate the growth rate.

Pathogenicity tests

Pathogenicity tests were conducted on detached young leaves and mature fruits of mango (cv. Irwin).

For the leaf inoculation assay, detached, asymptomatic young leaves were disinfected with 75% ethanol and air-dried. The inoculum was grown on water agar (WA, 2% agar) plates for 5 days in darkness. Two stab wounds were made on both sides of a leaf using a sterilized needle, and one hyphal disc 5 mm in diameter was cut from the WA plate and placed on each wound. Five leaves were inoculated for each isolate. WA discs without fungi were used as a negative control. Inoculated leaves were placed on flat shelves and incubated in sealed plastic boxes with water on the bottom at 25b°C for 5 days, and the diameters of necrotic areas were measured.

On fruits, isolates were incubated on PDA for 5 days at 25 °C, and 5-mm-diameter agar discs were cut from the margins of the colonies for inoculation. For surface disinfection, half-ripe fruits were first soaked in warm water (58 °C) for 2 min, and then soaked immediately in water at room temperature to avoid heat damage. After air-drying, fruits were sealed in paper boxes with 450 g of solid calcium carbide (CaC₂) for 2 days to ripen the fruits. Fruits were rinsed with 75% ethanol and air-dried before inoculation. A stab wound was made on each fruit with a sterilized needle, and a hyphal disc was placed on the wound. Ten fruits were inoculated for each isolate, and PDA discs were used as a negative control. The inoculated fruits were sealed in plastic bags with open petri dishes contained water for 2 days. The lesion diameter was measured at 7 days post-inoculation to assess the aggressiveness of different isolates. Differences in aggressiveness caused by Colletotrichum species were examined by one-way ANOVA, and means were compared using Fisher's LSD test. An F value with P < 0.05 was considered significant. For each isolate, the margin of the lesion was cut and incubated on APDA agar to complete Koch's postulate.

Results

Fungal isolation

A total of 682 isolates from 560 samples were obtained. Eighty-seven isolates were chosen arbitrarily for initial analysis based on partial sequences of the GAPDH gene. By performing BLASTn searches of these sequences against the GenBank database, the 87 isolates were preliminarily classified into five *Colletotrichum* species. Four species belonged to the *C. gloeosporioides* species complex: *C. asianum* (68 isolates), *C. fructicola* (four isolates), *C. siamense* (eight isolates), and *C. tropicale* (two isolates). In addition, there were five isolates belonging to the *C. acutatum* species complex.

Phylogenetic analysis

Ten isolates (two each of five different *Colletotrichum* species) based on GAPDH classification were chosen

Table 2 Colletotrichum spp. used as comparison in phylogenetic analysis, with the host, location, and GenBank accession numbers of gene sequences

			Genbank acc	cession numb	er ^z			
	host	country	STI	GAPDH	CAL	ACT	CHS-1	TUB
C. gloeosporioides species complex								
C. aenigma ICMP 18608	Persea americana	Israel	JX010244	JX010044	JX009683	JX009443	JX009774	I
C. aeschynomenes ICMP 17673	Aeschynomene virginica	USA	JX010176	JX009930	JX009721	JX009483	JX009799	Ι
C. alatae CBS 304.67	Dioscorea alata	India	JX010190	066600XI	JX009738	JX009471	JX009837	I
C. alienum ICMP 12071	Malus domestica	New Zealand	JX010251	JX010028	JX009654	JX009572	JX009882	I
C. aotearoa ICMP 18537	Coprosma sp.	New Zealand	JX010205	JX010005	JX009611	JX009564	JX009853	I
C. asianum ICMP 18696	Mangifera indica	Australia	JX010192	JX009915	JX009723	JX009576	JX009753	Ι
C. asianum ICMP 18605	Mangifera indica	Thailand	JX010194	JX010021	JX009726	JX009465	JX009787	I
C. asianum CBS 130418	Coffea arabica	Thailand	FJ972612	JX010053	FJ917506	JX009584	JX009867	I
C. boninense CBS 123755	Crinum asiaticum var.	Japan	JX010292	JX009905	HM582004	JX009583	JX009827	I
C. clidemiae ICMP 18658	sinicum Clidemia hirta	USA,	JX010265	JX009989	JX009645	JX009537	JX009877	I
C. cordylinicola ICMP 18579	Cordyline fruticosa	Hawaii Thailand	JX010226	JX009975	HM470238	HM470235	JX009864	I
C. fructicola ICMP 12568	Persea americana	Australia	JX010166	JX009946	JX009680	JX009529	JX009762	I
C. fructicola ICMP 18613	Limonium sinuatum	Israel	JX010167	366600XI	JX009675	JX009491	JX009772	I
C. fructicola ICMP 18610	Pyrus pyrifolia	Japan	JX010174	JX010034	JX009681	JX009526	JX009788	Ι
C. fructicola ICMP 18581	Coffea arabica	Thailand	JX010165	JX010033	FJ917508	FJ907426	JX009866	Ι
C. fructicola (syn. C. ignotum) CBS 125397	Tetragastris panamensis	Panama	JX010173	JX010032	JX009674	JX009581	JX009874	Ι
C. fructicola (syn. Glomerella cingulata var. minor) CBS 238.49	Ficus edulis	Germany	JX010181	JX009923	JX009671	JX009495	JX009839	I
C. gloeosporioides ICMP 17821	Citrus sinensis	Italy	JX010152	JX010056	JX009731	JX009531	JX009818	Ι
C. gloeosporioides (syn. Gloeosporium pedemontanum) CBS 273.51	Citrus limon	Italy	JX010148	JX010054	JX009745	JX009558	JX009903	I
C. hippeastri CBS 241.78	Hippeastrum sp.	Netherlands	JX010293	JX009932	JX009740	JX009485	JX009838	Ι
C. horii ICMP 12942	Diospyros kaki	New Zealand	GQ329687	GQ329685	JX009603	JX009533	JX009748	I
C. horii ICMP 10492	Diospyros kaki	Japan	GQ329690	GQ329681	JX009604	JX009438	JX009752	I
C. kahawae subsp. ciggaro ICMP 18539	Olea europaea	Australia	JX010230	JX009966	JX009635	JX009523	JX009800	Ι
C. kahawae subsp. ciggaro (syn. Glomerella cingulata var. migrans) ICMP 17922	Hypericum perforatum	Germany	JX010238	JX010042	JX009636	JX009450	JX009840	I
	Vaccinium sp.	USA	JX010228	JX009950	JX009744	JX009536	JX009902	Т

