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Abstract Protection of crops against plant diseases is
crucial in crop production. Agricultural practice and
scientific research is confronted with new challenges.
Environmentally friendly and sustainable solutions are
increasingly demanded. Therefore, the precise detection
of primary infection sites and disease dynamics is fun-
damental to make a decision for a subsequent manage-
ment practice. In this context, optical sensors can pro-
vide an accurate and objective detection of plant dis-
eases. This has awoken the interest and expectation from
the public, farmers, and companies for sophisticated
optical sensors in agriculture, providing promising so-
lutions. Nevertheless, the application of optical sensors
in a practical context in the field is still challenging, and
sophisticated data analysis methods have to be devel-
oped. In general, the entire system pipeline, consisting
of the type of sensor, the platform carrying the sensor,
and the decision making process by data analysis has to
be tailored to the specific problem. Here, we briefly
recount the possibilities and challenges using optical
sensors in research and practice for plant disease protec-
tion. Optical sensor-based approaches are considered as

a key element in plant phenotyping. This overview
addresses mainly hyperspectral imaging as it determines
several plant parameters that represent the basis for more
specific sensors in the future.
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Introduction

Recent cultivation techniques have resulted in higher
plant pathogen incidence and susceptibility of plants in
agriculture (Bebber et al. 2014). Besides the import of
new diseases by human activities and favorable condi-
tions due to climate changes, factors that increase the
infestation rate of fungal pathogens on plants are the use
of non-locally adapted high-yield varieties, unbalanced
fertilization, reduced crop rotation, and tillage cultiva-
tion (Bebber et al. 2014). Plant pathogens reduce the
quality and quantity of products from crop plants and
increase costs in agriculture due to the application of
plant protection measures. Plant disease management
strategies should be based on a precise diagnosis and
documentation of the disease appearance and incidence
within crop stands. Plant diseases often exhibit a hetero-
geneous distribution within crop stands and are highly
dynamic in time and space. Effective technical solutions
for improved detection of plant diseases are highly
desirable. Various research groups performed scientific
studies in the field of assessing plant diseases in differ-
ent host-pathogen systems (Al Masri et al. 2017;
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Sugiura et al. 2016; Wahabzada et al. 2016; Hillnhütter
et al. 2011). Important insights on the basic principles of
interactions of plant pathogens and pests with plants and
their influence on the optical properties have been gen-
erated (Simko et al. 2017; Mahlein 2016; Bock et al.
2010; Sankaran et al. 2010; West et al. 2003). For the
improvement of precision agriculture and plant pheno-
typing, highly sensitive sensors are developed and need
to be investigated to enable automated disease detection
and improve standardized rating methods (Simko et al.
2017; Mahlein 2016; Fiorani and Schurr 2013).

The demand for precision agriculture – real-time
detection of plant diseases in the field

Optical sensors are non-invasive measurement systems
that can be used on the same individuals over time.
Different sensors such as RGB, 3D, fluorescence, ther-
mography, and hyperspectral imaging (HSI) enable the
characterization of relevant plant parameters (Mahlein
2016). Recently published smartphone applications
established an automated identification of sugar beet
diseases (Hallau et al. 2017). Here, a conventionally
integrated smartphone camera has been used with a
convenient software surface. Such smartphone applica-
tions are mainly beneficial for private use, agricultural
service, and farmers because the disease symptomsmust
be already visible. The throughput is limited and it has to
be linked to a threshold-based, integrated plant protec-
tion measure. These studies demonstrated, that collec-
tions of imaging data from diseased leaves can be used
to develop sophisticated machine-learning approaches
for early disease detection by RGB sensors. Accurate
disease detection is also possible with thermographic
imaging because the plant temperature correlates with
its water balance and transpiration, which are affected
by plant diseases (Al Masri et al. 2017; Simko et al.
2017). This method is highly sensitive, but limited in the
ability to identify specific diseases and differentiate
them from abiotic factors that can induce water stress,
respectively. Similar accuracy in stress detection with a
low stress specificity is also observed for chlorophyll
fluorescence imaging (Simko et al. 2017; Mahlein
2016).

Hyperspectral sensing enables the detection and dif-
ferentiation of abiotic and biotic stresses, which opens
new opportunities for field phenotyping and manage-
ment (Ge et al. 2016). Across application areas on

different scales, hyperspectral remote sensing ap-
proaches are feasible to detect diseased plant spots in
the field (Hillnhütter et al. 2011; West et al. 2003). This
permits precise and short-term applications in the field
and the mapping of landscapes with relevant crop and
cultivation parameters for future precision field manage-
ment (Mulla 2012). But the characterization of a specific
disease is still challenging with hyperspectral remote
sensing. The spatial resolution of these sensors is often
not high enough for identifying plant diseases below a
management threshold. Within this context,
hyperspectral close range or proximal imaging is more
promising and able to characterize plant diseases in
space and time (Mahlein et al. 2012).

