
Hyperspectral quantification of wheat resistance to Fusarium
head blight: comparison of two Fusarium species

E. Alisaac & J. Behmann &M. T. Kuska &H.-W. Dehne &

A.-K. Mahlein

Accepted: 3 May 2018 /Published online: 19 May 2018
# Koninklijke Nederlandse Planteziektenkundige Vereniging 2018

Abstract Interactions of Fusarium species with differ-
ent wheat varieties differ in their temporal dynamics and
symptom appearance. Reliable and objective ap-
proaches for monitoring processes during infection are
demanded for plant phenotyping and disease rating.
This study presents an automated method to phenotype
wheat varieties to Fusarium head blight (FHB) using
hyperspectral sensors. In time-series experiments, the
opt i ca l p roper t i e s of sp ikes in fec ted wi th
F. graminearum or F. culmorum were recorded. Two
hyperspectral cameras, in visible and near-infrared
(VIS-NIR, 400–1000 nm) and shortwave-infrared
(SWIR, 1000–2500 nm) captured the most relevant
bands for pigments, cell structure, water and further
compounds. Correlations between disease severity
(DS), spike weight, spectral bands and vegetation indi-
ces were investigated. Following, the detectability of
infections was assessed by Support Vector Machine
(SVM) classifier. A variety ranking based on AUDPC

was performed and compared to a fully-automated ap-
proach using Non-metric Multi-Dimensional Scaling
(NMDS). High correlation was found between the spec-
tral signature and DS in 430–525 nm, 560–710 nm and
1115–2500 nm. All indices from the VIS-NIR showed
high correlation with DS and, for the first time, this was
also confirmed for three indices from the SWIR: NDNI,
CAI and MSI. Using SVM, differentiation between
healthy and infected spikes was possible (acc. > 0.76).
Furthermore, the possibility to differentiate between
F. graminearum and F. culmorum infected spikes has
been verified. The NMDS approach was able to repro-
duce accurately the variety ranking and outlines the
potential of hyperspectral imaging to phenotype the
variety susceptibility for improved breeding processes.
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Introduction

Fusarium head blight (FHB) is considered as one of the
most important fungal diseases of wheat, because it
causes high crop losses and can lead to high economic
losses (Johnson et al. 2003; McMullen et al. 2012;
Salgado et al. 2015). In addition, kernels of infected
spikes are small, shrunken, discolored and light in
weight and the technological quality is also affected
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(McMullen et al. 2012; Kreuzberger et al. 2015). The
most important Fusarium species inducing FHB are
Fusarium graminearum, F. culmorum, F. poae, F.
avenaceum, F. sporotrichoides, F. equiseti (Parry et al.
1995; O'Donnell et al. 2004; Aoki et al. 2014).

In wheat, FHB infection is initiated by airborne
spores resulting from the mycelium and from debris of
the former crop. Infection may take place during
flowering, preferably at warm temperature > 25 °C with
100% relative humidity (RH). The germ tubes of conidia
enter the spikelet tissue through the natural openings in
the spikelet and the degrading anther tissue (Bushnell
et al. 2003; Osborne and Stein 2007). First symptoms
appear on infected spikelets as water-soaked spots.
With ongoing disease development, the chlorophyll
decomposes and the whole spikelet becomes
bleached. In warm humid weather, pinkish-red my-
celium and conidia develop in the infected spike-
lets (Trail 2009). The infection spreads to adjacent
spikelets horizontally and vertically, up and down
through the entire spike (Fig. 1) (Ribichich et al.
2000; Brown et al. 2010; Al Masri et al. 2017).
The main reason to focus on FHB is its ability to
produce mycotoxins. Mycotoxins secreted by Fu-
sarium species are toxic and detrimental to humans
and animal nutrition (McCormick 2003; Pestka 2010).
The main mycotoxins produced by these species are
trichothecenes, mainly deoxynivalenol (DON) and its

derivatives as well as zearalenone, fusaric acid,
fusarenon or enniatins (Birzele et al. 2002; Ferrigo
et al. 2016).

In order to achieve an effective management of FHB,
different control strategiesmust be combined. Integrated
crop protection strategies include cultural practices such
as crop rotation, biological control or fungicides appli-
cation (Gilbert and Haber 2013). Thereby, breeding of
resistant wheat varieties contributes to the integrated
control of FHB (Dweba et al. 2017). These varieties
should combine both types of FHB resistance
(Mesterházy et al. 2007), i.e. Type I resistance (resis-
tance to initial infection (penetration)), and Type II
resistance (resistance against pathogen spread from the
point of infection) (Schroeder and Christensen 1963).
Effective resistance breeding needs interdisciplin-
ary research, integrating plant breeding, phytopa-
thology, informatics and long investigation time.
To achieve resistant varieties, an important step
in breeding programs after generating a new ge-
netic variation is phenotyping. This approach relies
on precise visual assessment of the disease severity after
artificial inoculation (Steiner et al. 2017). According to
Furbank and Tester (2011), precise and innovative
methods for identifying and characterising disease
symptoms in an early stage of infection are needed.
Until today, the phenotyping process is still a limiting
factors in plant breeding, because it is time-consuming,
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Fig. 1 Visual symptoms of FHB
on moderately resistant variety
(Passat) and susceptible variety
(Taifun) in different development
stages of the disease, with NDVI
visualization