Table 2 (continued)

🖄 Springer

			Genbank acc	cession numb	er ^z			
	host	country	ITS	GAPDH	CAL	ACT	CHS-1	TUB
C. kahawae subsp. ciggaro (syn. Glomerella rufomaculans var. vaccinii) CBS 124.22								
C. kahawae subsp. Kahawae ICMP 17816	Coffea arabica	Kenya	JX010231	JX010012	JX009642	JX009452	JX009813	Ι
C. musae CBS 116870	Musa sp.	USA	JX010146	JX010050	JX009742	JX009433	JX009896	I
C. nupharicola CBS 470.96	Nuphar lutea subsp.	NSA	JX010187	JX009972	JX009663	JX009437	JX009835	I
C. psidii CBS 145.29	potysepata Psidium sp.	Italy	JX010219	73009967	JX009743	JX009515	100000XL	I
C. queenslandicum ICMP 1778	Carica papaya	Australia	JX010276	JX009934	JX009691	JX009447	JX009899	I
C. salsolae ICMP 19051	Salsola tragus	Hungary	JX010242	JX009916	JX009696	JX009562	JX009863	I
C. siamense ICMP 12565	Persea americana	Australia	JX010249	JX009937	JX009698	JX009571	JX009760	I
C. siamense ICMP 18121	Dioscorea rotundata	Nigeria	JX010245	JX009942	JX009715	JX009460	JX009845	Ι
C. siamense ICMP 18739	Carica papaya	South	JX010161	JX009921	JX009716	JX009484	JX009794	Ι
C. siamense ICMP 18578	Coffea arabica	Africa Thailand	JX010171	JX009924	FJ917505	FJ907423	JX009865	I
C. siamense (syn. C. hymenocallidis) CBS 125378	Hymenocallis americana	China	JX010278	JX010019	JX009709	GQ856775	GQ856730	I
C. siamense (syn. C. jasmini-sambac) CBS 130420	Jasminum sambac	Vietnam	HM131511	HM131497	JX009713	HM131507	JX009895	Ι
C. theobromicola CBS 124945	Theobroma cacao	Panama	JX010294	JX010006	JX009591	JX009444	JX009869	I
C. theobromicola (syn. C. fragariae) CBS 142.31	Fragaria × ananassa	USA	JX010286	JX010024	JX009592	JX009516	JX009830	I
C. theobromicola (syn. C. gloeosporioides f. stylosanthis) CBS 124251	Stylosanthes viscosa	Australiax	JX010289	JX009962	JX009597	JX009575	JX009821	I
<i>C. ti</i> ICMP 4832	Cordyline sp.	New Zealand	JX010269	JX009952	JX009649	JX009520	JX009898	I
C. tropicale ICMP 18672	Litchi chinensis	Japan	JX010275	JX010020	JX009722	JX009480	JX009826	I
C. tropicale CBS 124949	Theobroma cacao	Panama	JX010264	JX010007	JX009719	JX009489	JX009870	Ι
C. tropicale ICMP 18651	Annona muricata	Panama	JX010277	JX010014	JX009720	JX009570	JX009868	Ι
C. xanthorrhoeae CBS 127831	Xanthorrhoea preissii	Australia	JX010261	JX009927	JX009653	JX009478	JX009823	Ι
Glomerella cingulata "f.sp. Camelliae" ICMP 18542	Camellia sasanqua	NSA	JX010223	JX009994	JX009628	JX009488	JX009857	I
C. acutatum species complex								
C. acerbum CBS 128530	Malus domestica	New	JQ948459	I	I	JQ949780	I	JQ950110
C. acutatum CBS 127545	Aspalathus linearis	South	JQ948383	I	Ι	JQ949704	I	JQ950034
C. acutatum CBS 144.29	Capsicum annuum	Amca Sri Lanka	JQ948401	I	I	JQ949722	I	JQ950052

