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Abstract The chitinase-producing bacterium,
Paenibacillus elgii HOA73, is a biocontrol agent that
limits the damage caused to plants by microbial patho-
gens, insects, and nematodes. However, the mechanisms
involved in the biocontrol of plant diseases by HOA73
have not been determined. The objective of this study
was to elucidate the role of extracellular chitinase ob-
tained from isolate HOA73 in the control of the fungal
pathogen Botrytis cinerea, the causative agent of gray
mold in tomato. The HOA73 strain grew efficiently in a
chitin-containing broth and produced chitin oligomers
through chitinase activity; protease, lipase, and Fe-
chelating siderophores were also secreted by the bacte-
rium. Cultures containing intact bacteria inhibited
B. cinerea conidia germination to a greater extent than
did the bacterial cells alone or the cell-free culture
supernatant. The antifungal activity increased with cul-
ture age and was heat-sensitive because of chitinase-
mediated production of long-chain chitin oligomers.

The biocontrol efficacy of undiluted bacterial cultures
against gray mold in tomato was comparable to that of a
standard fungicide. This study demonstrated that P. elgii
HOA73 bacterial cultures grown on chitin-based mini-
mal medium may be an effective formulation for the
integrated control of gray mold.

Keywords Chitin-basedmedium . Chitin oligomer .

Extracellular enzymes . Graymold

Introduction

Gray mold disease caused by the fungal pathogen Botrytis
cinerea results in serious losses in more than 200 crop
species worldwide (Williamson et al. 2007). The pathogen
infects through dead tissues or wounds in a process fa-
vored by high humidity and low temperature (Eden et al.
1996). In tomato, gray mold occurs on the fruits, leaves,
stems, and flower petals remaining on the fruits, as well as
in pruning wounds on stems (Eden et al. 1996; O'Neill
et al. 1997). The disease is controlled by fungicides, but
the improper and continuous application of the Bsame
mode of action^ fungicide group can lead to the accumu-
lation of toxic residues, contamination of the environment,
and development of resistant pathogens (Fernández-
Ortuño et al. 2014; Kim et al. 1995; Myresiotis et al.
2007; Rupp et al. 2017). Consequently, other control
approaches are required as alternatives to using fungicides.

Numerous biocontrol agents (BCA) are being devel-
oped as alternatives to fungicides; however, under field
conditions, most lack the efficacy displayed in the
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laboratory (AbuQamar et al. 2016; Junaid et al. 2013).
Thus, inconsistency in performance and low effective-
ness limit the use of BCA by farmers (Le Mire et al.
2016) and more effective and stable biocontrol ap-
proaches are urgently required to meet farmers’ de-
mands (Parnell et al. 2016). Recent studies have sug-
gested that next-generation formulations should include
metabolites and additives not only to enhance shelf life
and efficiency, but also to have an impact on a wider
array of targets (Arora and Mishra 2016). Isolates of
the Gram-positive bacterium Paenibacillus elgii ex-
hibit biocontrol activity against an array of patho-
gens and nematodes (Kim et al. 2004; Kumar et al.
2015; Nguyen et al. 2013), thereby promoting
growth (Das et al. 2010) and inducing systemic
resistance in plants (Sang et al. 2014).

Biocontrol is correlated with the lytic enzymes
chitinase and gelatinase (Nguyen et al. 2013), as well
as with an iron-chelating siderophore (Wen et al. 2011).
Several antimicrobial metabolites, including butyl 2,3-
dihydroxybenzoate, methyl 2,3-dihydroxybenzoate, and
protocatechuic acid, are effective antifungal compounds
(Lee et al. 2017; Nguyen et al. 2015a, b). Lipopeptide
antibiotics like pelgipeptins (A, B, C, and D) are effec-
tive against both bacteria and fungi (Ding et al. 2011b;
Qian et al. 2012;Wu et al. 2010), while bacteriocins like
elgicins are only antibacterial compounds (AbuQamar
et al. 2017; Teng et al. 2012).