and cost intensive (Mahlein 2016). In case of FHB, this
process is especially challenging as Fusarium species
can infest the wheat spike and produce mycotoxins
without developing visual symptoms. Within this con-
text, optical sensors beyond the capability of the human
eye are beneficial to improve phenotyping (Kuska and
Mahlein 2018).

Various sensors are applied for the detection, identi-
fication and quantification of plant diseases like ther-
mography, fluorescence and hyperspectral sensors
(Mahlein 2016). Recently hyperspectral imaging has
shown to be useful as a precise and non-destructive tool
in characterising resistance to powdery mildew in bar-
ley, and in lesion characterization in Cercospora
beticola–sugar beet interaction (Leucker et al. 2016;
Thomas et al. 2016; Kuska et al. 2017). One of the
challenges in hyperspectral imaging is the high dimen-
sionality and massive amount of data (Behmann et al.
2015; Fahlgren et al. 2015; Thomas et al. 2018). Spec-
tral vegetation indices (SVIs) are a straightforward ap-
proach to reduce the data dimensionality relying on only
few specific wavelengths. Qualitative and quantitative
information concerning the plant pigments, biomass,
tissue structure, water content and plant chemicals can
be obtained using these indices (Xue and Su 2017).
SVIs showed a good capability to detect FHB on wheat
and to discriminate sugar beet diseases caused by
Cercospora leaf spot, powdery mildew and leaf rust
(Bauriegel et al. 2011; Mahlein et al. 2012). Moreover,
they have been used as features in support vector ma-
chine (SVM) approach to classify sugar beet leaves
infected with different pathogens (Rumpf et al. 2010).

The hypothesis of this study is, that wheat varieties
differ in their susceptibility to FHB, and that these
differences can be determined and assessed by
hyperspectral imaging. Therefore, hyperspectral images
of different wheat varieties inoculated with
F. graminearum or F. culmorum were taken in the
spectral range from 400 to 2500 nm during the patho-
genesis. A set of fifteen SVIs were used in SVM classi-
fication to discriminate healthy, F. graminearum and
F. culmorum infected spikes. Furthermore, a selection
of SVIs was used in non-metric multidimensional scal-
ing (NMDS) to rank wheat varieties according to their
susceptibility to FHB.

This study is designed to improve non-destructive
and non-invasive screening methods for FHB resistance
using the application of hyperspectral imaging
technique.

Material and methods

Plant cultivation

Greenhouse experiments were performed using seven
varieties of spring wheat (Triticum aestivum L.) with
different resistant degrees to FHB (ranging from 1 to 9
scale where 1 is highly resistant and 9 is highly suscep-
tible): Thasos (3) (Strube, Söllingen, Germany), Triso
(4) (DSV, Lippstadt, Germany), Passat (4), Scirocco (4),
Chamsin (5), Taifun (6) (KWS, Einbeck, Germany) and
Sonett (6) (Syngenta, Basel Switzerland) (Descriptive
List of Varieties, Bundessortenamt, Germany 2017).
Pots of 12 × 12 × 20 cm size were filled with a mixed
substrate 1:3:6 of sand, horizon C and potting substrate
ED 73 (Einheitserde, Sinntal-Altengronau, Germany).
Five seeds per pot were cultivated at 20 ± 2 °C and 50–
70% RH (two pots for each variety). Pots were random-
ized in the green house and supplemental artificial light
(>300 μmol m−2 s−1, Philips SGR 140, Hamburg, Ger-
many) was used to obtain a photoperiod of 16/8 h (day/
night). After germination, two seedlings were left per
pot and were supported by sticks to avoid lodging.
Plants were watered as necessary.