\sim
رک ا
ല്പ
E
÷Ξ
q
_ 2
ੁ
2
e,
9
3
-

			Genbank ac	cession num	ber ^z			
	host	country	STI	GAPDH	CAL	ACT	CHS-1	TUB
C. acutatum CBS 112996	Carica papaya	Australia	JQ005776	. 1	. 1	JQ005839	. 1	JQ005860
C. acutatum CBS 369.73	Lupinus angustifolius	New Zealand	JQ948350	I	I	JQ949671	I	JQ950001
C. australe CBS 116478	Trachycarpus fortunei	South Africa	JQ948455	I	I	JQ949776	I	JQ950106
C. australe CBS 131325	Hakea sp.	Australia	JQ948456	Ι	I	JQ949777	I	JQ950107
C. brisbanense CBS 292.67	Capsicum annuum	Australia	JQ948291	I	I	JQ949612	I	JQ949942
C. chrysanthemi IMI 364540	Chrysanthemum	China	JQ948273	I	I	JQ949594	I	JQ949924
C. chrysanthemi CBS 126518	coronarum Carthamus sp.	Netherlands	JQ948271	I	I	JQ949592	I	JQ949922
C. chrysanthemi CBS 126519	Chrysanthemum	Netherlands	JQ948272	I	I	JQ949593	I	JQ949923
C. cosmi CBS 853.73	coronarium Cosmos sp.	Netherlands	JQ948274	I	I	JQ949595	I	JQ949925
C. costaricense CBS 330.75	Coffea arabica	Costa Rica	JQ948180	Ι	I	JQ949501	I	JQ949831
C. costaricense CBS 211.78	Coffea sp.	Costa Rica	JQ948181	Ι	Ι	JQ949502	I	JQ949832
C. cuscutae IMI 304802	Cuscuta sp.	Dominica	JQ948195	Ι	I	JQ949516	Ι	JQ949846
C. fioriniae CBS 125396	Malus domestica	USA	JQ948299	Ι	I	JQ949620	Ι	JQ949950
C. fioriniae CBS 129947	Vitis vinifera	Portugal	JQ948343	I	I	JQ949664	Ι	JQ949994
C. godetiae CBS 133.44	<i>Clarkia hybrida</i> , cv. Kelvon Glory	Denmark	JQ948402	I	I	JQ949723	I	JQ950053
C. godetiae CBS 129942	Mahonia aquifolium	Germany	JQ948428	I	I	JQ949749	I	JQ950079
C. guajavae IMI 350839	Psidium guajava	India	JQ948270	I	I	JQ949591	I	JQ949921
C. indonesiense CBS 127551	Eucalyptus sp.	Indonesia	JQ948288	Ι	Ι	JQ949609	Ι	JQ949939
C. johnstonii IMI 357027	Citrus sp.	New	JQ948443	I	Ι	JQ949764	I	JQ950094
C. johnstonii CBS 128532	Solanum lycopersicum	Lealand New Zealand	JQ948444	I	Ι	JQ949765	I	JQ950095
C. kinghornii CBS 198.35	Phormium sp.	UK	JQ948454	I	I	JQ949775	Ι	JQ950105
C. laticiphilum CBS 112989	Hevea brasiliensis	India	JQ948289	I	I	JQ949610	Ι	JQ949940
C. laticiphilum CBS 129827	Hevea brasiliensis	Colombia	JQ948290	I	I	JQ949611	I	JQ949941
C. limetticola CBS 114.14	Citrus aurantifolia	USA, Florida	JQ948193	I	I	JQ949514	I	JQ949844
C. lupini CBS 507.97	Lupinus albus	France	JQ948166	Ι	I	JQ949487	I	JQ949817
C. lupini CBS 109225	Lupinus albus	Ukraine	JQ948155	Ι	I	JQ949476	Ι	JQ949806