The draft genome sequence of P. elgii B69 reveals
that it produces pelgipeptins and paenibactin, a novel
catecholic siderophore, as well as other unknown sec-
ondary antimicrobial compounds synthesized by poly-
ketide synthetase (PKS), non-ribosomal peptide synthe-
tases (NRPS), hybrid NRPS-PKS synthetases, and a
lantibiotic-synthetic pathway (Ding et al. 2011a).

Chitin-based BCA bioformulations have been used to
control microbial pathogens and insect pests and to boost
plant health (Hidangmayum et al. 2019; Kamil et al.
2018; Kim et al. 2008, 2010, 2017a; Kishore and Pande
2007; Pusztahelyi 2018; Sharp 2013). Formulations con-
taining chitin and its derivatives promote plant growth
and induce plant defense responses against diseases
(Sharp 2013). Such formulations control soil-borne dis-
eases, such as damping-off and root-knot caused by
nematodes (Ha et al. 2014; Rajkumar et al. 2008), and
foliar plant diseases (Kim et al. 2008; Kim et al. 2010;
Kishore and Pande 2007; Kishore et al. 2005a, b; Seo
et al. 2007). Application of microbial cultures grown in a
chitin-supplemented medium containing cells,

metabolites, and the remaining growth substrates in-
creases the survival and multiplication of chitinolytic
bacteria introduced onto plant surfaces (Kishore et al.
2005a) and activates defense-related enzymes in the
treated plants (Kishore et al. 2005b). An array of extra-
cellular lytic enzymes, including chitinase, protease, and
lipase, as well as antimicrobial compounds including
lipopeptides, pyrrolnitrin, and violacein are present in
the cell-free supernatants (CFS) obtained from the cul-
tures of Gram-negative chitinolytic biocontrol bacteria
(Kamil et al. 2018; Kim et al. 2017a). However, the roles
of the individual components of bacterial cultures grown
in chitin-basedmedium in the biocontrol of plant diseases
are still largely unknown for both Gram-positive and
Gram-negative biocontrol bacteria.

The chitinase-producing strain P. elgii HOA73, iso-
lated from field-grown tomato roots in Korea (Neung
et al. 2014), controls root-knot nematode and diamond-
back moth, as well as gray mold and Fusarium wilt
(Neung et al. 2014; Nguyen et al. 2013, 2015a, b).
Additionally, protocatechuic acid and butyl 2,3-
dihydroxybenzoate from P. elgii HOA73 are key anti-
fungal compounds against B. cinerea, the causal agent
of gray mold, as well as wilt in tomato caused by
Fusarium oxysporum (Nguyen et al. 2015a, b).

In this study, we examined the biocontrol efficacy of
P. elgii HOA73 grown in a chitin-supplemented mini-
mal medium developed for other Gram-negative, chitin-
degrading biocontrol bacteria (Kim et al. 2008, 2017a).
To determine the role of extracellular chitinase from
P. elgii HOA73 cultures, bacterial cultures and chitin
oligomers were tested for biocontrol activity by screen-
ing them for their ability to inhibit B. cinerea spore
germination in vitro. The efficacy of each biocontrol
formulation was compared with that of a standard fun-
gicide in greenhouse-grown tomatoes. Our study indi-
cated that the P. elgii cultures grown in chitin-based
medium for over 15 days controlled tomato gray mold
under low disease conditions, suggesting that such for-
mulations could be used as an alternative for the inte-
grated control of gray mold in the field.

Materials and methods

Microorganisms and growth conditions

Botrytis cinereawas obtained from the Korean Agricul-
tural Type Culture Collection Center (KACC40574,
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Wanju, South Korea). The pathogen was grown on
potato dextrose agar (PDA; Difco Inc., Detroit, MI,
USA) plates at 25 °C for routine cultivation, maintained
on PDA plates at 4 °C, and subcultured every 3 weeks.
To prepare B. cinerea conidial suspensions, an agar-
mycelium plug was inoculated onto PDA and grown
for 10 d at 25 °C. The fungal mass was harvested from
the PDA plate by suspension in sterile water and filtra-
tion through sterile cheesecloth to remove hyphal frag-
ments. The spore concentration was measured on a
hemocytometer (Marienfeld Superior, Lauda-
Königshofen, Germany) under a light microscope
(Leica Microsystems, Wetzlar, Germany). The conidial
suspension was diluted with sterile water to a final
concentration of 1 × 104 conidia mL−1 for the in vitro
spore germination assay. Paenibacillus elgii HOA73
(KACC 19018) was grown routinely on nutrient agar
or nutrient broth (NA or NB, Difco) at 28 °C and stored
at −80 °C in NB containing 20% glycerol.