Fusarium inoculation and disease severity assessment

Fusarium graminearum, isolate S.19, and F. culmorum,
isolate 3.37 were used for inoculation (INRES-Plant
Diseases and Plant Protection, University of Bonn, Ger-
many). The isolates were obtained from infected wheat
kernels from field experiments (Campus Klein-
Altendorf, Rheinbach, Germany) in 2011 and 2004,
respectively. They were stored as a cryo-culture at
−80 °C. Inoculum was produced according to the meth-
od of Moradi (2008) using potato dextrose agar (PDA,
39 gL−1), potato dextrose broth (PDB, 24 g L−1) and low
strength potato dextrose agar (LSPDA, 12.5 g L−1 and
agar-agar 19.5 g L−1). Conidia were harvested in water
and the inoculum suspensions were adjusted to 105

conidia mL−1 using a Fuchs–Rosenthal chamber.
Spikes of four plants of each variety were inoculated

at plant growth stage (GS) 61–65 according to Lanca-
shire et al. (1991), with each Fusarium species separate-
ly by spraying the inoculum suspension until run off. In
addition, four control plants of each variety were mock
inoculated with water. For optimal infection, plants were
incubated at 22–25 °C and 95% RH for 48 h, by cover-
ing each treatment by a plastic bag according to
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Mesterházy et al. (2015). After incubation, six spikes of
each treatment were fixed on a black metal grid in order
to keep the spikes in the same orientation along the time
of the experiment. Spikes were sprayed with tap water
until runoff every day, which kept the spikes wet for 1–
2 h per day to provide appropriate conditions for disease
development.

The disease severity (DS) was assessed according to
the formula of Stack and McMullen (1995) 4, 6, 8, 10,
13, 17, 21 and 30 days after-inoculation (dai).

disease severity

¼ symptomatic area of the spike

whole area of the spike
*100 ð1Þ

Reduction in spike weight was calculated as follow-
ing:

spike weight reduction

¼ spike weightcontrol−spike weightinfected
spike weightcontrol

*100 ð2Þ

Correlations and statistically significant differences
between treatments in spike weight were calculated
using RStudio. Spike Weight data were analysed by
standard analysis of variance (ANOVA) with a signifi-
cance level p ≤ 0.05, n = 6.

Hyperspectral imaging

Hyperspectral imaging was performed with artificial illu-
mination at 4, 6, 8, 10, 13, 17, 21 and 30 (dai). The
reflectance of the spikes was recorded in the spectral
range from 400 to 1000 nm using the hyperspectral
camera ImSpector V10E (Spectral Imaging Ltd., Oulu,
Finland) with a spectral resolution up to 2.8 nm and a
sensor pixel size of 0.0074 mm which results in a spatial
resolution of 0.219 mm per pixel. A spectral binning of 4
was used resulting in 211 hyperspectral bands. A SWIR-
Camera (ImSpector N25E, Spectral Imaging Ltd., Oulu,
Finland) with a spectral resolution up to 5.8 nm resulting
in 256 hyperspectral bands was used to record
hyperspectral images in the spectral range from 1000 to
2500 nm. The spatial resolution is 1.02mmper pixel with
320 pixels per scan line. Both cameras and the illumina-
tion system were mounted on a motorized line scanner
(Velmex BiSlide, Velmex Inc., Bloomfield, USA). Cam-
era settings and the control of the motorized line scanner
were adapted using the SpectralCube software (Spectral

Imaging Ltd., Oulu, Finland). For hyperspectral imaging,
spikes were laid horizontally with a homogeneous back-
ground. A homogeneous illumination was realized with
six ASD-Pro-Lamps (Analytical Spectral Devices Inc.,
Boulder, Colorado, USA) in a distance of 665 mm and a
45° vertical slope to the spikes.

The whole setup was preheated for 30 min before
image acquisition in order to get constant and reproduc-
ible illumination conditions. The cameras were focused
manually and the exposure time was adjusted to the
object. For image reflectance calculation four images
were taken: A white reference bar (Spectral Imaging
Ltd., Oulu, Finland) which reflects ~99% of the radiated
light. Subsequently, a dark current image was recorded
by closing an internal shutter of the camera. Finally, the
image of the spikes was taken with a subsequent second
dark current image. The software BProcessing Imspector
3.1^ (Geoscap, Cologne, Germany) was used to calcu-
late the reflectance from white reference and dark cur-
rent measurements. The signals from hyperspectral im-
ages were smoothed by applying the Savitzky-Golay
filter (25 centred supporting points and a third degree
polynomial). Masking and visualizing of image data
was done using HSVaP (BHyperspectral Visualization
and Processing^), an Open Source software for super-
vised and unsupervised analysis of hyperspectral im-
ages. The program was initially developed in the IGG-
Geoinformation, University of Bonn, and its develop-
ment is continued in the INRES-Plant Diseases and
Plant Protection department (available at http://www.
ikg.uni-bonn.de/forschung/hsvap.html). It combines
training data generation by active learning, clustering,
classification and feature weighting in a uniform
dataflow based on pure Java and established machine
learning libraries. Calculation of mean spectral
reflectance was done by MATLAB 2013a.