🖄 Springer

			Genbank ac	cession num	ber ^z			
	host	country	STI	GAPDH	CAL	ACT	CHS-1	TUB
C. melonis CBS 159.84	Cucumis melo	Brazil	JQ948194	I	I	JQ949515	I	JQ949845
C. nymphaeae CBS 119294	Leucaena sp.	Mexico	JQ948205	Ι	Ι	JQ949526	Ι	JQ949856
C. nymphaeae CBS 515.78	Nymphaea alba	Netherlands	JQ948197	Ι	Ι	JQ949518	Ι	JQ949848
C. orchidophilum CBS 631.80	Ascocenda sp.	NSA	JQ948152	I	Ι	JQ949473	I	JQ949803
C. orchidophilum CBS 632.80	Dendrobium sp.	USA	JQ948151	I	I	JQ949472	I	JQ949802
C. paxtonii CBS 502.97	Musa nana	'West	JQ948286	I	Ι	JQ949607	I	JQ949937
C. paxtonii IMI 165753	<i>Musa</i> sp.	Indies" Saint Lucia	JQ948285	I	I	JQ949606	I	JQ949936
C. phormii CBS 118201	Phormium sp.	New	JQ948449	I	I	JQ949770	I	JQ950100
4	4	Zealand	,			,		,
C. phormii CBS 118194	Phormium sp.	Germany	JQ948446	Ι	I	JQ949767	I	JQ950097
C. pseudoacutatum CBS 436.77	Pinus radiata	Chile	JQ948480	Ι	Ι	JQ949801	Ι	JQ950131
C. pyricola CBS 128531	Pyrus communis	New	JQ948445	I	I	JQ949766	I	JQ950096
		Zealand						
C. rhombiforme CBS 129953	Olea europaea	Portugal	JQ948457	Ι	I	JQ949778	Ι	JQ950108
C. rhombiforme CBS 131322	Vaccinium macrocarpum	NSA	JQ948458	I	I	JQ949779	I	JQ950109
C. salicis CBS 129356	Rhododendron sp.	Latvia,	JQ948470	I	I	JQ949791	I	JQ950121
	1.0	Riga	10040470			10201001		10050111
C. salicis CBS 60/.94	Saux sp.	Netherlands	JQ948460	I	I	JU949/81	I	11106606
C. scovillei CBS 126529	Capsicum sp.	Indonesia	JQ948267	I	I	JQ949588	Ι	JQ949918
C. scovillei CBS 126530	Capsicum sp.	Indonesia	JQ948268	Ι	I	JQ949589	I	JQ949919
C. scovillei CBS 120708	Capsicum annuum	Thailand	JQ948269	I	I	JQ949590	I	JQ949920
C. scovillei P-14	Capsicum sp.	China	MH306141			MH306142		MH306143
C. scovillei YN51–1	Mangifera indica	China	MH636512			MH622590		MH622722
C. simmondsii CBS 122122	Carica papaya	Australia	JQ948276	I	Ι	JQ949597	I	JQ949927
C. simmondsii CBS 111531	Protea cynaroides	NSA	JQ948282	I	Ι	JQ949603	Ι	JQ949933
C. sloanei IMI 364297	Theobroma cacao	Malaysia	JQ948287	I	Ι	JQ949608	I	JQ949938
C. tamarilloi CBS 129814	Solanum betaceum	Colombia	JQ948184	Ι	Ι	JQ949505	Ι	JQ949835
C. tamarilloi CBS 129954	Solanum betaceum	Colombia	JQ948188	Ι	Ι	JQ949509	Ι	JQ949839
C. walleri CBS 125472	Coffea sp.	Vietnam	JQ948275	I	I	JQ949596	I	JQ949926
2 ACT actin range CAI colmodulin range CHS chitin completees	CADDH almandahuda 3	nhoenhata dal	esenepoupro	4+ JTC 4+	i lemeendin e	stamol transor	had chacar of	TID 0

а

 Table 3
 Nucleotide substitution models used in phylogenetic analysis

	DNA substitution model	
Gene ^z	<i>C. gloeosporioides</i> species complex	<i>C. acutatum</i> species complex
ACT	TrNef+G	TrNef+G
CAL	TrNef+I	_
CHS	TrNef+G	_
GAPDH	HKY+I+G	_
ITS	TrNef+I	K80 + I
TUB	-	HKY + G

^{*z*}*ACT* actin gene, *CAL* calmodulin gene, *CHS* chitin synthetase gene, *GAPDH* glyceraldehyde-3-phosphate dehydrogenase gene, *ITS* the ribosomal internal transcribed spacer region, *TUB* β -tubulin gene

for multiple-gene phylogenetic analysis. For the C. gloeosporioides species complex analysis, the aligned genes boundaries in the alignment were: ACT: 1-309, CAL: 310-1107, CHS: 1108-1406, GAPDH: 1407-1715, ITS: 1716-2349. For C. acutatum species complex analysis, the aligned genes boundaries were: ACT: 1-255, ITS: 256-822, TUB: 823-1604. The classification of species belonging to the C. gloeosporioides species complex based on the multi-gene phylogenetic tree shown in Fig. 1a was consistent with that based on GAPDH sequences. C-1076 and C-1646 belonged to C. asianum, and C-517 and C-557 belonged to C. fructicola. C-141 and C-303 were identified as C. tropicale, and C-526 and C-848 were identified as C. siamense. C-212 and C-1428 were grouped into the same clade as C. scovillei in the multi-gene phylogenetic tree (Fig. 1b).