Determination of bacterial cells and extracellular protein
production

All chemicals were purchased from Sigma-Aldrich Co.
(St. Louis, MO, USA), unless otherwise indicated. The
chitin-based minimal medium used in this study
contained 1.5 g (NH4)2SO4, 2.0 g KH2PO4, 1.5 g
K2HPO4, 0.1 g MgSO4.7H2O, and 1.0 g crude chitin
(Sokcho Nanobiotech., Sokcho, South Korea) per liter
of distilled water (Kim et al. 2008). In each experiment,
100 μL of bacterial culture (approximately 1 × 108

colony-forming units [cfu] mL−1) grown in NB for
24 h at 28 °C with shaking at 180 rpm was inoculated
into 100 mL of the chitin-based minimal broth medium
and cultivated at 28 °C with shaking at 180 rpm for a
defined number of days. Bacterial cultures (10mL) were
collected at 2- or 5-d intervals to determine cell density,
antifungal activity, extracellular enzyme production,
and potential to inhibit B. cinerea spore germination.
The bacterial cell density was determined by plating
bacteria onto NA plates containing 50 μg mL−1 ampi-
cillin, 50 μg mL−1 polymyxin B, and 50 μg mL−1 van-
comycin to prevent potential contamination. The bacte-
rial colonies on the dilution plates were counted 4 d after
incubating at 28 °C and expressed as log10 cfu mL−1.

At the defined days, the culture fluid was centrifuged
at 15000×g for 10 min at 4 °C and the CFS was filtered
aseptically through a 0.2-μm pore size Minisart® Sy-
ringe Filter (Sartorius Stedim Biotech GmbH,

Göttingen, Germany). Each CFS was stored at −20 °C
and subsequently used to determine extracellular en-
zyme activity, siderophore production, and chitin oligo-
mer composition. The protein concentration of the CFS
was quantified using the Bio-Rad Protein Assay Kit
(Bio-Rad, Hercules, CA, USA) with bovine serum al-
bumin as standard according to the manufacturer’s in-
structions. All experiments were performed in three
independent trials, with three replicates per trial.

Extracellular enzyme and siderophore production
in a CFS fraction

The CFS of P. elgii HOA73 grown in the chitin-
based minimal medium was used to determine the
p roduc t i on o f ex t r a ce l l u l a r enzymes and
siderophores. Chitinase activity was determined with
4-methylumbelliferyl β-D-N,N′-diacetylchitobioside
[4-MU(GlcNAc)2] as previously described (Kim
et al. 2017b). Protease activity was quantified using
the Pierce Fluorescent Protease Assay Kit (Thermo
Fisher Scientific, Waltham, MA, USA) and lipase
activity was determined using a routine turbidimetric
assay with Tween 20 as the substrate (von
Tigerstrom and Stelmaschuk 1989). Siderophore
production was measured using the chrome azurol
S (CAS) assay solution, as previously described
(Alexander and Zuberer 1991). The CFS samples
or non-inoculated chitin-based minimal medium as
control were added to the reaction solutions in 96-
well microplates (Thermo Fisher Scientific) and in-
cubated for 30 min at 37 °C. Fluorescence was
measured using a BioTek® FLX-800™ (BioTek,
Winooski, VT, USA) with excitation at 360 nm
and emission at 440 nm for chitinase, and excitation
at 485 nm and emission at 538 nm for protease. The
absorbance of the samples was measured at 500 nm
for lipase and at 630 nm for the siderophores, using
a BioTek uQuant microplate reader (BioTek).