Spectral vegetation indices

In order to investigate the correlation between SVIs and
FHB infection, fifteen vegetation indices related to dif-
ferent physiological parameters were calculated from
the visible (VIS), the near infrared (NIR) and the short-
wave infrared (SWIR) ranges (Table 1). In the following
text, the defined abbreviations for the indices are used.
The full description can be found within Table 1.
Pearson’s correlation coefficient was calculated in
RStudio to investigate the relationship between SVIs
and DS.
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Support vector machine classification

Two class classification (healthy /infected) and multiclass
classification (healthy/ F. graminearum /F. culmorum) were
performed both in RStudio using values of twelve calculat-
ed SVIs in VIS-NIR range and alternatively, using the
whole spectral reflectance (432 bands). For the identifica-
tion of FHB diseases, 1/3 of the data was selected randomly
as training data to learn Support Vector Machine (SVM)
classifier with Radial Basis Function (RBF) kernel (Cortes
and Vapnik 1995). A grid-based approach was applied to
optimize the parameter cost (C) and gamma (γ) to specify
the best radial basis function. The test data was separated
from the training data to evaluate the model by a cross-
validation. Important performance measures were the over-
all accuracy of themodel and the sensitivitywhich gives the
proportion of the correctly classified spikes of each class.

Multi-dimensional scaling for information compression

A high number of suitable vegetation indices for the
detection of plant stress, senescence and bleaching from
the VIS, NIR and SWIR spectral reflectance were investi-
gated in this study. Each of these mathematical formulas

provides a slightly different view on parameters of interest
from hyperspectral data. To extract an informative descrip-
tion of the plant’s state or plant diseases, a single index is
not enough but the comprehensive information of multiple
indices needs to be combined (Mahlein et al. 2010; Rumpf
et al. 2010; Behmann et al. 2015).

Non-metric multidimensional scaling (NMDS) is an
unsupervised method to define a non-parametric trans-
formation between an original space and a target space
with defined dimensionality by minimizing the change
in the inter-point Euclidean distances dij, measured by
BStress^ (Kruskal 1964).

StressD x1; x2;…; xNð Þ

¼ ∑i; j dij− xi−x j
�
�

�
�

� �2

∑i; jd
2
ij

 !1=2

ð3Þ

Based on a dissimilarity matrix D, the stress is min-
imized by a gradient descent approach leading to the
transformed data points x in the target space with desired
dimensionality (Borg and Groenen 2005). The resulting
coordinates are not fixed with respect to rotation or
translation as only the distances between the data points
are regarded. Here, NMDS was used to compress the

Table 1 Spectral vegetation indices used in this study: Equations, biological indicator and the references are given

Index Equation Indicator Reference

modified Simple Ratio mSR = (R750 – R445) / (R705 + R445) Green biomass Sims and Gamon (2002)

Normalized Differences
Vegetation Index

NDVI = (R800 –R670) / (R800 + R670) Biomass, leaf area Rouse et al. (1974)

Photochemical Reflection
Index

PRI = (R531 – R570) / (R531 + R570) Epoxidation state of xanthophyll
cycle; pigments and photosynthetic
radiation use efficiency

Gamon et al. (1992)

Structure Insensitive
Pigment Index

SIPI = (R800 – R445) / (R800 + R680) Carotenoid: chlorophyll a ratio Peñuelas et al. (1995)

Pigment Specific
Simple Ratio

PSSRa = R800 / R680 Chlorophyll a Blackburn (1998a, b)
PSSRb = R800 / R635 Chlorophyll b

PSSRc = R800 / R470 Carotenoids

Pigment Specific
Normalized Difference

PSNDa= (R800 – R680) / (R800 +R680) Chlorophyll a Blackburn (1998a, b)
PSNDb= (R800 –R635) / (R800 +R635) Chlorophyll b

PSNDc= (R800 – R470) / (R800 +R470) Carotenoids

Plant Senescence Reflectance
Index

PSRI = (R680 – R500) / R750 Plant senescence Merzlyak et al. (1999)

Water Index WI = R900 / R970 Water content Peñuelas et al. (1997)

Moisture Stress Index MSI = (R1599 / R819) Water stress Hunt and Rock (1989)

Cellulose Absorption Index CAI = 0.5 (R2000 + R2200) – R2100 Cellulose Nagler et al. (2003)
Daughtry (2001)

Normalized Difference
Nitrogen Index

NDNI = [log(1/R1510) – log(1/R1680)] /
[log(1/R1510) + log(1/R1680)]

Nitrogen Serrano et al. (2002)
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information of the seven most relevant vegetation indi-
ces in a one-dimensional ordinal scale representing the
disease severity sensed by the hyperspectral camera.
The rating of the respective variety control group was
subtracted to remove the effect of natural senescence.