Fig. 1 Bayesian phylogenetic trees of *Colletotrichum* isolates from mango in Taiwan and from GenBank. **a** *C. goloeosporioides* species complex tree was built using concatenated sequences of partial ACT, CAL, CHS, GAPDH and ITS genes. *C. hippeastri* and *C. boninense* were used as outgroups. **b** *C. acutatum* species complex tree was built using concatenated sequences of partial ACT, ITS and TUB genes. Two *C. orchidophilum* strains were used as outgroups. The scale bars indicate the number of expected changes per site. Isolates from this study are emphasized in bold

Fig. 1 (continued)

Morphology

Colonies of all isolates were white in color during the first two or three days of cultivation, after which some of them turned gray or salmon in color at the upper or lower surface. Colonies were mainly separated into four groups based on their appearance, but diversity in colony morphology was evident even within the same species (data not shown). Among the 10 isolates investigated, conidial sizes and shapes were similar among the four species belonging to *C. gloeosporioides* species complex (Fig. 2). Conidia of these species were aseptate, hyaline and cylindrical, and size ranged from 13.6 to 16.5 μ m long × 5.3 to 6.0 μ m wide. Conidia of

C. scovillei isolates C-212 and C-1428 were hyaline, unicellular and cylindrical to slightly fusiform with both ends acute, and size ranged from 12.4 to 12.8 μ m long × 4.6–4.8 μ m wide.

Fig. 2 Morphological characteristics of colonies and conidia of mango *Colletotrichum* isolates on PDA at 7 days after incubation. Upper (a) and reverse (b) sides of PDA plate and conidia (c) of *C. asianum* isolate C-1646. Upper (d) and reverse (e) sides of PDA plate and conidia (f) of *C. fructicola* isolate C-517. Upper (g) and reverse (h) sides of PDA plate and conidia (i) of *C. siamense* isolate C-848. Upper (j) and reverse (k) sides of PDA plate and conidia (l) of *C. tropicale* isolate C-303. Upper (m) and reverse (n) sides of PDA plate and conidia (o) of *C. scovillei* isolate C-1428. Bars: 10 µm

Pathogenicity test

All five *Colletotrichum* species were pathogenic on wounded mango fruits with the level of aggressiveness varying among the 10 *Colletotrichum* isolates (Table 4). Typical symptoms were sunken and dark lesions expanding from the inoculation sites. The lesion diameters ranged from 4.9 mm to 21.5 mm. *Colletotrichum asianum* isolates C-1076 and C-1646 and *C. siamense* isolate C-526 caused significantly larger lesions on mango fruits than other isolates, and *C. tropicale* isolates C-141 and C-303 showed relatively weak ability to cause necrosis on fruits. No lesions were observed in the negative control.

On leaves, all *Colletotrichum* species were pathogenic except *C. tropicale*. Small, needle-like spots emerged on leaves near the fungal agar disc 5 days after inoculation with *C. tropicale*. Larger, round lesions appeared 6 days after inoculation, but *C. tropicale* was not isolated from the margins of the round lesions. Therefore, the pathogenicity of *C. tropicale* on mango leaves was uncertain. In contrast, the other four *Colletotrichum* species caused black lesions with clear edges on leaves 5 days post-inoculation, and pathogens were re-isolated from the edges of the lesions, completing Koch's postulates. Agar discs used as a negative control did not cause lesions on leaves.

Discussion

This is the latest large-scale survey of diversity of Colletotrichum pathogens associated with mango anthracnose in Taiwan. A recent study by Lin (2018) also surveyed diversity of Colletotrichum pathogens associated with mango anthracnose in Taiwan; however, only the abstract of this research is accessible by internet search engines. In this study, five species of Colletotrichum (C. asianum, C. fructicola, C. scovillei, C. siamense and C. tropicale) were found to be associated with mango anthracnose disease, and C. asianum was the most commonly isolated species. This result is different from that of an earlier investigation in Taiwan, in which only two species, C. gloeosporioides (about 82%) and C. acutatum (about 18%), were determined to be the causal agents of mango anthracnose in Taiwan (Weng and Chuang 1995). However, in this study, the 87 strains analyzed were

Isolate	Conidial size (µm)	Mycelial growth (mm/d)	Lesion diameter on mango leaves (mm)	Lesion diameter on mango fruits (mm)
C. asianum				
C-1076	$14.6 \pm 1.3 \ \mu m \times 6.0 \pm 0.4 \ \mu m$	9.4	15.5 c ^x	25.1 a
C-1646	$16.0 \pm 1.1 \ \mu m \times 5.3 \pm 0.3 \ \mu m$	9.7	22.9 ab	22.6 b
C. fructicola				
C-517	$15.5 \pm 0.9 \ \mu m \times 5.5 \pm 0.2 \ \mu m$	9.9	_y	6.0 ef
C-557	_ ^z	10.6	19.3 bc	16.2 c
C. siamense				
C-526	$15.4 \pm 0.8 \ \mu m \times 5.4 \pm 0.3 \ \mu m$	11.9	23.3 ab	23.4 ab
C-848	$16.5 \pm 0.9 \ \mu m \times 5.4 \pm 0.2 \ \mu m$	12.2	24.7 a	18.1 c
C. tropicale				
C-141	$14.7 \pm 0.8 \ \mu m \times 5.4 \pm 0.3 \ \mu m$	7.6	_	7.9 e
C-303	$13.6 \pm 0.6 \ \mu m \times 5.7 \pm 0.2 \ \mu m$	11.2	_	4.9 f
C. scovillei				
C-212	$12.4 \pm 1.3 \ \mu m \times 4.6 \pm 0.5 \ \mu m$	8.0	11.0 d	6.6 ef
C-1428	$12.8 \pm 1.8 \ \mu m \times 4.8 \pm 0.6 \ \mu m$	8.4	12.4 cd	10.4 d

Table 4 Morphological and aggressiveness descriptions of Colletotrichum isolates from mango in this study

^z C-557 does not produce conidia on PDA plate

^yC-517, C-141 and C-303 do not cause significant lesions on mango leaves

^x Columns with different letters differ significantly according to Fisher's LSD test ($P \le 0.05$)

chosen arbitrarily, which raised the possibility that some *Colletotrichum* species are not identified.