For the chitinase enzyme assay, the amount of 4-
methylumbelliferone (4-MU) released from the reaction
mixture was estimated using 2–125 μM 4-MU as a
standard, with one unit representing one micromole of
the liberated 4-MU per minute per milliliter of the CFS.
For protease activity, the detected values were compared
with those of the proteases released by trypsin digestion
(0.25–2.5 μg mL−1); one unit was equal to the amount
of trypsin proteolysis per minute (1μgmL−1 min−1). For
the siderophores, peak activity was estimated using 1.57
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to 100 μM deferoxamine mesylate as a standard, and
one unit was expressed as one micromole of the
liberated deferoxamine mesylate per minute per mil-
liliter of CFS. After subtracting the absorbance val-
ue of the blank from that of a sample, the relative
activity of each sample was determined and
expressed as the relative percentage of the maximum
detected value. Each experiment was repeated twice,
with three replicates per experiment.

Determination of chitin oligomers

The chitin oligomers [G1 (GlcNAc) to G6 (GlcNAc)6]
were analyzed by thin-layer chromatography. Each CFS
(0.5 mL) collected on different growth days, and a
mixture of 5 μg of mono to hexasaccharides as stan-
dards (Qingdo BZ Oligo Biotech Co., Qingdo, China),
were spotted onto a silica gel 60 F254 plate (Merck Co.,
Berlin, Germany), and developed with a solvent system
of 1-butanol: methanol: 20% ammonium hydroxide:
water (25:20:9:6, v/v). Chitin oligomers were visualized
by heating the plate at 130 °C for 5 min after spraying it
with an aniline/diphenylamine solution (a mixture of 2
mL aniline, 2 g diphenylamine, 100 mL acetone, and 15
mL of 85% phosphoric acid) (Itoh et al. 2014).

Conidial germination inhibition assay

Inhibition of conidial germination was evaluated at
different dilutions of bacterial cultures, CFS, CFS
boiled for 10 min at 100 °C, and bacterial cell
suspensions of P. elgii HOA73 grown in the chitin-
based minimal medium. Bacterial cells grown in
chitin minimal medium for 10 d at 28 °C with
shaking at 180 rpm were centrifuged and then
washed once with sterile distilled water to remove
soluble compounds. The cells were suspended in
sterile water and adjusted to a concentration of ap-
proximately 1 × 108 cfu mL−1 to mimic the cell
density of a bacterial culture. Authentic chitin olig-
omers (Sigma-Aldrich Co.) were diluted to between
5 and 500 μg mL−1 with sterile distilled water.

An equal volume (10 μL) of the prepared sam-
ple, conidial suspension (1 × 104 conidia mL−1),
and potato dextrose broth (PDB) were added to
the wells of a 96-well microplate and incubated at
25 °C. Sterile water was used as a control. After
12 h, conidial germination was evaluated using an
inverted microscope (Leica). The experiment was

repeated twice, with three replicates per experiment
and at least 100 conidial spores per sample. The
percentage inhibition of conidial germination was
calculated using the following formula: % Inhibi-
tion = (inhibition rate in the control – inhibition rate
with treatment)/inhibition rate in the control × 100.
When a spore formed a germ tube twice its length,
it was counted as a germinated spore.

Evaluation of biocontrol properties in greenhouse
tomatoes

To test the biocontrol efficacy of the P. elgii HOA73
culture and CFS grown in the chitin-based broth against
tomato gray mold, a field trial was conducted on semi-
forced tomato in a commercial greenhouse located at
Kwangyang-si, Chonnam Province, South Korea, in
2015–2016. The greenhouse, with an area of 660 m2,
contained 3000 SeoKwang tomato seedlings (Seminis
Vegetable Seeds Inc., Seoul, Korea) that were
transplanted on November 1, 2015. The cultivation
practices recommended by the Rural Development Ad-
ministration, Wanju, Korea, were followed.