Results

Disease severity

In all varieties senescence started in healthy spikes from
21 dai. First FHB symptoms appeared on all inoculated
varieties 4 dai (Fig. 1). The disease severity of
F. graminearum started <20% in all varieties and devel-
oped gradually. In Scirocco, severe symptoms have
been shown already 4 dai with a disease severity
>60% (Fig. 2). The infection increased gradually in
moderate resistant varieties until the end of the experi-
ment, whereas the infection increased rapidly in suscep-
tible varieties. The disease severity was >50% in Sci-
rocco, Taifun and Thasos from 8 dai. The disease sever-
ity of F. culmorumwas lower than of F. graminearum in
all tested varieties except Chamsin. The infection in-
creased rapidly in Chamsin and Taifun and the disease
severity was >50% 10 dai. Finally, the high susceptible
varieties had completely bleached spikes 13 dai (Fig. 1).

Progress of spectral signature of control and FHB
infected spikes

Mean spectral signatures of control spikes in all varieties
were similar from 4 to 8 dai (Fig. S1a). Taifun showed a
slight increase in VIS and SWIR reflectance from 10 dai
(Fig. S1b). The similarity in spectral signature of control
spikes lasted until 21 dai (Fig. S1c). Due to differences
in senescence state, significant differences in spectral
signatures can be shown 30 dai.

Changes in spectral signatures of F. graminearum
infected spikes appeared from 4 dai (Fig. 3a). The sus-
ceptible variety Scirocco showed higher reflectance in the
spectral range 460–670 nm and in the SWIR. With
ongoing disease development, spectral signatures dif-
fered according to the resistance of the varieties starting
from 8 dai (Fig. 3b). The highly susceptible varieties
Scirocco and Taifun showed an increased reflectance
along the whole spectral range. In contrast, a slight in-
crease in reflectance intensity has been shown in the
moderate resistant varieties Chamsin and Passat (Fig. 3b).

Varieties infected with F. culmorum showed less
differences in spectral signatures. The susceptible vari-
ety Taifun showed an increased reflectance from 550 to
670 nm and in the SWIR from 4 dai (Fig. 3d). This
reflectance pattern became more prominent 13 dai (Fig.
3e). Passat showed an increased reflectance over the
whole spectrum during the experimental period (Fig.
3d–f). Whereas, moderate resistant varieties showed
later increase of the reflectance in VIS and SWIR and
with a different spectral pattern.

All varieties infected with any of Fusarium species
showed lower reflectance in NIR range comparing to
control spikes starting at 4 dai. The spectral signatures of
infected spikes showed non-vegetative pattern in VIS-
NIR range (Fig. 3c, f).

Spectral signature and spectral vegetation indices
correlation with disease severity

To investigate the affected wavelengths by FHB,
Pearson’s coefficient between all spectral bands and
disease severity was calculated (Fig. 4). For this ap-
proach, hyperspectral signatures were separated to iden-
tify important time periods in the pathogenesis in groups
for 4–10 dai, 13–30 dai and 4–30 dai. High positive
correlation (r > 0.75) has been shown in the spectral
ranges 430–525 nm, 560–710 nm and 1115–2500 nm
in all time period groups. Negative correlation (r < −0.6)
has been shown in the spectral range 740–810 nm using
the measurement time points 4–10 dai. This correlation
decreased using 4–30 dai and 13–30 dai as data sets.

The fifteen proved vegetation indices which correlat-
ed with physiological parameters (Table 1), showed
high correlation with disease severity (Fig. 5a). The
indices NDVI, SIPI, PSNDa and PSNDb showed the
highest absolute correlation with the disease severity
(r > 0.81) in the VIS-NIR range 4 dai. Whereas in the
SWIR, MSI reached a peak correlation with disease
severity of r = 0.9. During the experimental period the
absolute correlation between the calculated spectral in-
dices and disease severity increased until 21 dai. In
addition, mSR, PSSRa, PSSRb and CAI showed an
increased absolute correlation until 30 dai.

Effect of FHB on spike weight and correlation
with spectral vegetation indices

The loss in spike weight depended on the variety and the
inoculated Fusarium species (Fig. 6). Reduction in
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Fig. 2 Disease progress curve of wheat varieties inoculated with mock inoculation (water), F. graminearum and F. culmorum separately.
(mean ± SD, n = 6)



spike weight caused by F. graminearumwas higher than
by F. culmorum in all varieties except Chamsin and
Taifun. The spike weight reduction due to of

F. graminearum ranged between 30.86% in Taifun and
67.30% in Passat. The effect of F. culmorum ranged
between 28.63% in Sonett and 51.84% in Chamsin.
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Fig. 3 Spectral signatures of F. graminearum infected spikes (a, b, c) 4, 8 and 21 dai respectively. F. culmorum infected spikes (d, e, f) 4, 13
and 21 dai respectively



SVIs showed gradual increased correlation overtime
with spike weight at harvest until 13 dai or 21 dai
depending on the specific index (Fig. 5b). For mSR
the highest correlation was reached at 13 dai by r =
0.75. Afterwards, WI had the highest correlation with
the spike weight reduction until 21 dai (r = 0.79).