The species mentioned in this paper were also described from other countries or areas. In Brazil, of the five species identified as being pathogens of mango anthracnose (C. asianum, C. fructicola, C. tropicale, C. karstii and C. diansei) (Lima et al. 2013), three were also found to be associated with mango anthracnose in the current study. In Guangxi, China, C. asianum, C. fructicola, C. siamense and C. scovillei are responsible for mango anthracnose disease, and the aggressiveness differed significantly among isolates of the same species (Mo et al. 2018; Qin et al. 2019). C. scovillei was reported to cause mango disease only in China and this report currently, which suggests this mangopathogenic C. scovillei might be endemic or restricted in some areas of Asia. In India, the pathogenicity of C. asianum, C. fructicola and C. siamense on mango was documented (Sharma et al. 2013). In addition to the countries mentioned above, C. asianum, the most frequently isolated species in this paper, was also identified as a cause of mango anthracnose in South Africa, Sri Lanka and Malaysia (Krishnapillai and Wilson Wijeratnam 2014; Latiffah et al. 2015; Sharma et al. 2015). Colletotrichum tropicale, on the contrary, is much less reported, which suggests that this species is not commonly found in mango crops or less aggressive.

Wound inoculation is a common method for evaluating pathogenicity of Colletotrichum spp. causing mango anthracnose (Lima et al. 2013; Mo et al. 2018; Sharma et al. 2013). In our study, a pretest of fungal disc inoculation with no wounding was conducted on leaves; C. siamense isolate C-848 caused lesions on five of six inoculation points 7 days post inoculation, and C. asianum isolate C-1076 caused lesions on all six inoculation points. However, results from wound inoculation were more consistent than from non-wounded inoculations. In nature, wounding on plant surface caused by strong winds or insects is common, and it facilitates the invasion of pathogens. Nevertheless, removing host surface defense may lead to overestimation of pathogen aggressiveness in the field. Further studies should be conducted to determine the aggressiveness of pathogens under non-wounded condition.

All species identified in this study have all been demonstrated to cause anthracnose on other crops. For example, *C. scovillei* was reported as the causal agent of pepper anthracnose in Brazil and China (Caires et al. 2014; Zhao et al. 2016). *C. asianum* and *C. fructicola*

were also able to cause lesions on peppers (Phoulivong et al. 2012), and. C. tropicale was pathogenic on cassava in Brazil (Oliveira et al. 2019). Phoulivong et al. (2012) found that C. siamense isolated from coffee also caused lesions on wounded papaya and orange. Giblin et al. (2018) reported that C. siamense infected both mango and avocado without wounding. In Taiwan, C. siamense has only been reported to cause pepper spot disease on lychee (Ni et al. 2017) and crown rot disease on strawberry (Chung et al. 2019). However, in other countries, C. siamense also infects banana (Kumar et al. 2017), citrus (Cheng et al. 2013), dragon fruit (Meetum et al. 2015) and pear (Fu et al. 2019). All of the fruits mentioned above are important crops in Taiwan and are affected by anthracnose, suggesting that C. siamense might be a potential causal agent of anthracnose disease on these fruits in Taiwan. Phoulivong et al. (2012) also found that C. asianum and C. fructicola were able to cause cross infection by the same isolates among different hosts.

The sensitivity of Colletotrichum species on mango to fungicide treatment has been investigated in Taiwan, and resistance has emerged in some species and areas. A previous study based on restriction fragment length polymorphism analysis indicated that fungicide resistance against benzimidazoles occurred in Colletotrichum species isolated from mango in Tainan (Lou et al. 2010). A recent study demonstrated that most Colletotrichum species on mango show resistance to thiophanate-methyl except C. tropicale (Lin 2018). In addition, our investigation of lychee anthracnose also indicated that thiophanate-methyl resistance is present in Colletotrichum species collected from post-harvest lychee fruits in Tainan, and single nucleotide polymorphisms related to fungicide resistance in these strains were confirmed (unpublished data). These results and the cross-infection ability of Colletotrichum species suggests the possibility that the hazard of fungicide resistance may shift among crops, and this should be taken into consideration by growers when choosing a fungicide for one crop when resistance has been detected in Colletotrichum species on other crops.

In conclusion, this study characterized the identity and pathogenicity of the species causing mango anthracnose in Taiwan. These results are the basis of future studies such as diversity of fungicide sensitivity or host range among these anthracnose species. The information from this and future studies will help pathologists and producers enact plant protection management programs.