A seed inoculum of HOA73 culture (500 mL)
grown in NB broth for 24 h was transferred to 500 L
of sterile chitin medium in a large fermenter (1000 L)
(Heuksalim, Chungbuk, Korea) and cultured for
15 days at 28 ± 2 °C with stirring. Bacterial suspen-
sions were prepared with the same volume of sterile
water after harvesting of the bacterial cells by centri-
fugation as described above. The chemical fungicide
fludioxonil (suspension concentrate, 20% active in-
gredient, Syngenta Korea, Seoul, Korea) was used as a
positive control at the standard dose recommended by
the manufacturer. The tomato plants were sprayed till
run-off with the non-diluted culture containing intact
cells at 1 × 108 cfu mL−1, a bacterial cell suspension
(1 × 108 cfu mL−1), 2000-fold diluted fludioxonil, or
tap water as control, using a power sprayer
(Maruyama, Tokyo, Japan). The foliar treatments
were applied three times at 10-day intervals. The 45-
m2 experimental plots were arranged in a randomized
complete block design with five replicates per treat-
ment. The biocontrol efficacies of the treatments were
assessed by evaluating the marketable fruit yield. The
incidence of natural gray mold was determined by
counting the number of diseased fruits in 20 plants
per treatment 10 d after the final treatment.
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Statistical analysis

The data were analyzed by one-way analysis of variance
(ANOVA, P < 0.05) using SPSS (version 23, SPSS Inc.,
Chicago, IL, USA) and if the F test was significant, the
differences in each measurement were further evaluated
with Dunnett’s test (P < 0.05). The significance of the
effect of heating on the CFS of P. elgii HOA73 was
evaluated by Student’s t test (P < 0.05). Regression
analysis was used to analyze a putative correlation be-
tween the inhibition of conidial germination in bacterial
cultures and the growth period of P. elgii HOA73.
Spearman’s correlation coefficient (R2-value) and its
corresponding P value were calculated.

Results

Growth and extracellular enzyme production of P. elgii
in chitin-based minimal medium

Cell growth in the chitin-based minimal medium (1 ×
108 cfu mL−1) reached the maximum density 2 days
after inoculation (DAI), and was maintained at a high
cell density up to 20 DAI (Supplementary Fig. 1A). Cell
growth was not correlated with extracellular protein
levels, which appeared at 7 DAI (Supplementary
Fig. 1A). Extracellular chitinase, protease, and lipase
activity, as well as siderophore secretion, were recorded
during P. elgii HOA73 cultivation in the chitin-based
minimal medium, reaching their maxima between 5 and
8 DAI (Supplementary Fig. 1B).

Comparison of the antifungal activities of P. elgii
cultures

Regression analysis of the data showed that inhibition of
conidial germination was related to culture age (Fig. 1).
The values varied with the dilution of the cultures or
their supernatants, namely, the 25-fold diluted bacterial
culture (y = −16.85 + 18.84x, R2 = 0.849, P < 0.001),
15-fold diluted bacterial culture (y = −1.53 + 22.51x,
R2 = 0.794, P< 0.001), 7.5-fold diluted cell-free super-
natant (y = −6.84 + 19.23x, R2 = 0.847, P< 0.001), and
5-fold diluted cell-free supernatant (y = −7.43 + 23.02x,
R2 = 0.861, P< 0.001).

Spore germination was inhibited 100% with 20-day
bacterial cultures. The inhibition of spore germination
by the 5-fold diluted CFS from 5- and 10-day cultures

was significantly reduced by boiling. No effect of boil-
ing was observed for the undiluted CFS from 15- or 20-
day cultures (Fig. 2). Complete inhibition of B. cinerea
spore germination was observed with the <5-fold dilut-
ed P. elgii bacterial cultures, <5-fold diluted CFS, <2-
fold diluted boiled CFS, and undiluted bacterial cells
(Fig. 1 and Supplementary Fig. 2). This result indicated
that CFS application effectively inhibited the germina-
tion of B. cinerea spores.

Determination of chitin oligomers and their effect
on spore germination

The thin-layer chromatography (TLC) analysis of
P. elgii HOA73 CFS showed the release of chitin olig-
omers of various lengths at 10 days; chitin oligomer
production was the greatest at 20 days (Fig. 3a).

Treatments with authentic pentameric and hexameric
chitin oligomers completely inhibited spore germination
when applied in the range of 50 to 500 μg mL−1. Ap-
plication of chitin dimers and tetramers at the highest
concentration (500 μg mL−1) resulted in 70–80% inhi-
bition of spore germination (Fig. 3b). This indicated that
inhibition of spore germination was dependent on the
length of the chitin oligomers.