Two class and multiclass classification of control
and FHB infected spikes

In the first step, SVM was used in two class classification
to differentiate between healthy spikes and FHB infected
spikes. Classification results based on SVIs calculated
from VIS-NIR range were compared in their accuracies
with the classification results based on spectral reflectance
(Table 2). Both classification accuracies increased over-
timewith increasing disease severity until 4–8 dai and 13–
17 dai. Thereafter, accuracies started to decrease when the
natural senescence started in control spikes (Table 2).
Except the first two measuring time points, the accuracy
of spectral reflectance classification was higher than the
accuracy of SVIs classification. In general, the accuracy
was >0.76 in both cases and reached 0.99 at 13 and 17 dai
for the classification based spectral reflectance.

Multiclass classification has been implemented to in-
vestigate the capability of SVM to discriminate healthy, F
graminearum and F. culmorum infected spikes. In case of
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Fig. 4 Correlation between spectral signature and disease severity
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Fig. 5 Correlation between
spectral vegetation indices and
disease severity (a), and
correlation between spectral
vegetation indices overtime and
spike weight at harvest of wheat
varieties (b)



SVIs classification, the accuracy increased gradually until
13 dai and reached 0.76, then slight decrease has been
shown until the end of the experiment (Table 2). Accuracy
of spectral reflectance classification fluctuated during the
experimental period. The highest accuracy of 0.77 has
been reached 13 dai. Except 6 dai, the accuracy was higher
than >0.61 for all measured time points.

The confusion matrix at 13 dai shows that discrimina-
tion between control and Fusarium spp. infected spikes
using SVM classification is possible with general accu-
racy of >0.76 (Table 3). Control spikes are better predict-
ed with sensitivity of >0.97. Whereas, the prediction
between F graminearum and F. culmorum infected
spikes is possible in advances stages of infection with
an average sensitivity of 0.65 (Table 3). Results of SVM
multiclass classification based on hyperspectral data over
the experimental period are indicated in Table S1.

Variety ranking based on area under disease progress
curve and non-metric multi-dimensional scaling

Spectral vegetation indices which are highly corre-
lated to disease severity were selected due to their
potential capability to differentiate between healthy
and infected spikes. These SVIs were projected by
NMDS onto a one-dimensional ordinal scale. This
scale represents the disease severity sensed by the
hyperspectral camera.

Figure 7 shows the variety ranking according to the
area under disease progress curve (AUDPC) (Fig. 7a, c),
and non-metric multidimensional scaling (NMDS)
(Fig. 7b, d). The proved varieties showed different
responses to the two investigated Fusarium species
indicated in AUDPC (Fig. 7a, c). The varieties
Scirocco and Taifun infected with F. graminearum
showed high susceptibility with an AUDPC >2000
(Fig. 7a). In contrast, Chamsin showed moderate infes-
tation with an AUDPC >1000. Most proved varieties
revealed an AUDPC between 1300 and 1700 due to
F. culmorum infection (Fig. 7c). High susceptibility to
F. culmorum was only indicated by Taifun with an
AUDPC >2000.

The results show that most proved varieties stayed in
the same position in the ranking either using AUDPC or
NMDS. Slight differences have been shown in variety
order. The ranking of F. graminearum infected varieties
(Fig. 7a, b) Thasos and Sonett differed two levels up and
down using NMDS comparing to the AUDPC.
F. culmorum infected variety Chamsin differed two
levels up (Fig. 7c, d). Triso and Scirocco differed one-
level down. Thasos and Passat exchanged their ranking
using NMDS comparing to AUDPC.

Table 2 Accuracies of two class and multiclass SVM classifica-
tion based on hyperspectral data overtime. Comparison between
classification accuracies using twelve spectral vegetation indices
(SVIs) and using the whole spectral reflectance 432 bands

Time Two class classification Multiclass classification

SVIs Reflectance SVIs Reflectance

4 0.79 0.76 0.49 0.65

6 0.87 0.86 0.61 0.51

8 0.93 0.94 0.67 0.67

10 0.89 0.96 0.71 0.61

13 0.94 0.99 0.76 0.77

17 0.95 0.99 0.70 0.70

21 0.87 0.96 0.74 0.68

30 0.90 0.93 0.58 0.61
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Fig. 6 Normalized reduction in
spike weight of wheat varieties
caused by Fusarium species. Data
were analysed by standard
analysis of variance (ANOVA,
n = 6), marked by significance (*,
p ≤ 0.05) or high significance,
(***, p ≤ 0.001)