Compliance with ethical standards

Conflict of interest There are no potential conflicts of interest.

This research is not involving human participants and/or animals Therefore, there is no informed consent needed.

References

- Ann, P. J. (1995). The sexual stage (Glomerella cingulara) of Colletotrichum gloeosporioides from mango, and effect of temperature and light on its reproduction. *Plant Pathology Bulletin*, 4, 173–179.
- Arauz, L. F. (2000). Mango anthracnose: Economic impact and current options for integrated management. *Plant Disease*, 84, 600–611.
- Caires, N., Pinho, D., Souza, J., Silva, M., Lisboa, D., Pereira, O., & Furtado, G. (2014). First report of anthracnose on pepper fruit caused by *Colletotrichum scoville*i in Brazil. *Plant Disease*, 98, 1437. https://doi.org/10.1094/PDIS-04-14-0426-PDN.
- Carbone, I., & Kohn, L. M. (1999). A method for designing primer sets for speciation studies in filamentous ascomycetes. *Mycologia*, 91, 553–556.
- Cheng, B. P., Huang, Y. H., Song, X. B., Peng, A. T., Ling, J. F., & Chen, X. (2013). First report of *Collectotrichum siamense* causing leaf drop and fruit spot of *Citrus reticulata* Blanco cv. Shiyue Ju in China. *Plant Diasease*, 97, 1508.
- Chung, P. C., Wu, H. Y., Ariyawansa, H. A., Tzean, S. S., & Chung, C. L. (2019). First report of anthracnose crown rot of strawberry caused by *Colletotrichum siamense* in Taiwan. *Plant Disease*. https://doi.org/10.1094/PDIS-12-18-2167-PDN.
- Damm, U., Cannon, P. F., Woudenberg, J. H., & Crous, P. W. (2012). The *Colletotrichum acutatum* species complex. *Studies in Mycology*, 73, 37–113. https://doi.org/10.3114 /sim0010.
- Dodd, J. C., Prusky, D., & Jeffries, P. (1997). Fruit diseases. In R. E. Litz (Ed.), *The Mango: Botany, Production and Uses* (pp. 257–280). Slough: CAB international publication.
- Freeman, S., Katan, T., & Shabi, E. (1998). Characterization of *Colletotrichum* species responsible for anthracnose diseases of various fruits. *Plant Disease*, 82, 596–605.
- Fu, M., Crous, P. W., Bai, Q., Zhang, P. F., Xiang, J., Guo, Y. S., Zhao, F. F., Yang, M. M., Hong, N., Xu, W. X., & Wang, G. P. (2019). *Colletotrichum* species associated with anthracnose of *Pyrus* spp. in China. *Persoonia*, 42, 1–35.
- Gardes, M., & Bruns, T. D. (1993). ITS primers with enhanced specificity for basidiomycetes – Application to the identification of mycorrhizae and rusts. *Molecular Ecology*, 2, 113– 118.
- Giblin, F. R., Tan, Y. P., Mitchell, R., Coates, L. M., Irwin, J. A. G., & Shivas, R. G. (2018). Collectorrichum species associated with pre- and post-harvest diseases of avocado and mango in eastern Australia. *Australasian Plant Pathology*, 47, 269– 276.
- Glass, N. L., & Donaldson, G. C. (1995). Development of primer sets designed for use with the PCR to amplify conserved

genes from filamentous ascomycetes. *Applied and Environmental Microbiology*, *61*, 1323–1330.