Control efficacy of P. elgii culture against tomato gray
mold in the field

Gray mold was first observed in the tomatoes in the
commercial field on February 15, 2016, with the seed-
lings having been transplanted in November 2015. At
this early developmental stage, three foliar sprays of the
10-day-fermented undiluted culture containing intact
cells, applied at 10-d intervals, significantly reduced
the incidence of tomato gray mold (P < 0.05) to a level
similar to that observed with application of the fungi-
cide. The biocontrol efficacy of the bacterial suspension
(1 × 108 cfu mL−1) was relatively less effective (Fig. 4).

Discussion

A bioformulation based on the use of cultures of intact
P. elgii HOA73 grown in a chitin-based minimal medi-
um resulted in effective biocontrol of B. cinerea in vitro
and in tomato field trials. These results augment the
findings of studies in which the application of cultures
of intact chitinase-producing Gram-negative bacterial
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strains was successful in controlling plant diseases and
root-knot nematodes under field conditions (Pusztahelyi
2018; Sid Ahmed et al. 2003; Singh et al. 2013; Zarei
et al. 2011). The results of this study suggest there is
synergism between different components of the bacteri-
al cultures. Complete inhibition of B. cinerea spore
germination was observed in vitro with 15-fold diluted
bacterial cultures, 5-fold diluted CFS, and a suspension
of 1 × 107 mL−1 bacterial cells. This result corroborates
previous findings that bacterial cells and their products
contribute to biocontrol efficacy (Kim et al. 2017a).

We documented the presence of secreted chitinase,
protease, lipase, and siderophores in the supernatants.
Previous studies indicated that extracellular bacterial
chitinases inhibit pathogenic fungi, including
F. oxysporum and Cladosporium spp. (Kim et al.

2017a, b; Singh et al. 2013). Proteases also act against
Rhizoctonia solani, Aspergillus niger, Magnaporthe
oryzae, and Fusarium spp. (Al-Askar et al. 2015; Cui
et al. 2012; Singh and Chhatpar 2011; Yen et al. 2006).
Iron chelation by siderophores has been implicated in
enhancing plant growth and controlling A. niger, F.
oxysporum, and Gaeumannomyces graminis (Ahmed
and Holmstrom 2014; Bharucha et al. 2013; Saha et al.
2016). However, the effectiveness of each of these fac-
tors and their interactions have still not been investigat-
ed. In a previous study, a chitinase purified from the
HOA73 strain inhibited the germination of B. cinerea
conidia, but only at a high concentration (Kim et al.
2017b). A novel finding of these studies was that inhi-
bition of germination was differentially sensitive to heat
depending on the age of the culture; the loss of activity

Fig. 1 Inhibition of Botrytis
cinerea spore germination by
P. elgii HOA73. Cultures of intact
cells (a) and cell-free supernatants
(b) of P. elgii HOA73 grown in a
chitin-based minimal medium
were used at defined dilutions.
The experiment was repeated
twice, with three replicates per
experiment and at least 100
conidial spores for each sample.
Different letters indicate
significant differences between
treatments based onDunnett’s test
at P< 0.05. Spearman’s
correlation coefficients (R2-value)
were obtained by performing a
regression analysis between the
inhibition of conidial germination
by bacterial cultures and the
growth period of P. elgii HOA73
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in early cultures could be related to reduced chitinase
enzyme activity as a result of boiling (Cui et al. 2012;
Kim et al. 2017b; Wang et al. 2002; Yen et al. 2006).

Heat stability of secreted antimicrobial compounds
may also be important for biocontrol (Guo et al. 2012;
Réblová 2012;Wu et al. 2010). Biocontrol P. elgii strains
produce various antimicrobial compounds, including
siderophores, butyl 2,3-dihydroxybenzoate, methyl 2,3-
dihydroxybenzoate, protocatechuic acid (Lee et al. 2017;
Nguyen et al. 2015a, b), and lipopeptides like
pelgipeptins and paenibactin (Ding et al. 2011b; Qian
et al. 2012; Wu et al. 2010). When cultured in the chitin-
based minimal medium, protocatechuic acid, which is
ac t ive aga ins t B. c inerea , and bu ty l 2 ,3 -
dihydroxybenzoate, effective against F. oxysporum were
identified in HOA73 (Nguyen et al. 2015a, b). We are
currently investigating the levels of antimicrobial com-
pounds inP. elgiiHOA73CFSwhen this isolate is grown
in the chitin-based minimal medium, as well as the

minimal inhibition concentrations of the compounds to
determine their importance in biocontrol activity.