Discussion

The main effects of FHB on wheat spikes are chlorosis,
collapse in spikelet tissue and disorder in the water

system of the spikelets and the spike. The extent and
the dynamic of symptom development depend on the
host plant resistance (Trail 2009; Ha et al. 2016; Al
Masri et al. 2017). Former studies showed the feasibility

Table 3 Confusion matrix of SVM multiclass classification 13 dai. Comparison between classification results using spectral vegetation
indices (SVIs) (above), and using the whole spectral reflectance (below)

Ground truth

Control F. culmorum F. graminearum

SVI

Prediction Control 29 1 2

F. culmorum 1 14 4

F. graminearum 0 12 21

Sensitivity 0.97 0.52 0.78

Reflectance

Prediction Control 26 0 1

F. culmorum 0 19 9

F. graminearum 0 9 20

Sensitivity 1 0.68 0.67

Eur J Plant Pathol (2018) 152:869–884 879

Fig. 7 Varieties ranking according to their susceptibility to FHB using Area under Disease Progress Curve (AUDPC) (a, c) and Non-metric
multidimensional scaling (NMDS) (b, d)



of hyperspectral imaging to assess visible and non-
visible symptoms caused by fungal diseases (Bauriegel
et al. 2011; Delalieux et al. 2009; Mahlein et al. 2010).
Characteristic spectral signatures in the VIS-NIR and
SWIR are caused by alterations in pigment composition,
tissue structure and plant water content (Mahlein 2016).
In this study, the spectral reflectance was affected ac-
cording to the susceptibility of wheat variety. The re-
flectance increased in VIS from 430 to 525 nm, 560–
710 nm due to a rapid invasion of the pathogen which
resulted in chlorophyll decomposition. The increase in
reflectance intensity of susceptible varieties was higher
compared to resistant varieties. Comparing Fusarium
species, the reflectance in F. graminearum infected
spikes was higher compared to F. culmorum infected
spikes. This is presumably attributed to the high viru-
lence of F. graminearum isolate used in this study
comparing with F. culmorum isolate.

The correlation between disease severity and the indi-
vidual spectral signature differs according to the symp-
toms caused by the pathogen (Mahlein et al. 2010). Plant
senescence and chlorophyll decomposition result in an
increase in reflectance intensity in the spectral ranges
400–530 nm and 550–740 nm (Merzlyak et al. 1999).
This is consistent with the high correlation between the
wavelengths from 430 to 525 nm and 560–710 nm and
FHB disease severity confirmed in this study. Likewise,
high correlation of SVIs derived from VIS-NIR range
and disease severity has been confirmed.

Comparison between Fusarium spp. and Cercospora
beticola shows that mycotoxins play a fundamental role
in the pathogenicity resulting in collapse of tissue struc-
ture. C. beticola secretes cercosporin after penetrating
the leaf through stomata (Daub and Ehrenshaft 2000).
The main mycotoxins produced by Fusarium species is
DON. High correlation was observed between DON
concentration produced by isolates of Fusarium species
and isolate virulence, where Fusarium species use DON
as protein synthesis inhibitor to overcome the plant
resistance (Rotter et al. 1996; Chetouhi et al. 2015;
Kuhnem et al. 2015; Beukes et al. 2018).

In the NIR,Mahlein et al. (2010) proved a decrease in
reflectance in the first stages of pathogenicity of
Cercospora beticola on sugar beet leaves as a result of
collapsed of tissue structure. In advanced stages, the
reflectance increased again in this range. According to
Leucker et al. (2016) the spectral reflectance in NIR was
higher in susceptible varieties than resistant varieties
and accompanied with higher sporulation density in

susceptible varieties of sugar beet. In case of FHB
infection, the NIR reflectance of spikelet invaded with
red F. culmorummycelium was higher than areas show-
ing only bleached symptoms (Bauriegel et al. 2011).
Histological study of Ha et al. (2016) showed that dense
growth of F. graminearum mycelium appeared more
frequently and to a higher degree in the susceptible
variety Milan than in the resistant variety Sumai-3. In
the present study, the reflectance of spikes infected with
both species was lower than reflectance of non-infected
spikes in the NIR. However, correlation between varie-
ties resistance and spectral reflectance in NIR could not
be verified. The low correlation in NIR may be due to
the three dimensional structure of wheat spike. Further
investigations on spikelet scale are still needed to corre-
late the reflectance in NIR with sporulation density,
mycelium growth and variety resistance.