- Jayasinghe, C. K., & Fernando, T. H. P. S. (2009). First report of Colletotrichum acutatum on Mangifera indica in Sri Lanka. Cevlon Journal of Science (Biological Sciences), 38, 31–34.
- Krishnapillai, N., & Wilson Wijeratnam, R. S. (2014). First report of *Colletotrichum asianum* causing anthracnose on Willard mangoes in Sri Lanka. *New Disease Reports*, 29, 1.
- Kumar, V. S., Nair, B. A., Nair, P. V. R., Annamalai, A., Jaishanker, R., Umamaheswaran, K., Sooraj, N. P., & Peethambaran, C. K. (2017). First report of *Colletotrichum siamense* causing anthracnose of cliff banana in India. *Plant Disease*, 101, 390.
- Larkin, M. A., Blackshields, G., Brown, N. P., Chenna, R., & McGettigan, P. A. (2007). Clustal W and Clustal X v. 2.0. *Bioinformatics*, 23, 2947–2948.
- Latiffah, Z., Nurul, Z. J., Suzianti, I. V., & Intan, S. M. A. (2015). Molecular characterization of *Colletotrichum* isolates associated with anthracnose of mango fruit. *Sains Malaysiana*, 44, 651–656.
- Lima, N. B., de A. batista, M. V., De Morais, M. A., Barbosa, M. A. G., Michereff, S. J., Hyde, K. D., & Câmara, M. P. S. (2013). Five *Collectotrichum* species are responsible for mango anthracnose in northeastern Brazil. *Fungal Diversity*, *61*(1), 75–88.
- Lin, W. L. (2018). Phylogenetic species and biological characteristics of mango anthracnose pathogens in Taiwan. M.S. thesis. National Chung Hsing University.
- Lou, P. S., Huang, Y. J., Chung, W. C., Cheng, A. S., & Chung, W. H. (2010). Application of PCR-RFLP in detecting benzimidazoles-resistant isolates of *Colletotrichum* gloeoeporioides from mango in Tainan area. *Plant Pathology Bulletin, 19*, 255–260.
- Meetum, P., Leksomboon, C., & Kanjanamaneesathian, M. (2015). First report of *Colletotrichum aenigma* and *C. siamense*, the causal agents of anthracnose disease of dragon fruit in Thailand. *Journal of Plant Pathology*, 97, 402.
- Mo, J., Zhao, G., Li, Q., Solangi, G. S., Tang, L., Guo, T., Huang, S., & Hsiang, T. (2018). Identification and characterization of *Colletotrichum* species associated with mango anthracnose in Guangxi, China. *Plant Disease*, 102, 1283–1289.
- Ni, H. F., Huang, C. W., Wu, C. J., Yang, H. R., Lin, C. Y., Chang, J. Y., & Chang, J. W. (2017). First report of pepper spot disease of lychee caused by *Colletotrichum siamense* in Taiwan. *Journal of Plant Pathology*, 99, 808.
- O'Donnell, K., & Cigelnik, E. (1997). Two divergent intragenomic rDNA ITS2 types within a monophyletic lineage of the fungus *Fusarium* are nonorthologous. *Molecular Phylogenetics and Evolution*, 7, 103–116.
- Oliveira, S. A. S., Bragança, C. A. D., & Silva, L. L. (2019). First report of *Colletotrichum tropicale* causing anthracnose on the wild cassava species *Manihot dichotoma* and *M. epruinosa* in Brazil. *Plant Disease*, 100, 2171.
- Phoulivong, S., Mckenzie, E., & Hyde, K. D. (2012). Cross infection of *Colletotrichum* species: A case study with tropical fruits. *Current Research in Environmental & Applied Mycology*, 2, 99–11.
- Posada, D. (2008). jModelTest: Phylogenetic model averaging. Molecular Biology and Evolution, 25, 1253–1256.
- Qin, L. P., Yu, G. M., Zhang, Y., Su, Q., Nong, Q., Huang, S. L., & Xie, L. (2019). First report of anthracnose of *Mangifera*

indica caused by *Colletotrichum scovillei* in China. *Plant Disease*. https://doi.org/10.1094/PDIS-11-18-1980-PDN.

- Rambaut, A. & Drummond, A. J. (2007). Tracer v. 1.4, Available from http://beast.bio.ed.ac.uk/Tracer
- Ronquist, F., Teslenko, M., van der Mark, P., Ayres, D., & Darling, A. (2012). MrBayes v. 3.2: Efficient Bayesian phylogenetic inference and model choice across a large model space. *Systematic Biology*, 61, 539–542.
- Sharma, G., Kumar, N., Weir, B. S., Hyde, K. D., & Shenoy, B. D. (2013). The ApMat marker can resolve *Colletotrichum* species: A case study with *Mangifera indica*. *Fungal Diversity*, *61*(1), 117–138.
- Sharma, G., Gryzenhout, M., Hyde, K. D., Pinnaka, K., & Shenoy, D. (2015). First report of *Colletotrichum asianum* causing mango anthracnose in South Africa. *Plant Disease*, 99, 725.
- Templeton, M. D., Rikkerink, E. H. A., Solon, S. L., & Crowhurst, R. N. (1992). Cloning and molecular characterization of the glyceraldehyde-3-phosphate dehydrogenase encoding gene and cDNA from the plant pathogenic fungus *Glomerella cingulata. Gene*, *122*, 225–230.

- Vaidya, G., Lohman, D. J., & Meier, R. (2011). SequenceMatrix: Concatenation software for the fast assembly of multi-gene datasets with character set and codon information. *Cladistics*, 27, 171–180.
- Weir, B. S., Johnston, P. R., & Damm, U. (2012). The Collectorichum gloeosporioides species complex. Studies in Mycology, 73, 115–180. https://doi.org/10.3114/sim0011.
- Weng, F. Y., & Chuang, T. Y. (1995). Grouping of mango anthracnose fungus in Taiwan. *Plant Protection Bulletin*, 37, 295– 309.
- White, T. J., Bruns, T., Lee, S., & Taylor, J. W. (1990). Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In M. A. Innis, D. H. Gelfand, J. J. Sninsky, & T. J. White (Eds.), *PCR Protocols: A Guide to Methods and Applications* (pp. 315– 322). New York: Academic Press.
- Zhao, W., Wang, T., Chen, Q. Q., Chi, Y. K., Swe, T. M., & Qi, R. D. (2016). First report of *Colletotrichum scovillei* causing anthracnose fruit rot on pepper in Anhui Province, China. *Plant Disease*, 100, 2168.