The chitin and chitin oligomers generated during
growth may also contribute to the suppression of tomato
gray mold. Chitin was shown to support growth and
chitinase production in other beneficial chitinolytic mi-
crobes (Sharp 2013). In the tomato, chitosan effectively
inhibited postharvest fungal diseases like black rot caused
by Alternaria alternata, gray mold caused by B. cinerea,
and blue mold caused by Penicillium expansum (Liu et al.
2007; Reddy et al. 2000). Chitosan affects cell membrane
functions by disturbing the electrostatic balance of the
negatively-charged phospholipids (Palma-Guerrero et al.
2010). After entering the cell by disrupting the fungal cell
membrane, chitosan inhibits nucleic acid and protein syn-
thesis (Verlee et al. 2017). Here, we found that authentic
pentameric and hexameric chitin oligomers inhibit
B. cinerea spore germination, in agreement with that
observed in studies on Fusarium solani (Kendra and

Fig. 2 Effect of heating the
P. elgii HOA73 cell-free
supernatant on the inhibition of
B. cinerea spore germination. The
cell-free supernatants of P. elgii
HOA73 were obtained from
chitin medium at defined days
after inoculation, and half the
samples were heated at 100 °C for
10 min. Undiluted cell-free
supernatants (a) and cell-free
supernatants diluted fivefold with
sterile water (b) were used to
determine the inhibition of
conidial germination ofB. cinerea
in 96-well microplates. Sterile
water was used as a control. The
experiment was repeated twice,
with three replicates per
experiment and at least 100
conidial spores for each sample.
The P- and t-values of the
Student’s t test are provided, and
*** indicates differences between
samples based on the Student’s t
test at P< 0.01
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Hadwiger 1984). In addition, chitin oligomers elicit de-
fense responses in awide range of bothmonocot and dicot
plants (Felix et al. 1993; Shibuya and Minami 2001),
showing that the use of a chitin growth substrate has
several advantages for plant health.

We documented the effective biocontrol of tomato
gray mold using a P. elgii HOA73 formulation under
commercial field conditions. Application of the P. elgii
HOA73 formulation at the start of gray mold develop-
ment engendered effective control comparable to that of
a standard fungicide, indicating that application of

P. elgii HOA73 formulations in the field could be effec-
tive in preventing gray mold development.

In summary, the present study demonstrated the syner-
gistic effects of heat-labile and heat-stable extracellular
products in the inhibition of B. cinerea spore germination
and biocontrol of gray mold in tomato. The B. cinerea
bacterium is cultured effectively by large-scale fermenta-
tion on a cost-effective medium (Kim et al. 2008, 2017a).
Taken together, our results show that P. elgii HOA73
cultures grown in a chitin-based minimal medium could
be applied as an eco-friendly fungicide.

Fig. 3 Chitin oligomer
production in the cell-free
supernatant of P. elgii HOA73 (a)
and antifungal activity of
authentic chitin oligomers on
B. cinerea spore germination (b).
The cell-free supernatants of
P. elgii HOA73 grown in chitin-
based minimal medium were
collected on different growth days
and, together with a mixture of
authentic chitin oligomers as
standards (S), were spotted onto a
silica gel plate and developed to
detect chitin oligomers. The
image of the TLC analysis is
typical of three independent
experiments with similar results.
b Authentic chitin oligomers [G1
(GlcNAc) to G6 (GlcNAc)6] at
defined concentrations between 5
and 500 μg mL−1 were used to
determine inhibition of B. cinerea
spore germination. The
experiment was repeated twice,
with three replicates per
experiment and at least 100
conidial spores for each sample.
Different letters indicate a
significant difference between
treatments based onDunnett’s test
at P< 0.05
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