One of the main effects of FHB progress is early
senescence (Trail 2009). The SWIR component of the
electromagnetic spectrum was highly correlated to the
water content, and might therefore serve as a proxy for
early senescence and FHB progress. Following, high
correlation of DS with the spectral range in the SWIR
was indicated. The reflectance in SWIR differed de-
pending on susceptibility of each variety. A high sus-
ceptibility to FHB is related to an early senescence and
fast draining in spike water and as a result, higher
reflectance in SWIR. This is in accordance with results
presented by Iori et al. (2015). They proved the increase
in reflectance in the SWIR over time in wheat varieties
infected with Stagonospora nodorum. Comparing two
apple varieties with different susceptibility to apple scab
(Venturia inaequalis) showed higher reflectance in
SWIR in susceptible variety than in resistant one, re-
spectively (Delalieux et al. 2009).

Several studies showed significant effect of Fusari-
um infection on the kernel protein content which is
correlated to the kernel nitrogen concentration. The
crude protein content increased due to Fusarium infec-
tion whereas the total glutenin and high-molecular-
weight glutenin content decreased significantly in the
wheat kernels resulted from Fusarium infected spikes
(Wang et al. 2005; Siuda et al. 2010; Kreuzberger et al.
2015). In this study, and for the first time, three indices
derived from SWIR range related to nitrogen (NDNI),
cellulose (CAI) and water stress (MSI) showed high
correlation with FHB severity.

However, effective approaches for analysing the ob-
tained hyperspectral data with its high complexity are
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required. Machine learning approaches showed high
capacities in hyperspectral data analysis and the poten-
tial to accelerate screening processes in plant resistance
breeding (Rumpf et al. 2010; Behmann et al. 2015;
Singh et al. 2016). In the present study, SVM classifica-
tion was applied in multiple settings regarding time clas-
ses and features. The decrease in accuracy in later stages
of FHB pathogenesis is due to the senescence in control
spikes. The classification accuracy was lower using the
SVIs than using the whole spectral reflectance which
considered the water stresses detected in the SWIR
caused by FHB. Interestingly, it was possible to differen-
tiate between the infections of two Fusarium species by
multiclass classification. This result could be due to the
differences in the isolates virulence more than differences
in symptoms caused by the both species.

The lack in FHB resistant varieties requires more
efforts to investigate new resistance sources through
wild and domesticated wheat germplasm diversity
(Steiner et al. 2017). Due to the difficulties in Type I
resistance assessment, most QTLs have been identified
to be involved in Type II resistance (Buerstmayr et al.
2009; Steiner et al. 2017). Mesterházy et al. (2007)
emphasized the necessity of including Type I resistance
in breeding programs. The traditional rating of plant
disease severity depends on AUDPC which is used to
combine multiple observations of disease severity into a
single value (Simko and Piepho 2012). It has been
shown that the AUDPC can be reproduced with high
accuracy by the combination of multiple SVIs trans-
formed by NMDS. The differences in varieties ranking
using the traditional AUDPC and NMDS could be
attributed to two factors which were taken into account
in NMDS approach. The first, the data of control plants
has been subtracted to omit the natural senescence. The
second, the data of the first and the last measuring dates
has been neglected to exclude the extreme values.

During the last decades, the FHB epidemic frequency
increased in the main wheat production regions in the
world. This could be attributed to the changes in the
agricultural practices like reduced tillage, and the inten-
sification of maize which is one of the main hosts of
FHB in crop rotation (McMullen et al. 2012). Many
studies monitored the geographic specificity in
F. graminearum and F. culmorum chemotypes in wheat
producing countries (Ward et al. 2008; Talas et al. 2011;
Alkadri et al. 2014; van der Lee et al. 2015; Pasquali
et al. 2016). They identified the changes in Fusarium
dominant chemotypes during a short time. This

emphasises the need for continuous development of
varieties with resistance to a wide range not only of
Fusarium species but also of Fusarium chemotypes.
Here, hyperspectral imaging and sophisticated machine
learning approaches, as investigated in this study can
improve the FHB resistance breeding process by an
accelerated wheat resistance identification and charac-
terization. New handheld hyperspectral cameras in-
crease the flexibility and usability also by non-experts
in the field (Behmann et al. 2018). These approaches
assist e.g. the breeder for an improved determination of
relevant wheat varieties.

Conclusions

Hyperspectral imaging is a state-of-the-art technology
and method for plant sciences and may be applied in
plant resistance breeding. In addition to the assessment of
the dynamics of FHB symptoms, it was feasible to dif-
ferentiate not only between Fusarium infected spikes and
healthy ones, but also between spikes infected with dif-
ferent Fusarium species by a SVM classification. As an
important outcome, an automated method to reproduce
AUDPC depending on seven SVIs derived from the
electromagnetic spectrum in VIS, NIR and SWIR was
established. This will improve the automation in disease
rating andwill providemore objective information for the
decision making process in resistance breeding.
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