Based on recent experience, demands for specific
sensors still have to be specified in future. The applica-
tion environment and the plant-pathogen system are the
defining factors within this context. Different studies
and their communication into society, to companies,
and farmers aspire high hopes for future innovations.
For an exhaustive evaluation and critical discussion of
prospects and actual merits, recent achievements and
limitations have to be outlined. Application of optical
sensors in the field is often confronted with abiotic
factors, which impede disease detection (Moshou et al.
2015). Beside natural illumination, the spectral influ-
ence of rain and the remaining water on the plant needs
to be evaluated. Wind causes plant movement during
measurements, which degrade the record quality and by
this the data accuracy. Snap-shot cameras will reduce
this phenomenon, because currently hyperspectral cam-
eras are mainly whisk broom scanners, push broom and
full-frame cameras (Thomas et al. 2017). However, until
now these snap-shot cameras were not available with an
adequate spatial and spectral resolution. In addition, the
assessment of important wavelengths for specific de-
mands can be used to develop multispectral camera
systems such as digital cameras with specific LED
configurations (Grieve et al. 2015). This will reduce
measurement time and data size, and can realize real-
time applications. However, multiple biotic stresses
have to be considered such as mixed infection by fungal
plant pathogens, pests, and feeding damage by animals.
For field applications, a controlled measurement system
needs to be developed. The sensor carrier and vehicle
must be synchronized and adapted to the information to
be collected. As an example, drone applications have
high accuracy, scale independence, and rapid movement
(Sankaran et al. 2015). Though, limitations and
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challenges of drones are still the time of flight, wind
sensitivity, lift capability and ventilation, which can
move the crop during close range imaging at low-alti-
tude. In addition to existing sensor tractors and manual
sensor vehicles, an autonomous robot could improve
data collection with optical sensors in precision agricul-
ture (Mueller-Sim et al. 2017; Andrade-Sanchez et al.
2014). These and further supporting systems for sensors
in agriculture are still under development and evalua-
tion. Testing of HSI in field show different specific
demands, which depend on the crop and measurement
situation or on the specific parameter of interest
(Mahlein 2016).

Development of reliable data analysis

HSI is able to provide relevant information about differ-
ent plant parameters. In fact, HSI records the electro-
magnetic spectrum that is reflected from plants. The
optical information summarizes the plant compartments,
type of leaf, the surface texture, the leaf age, etc. To
extract relevant information on the plant status, the
reflectance signature needs to be analysed and
characterised; this can be done manually. The combina-
tion and calculation of narrow or broad wavelengths
ratios were developed to establish relationships of
hyperspectral reflectance signatures to plants and their
biophysical variables in remote sensing (Thenkabail
et al. 2000). These are described as spectral vegetation
indices and result in a reduction of data dimension. The
Normalized Difference Vegetation Index (NDVI) is a
common spectral index to assess plant vitality by the
green biomass and chlorophyll content from remote
sensing (Gamon and Surfus 1999). During the last de-
cades, many sophisticated spectral vegetation indices
were developed and adapted for proximal plant sensing
approaches e.g. for plant disease detection (Mahlein
et al. 2013; Delalieux et al. 2007; Steddom et al.
2005). The development of spectral vegetation indices
depends on the connection of the spectral reflectance
with biochemical and biophysical properties, which re-
quires intensive investigation and validation.

Therefore the extraction of the reflectance signatures
pixel by pixel is required. Such analysis is labour inten-
sive because hyperspectral images can consist of mil-
lions of pixels. The selection of regions of interest pixels
is non-objective and limited if no visible changes on the
spatial hyperspectral images occurred. In addition, HSI

data sets of time series experiments can contain several
gigabytes or even terabytes (Kersting et al. 2016). How-
ever, for the interpretation of the spectrum, signatures
must be extracted from pixels of interest of the
hyperspectral image. Changes or differences in the ex-
tracted spectral signatures during plant-pathogen inter-
actions, can be assessed by calculations of the spectral
differences, ratios or derivations (Kuska et al. 2017;
Mahlein et al. 2012). Data driven and machine learning
approaches can reduce the labour intensity and could
enable the detection of attributes on hyperspectral im-
ages such as pre-detection and allocation of plant dis-
eases (Behmann et al. 2015). Among machine learning
approaches, unsupervised and supervised methods for
classification and clustering can be applied. Unsuper-
vised machine learning tries to find key pattern in the
data without additional manual input. In contrast, super-
vised machine learning requires a set of labelled training
data, which consists of described examples e.g. image
annotations and pixel allocations. Common classifica-
tion and clustering methods for crop hyperspectral im-
age analysis are: k-means (unsupervised), IsoData (un-
supervised), self-organizing maps, support vector ma-
chines, spectral angle mapper and artificial neural net-
works (Kersting et al. 2016; Mahlein 2016; Moshou
et al. 2015; Behmann et al., 2015). However, pre-
labelled plant data are difficult to obtain for early
plant-pathogen interactions. Recent studies by
Wahabzada et al. (2016) established a machine learning
method to wordify hyperspectral reflectance signatures
during three different barley pathogenesis (powdery
mildew, brown rust, and net blotch). This could enable
a modern art of spectral libraries, which contains spec-
tral features of plant diseases and the plant health status.
The collection of characteristic hyperspectral signatures
of plants would be a global benefit, also opening doors
for non-experts. In addition, such data collection could
be integrated to common field-management and online-
tools e.g. performance maps, weather data and forecast
models. This would enable a reliable tool for early and
precise plant protection measures.

Phenotyping: a key element to establish optical
sensors in applied practice

Sensors can be used within the phenotyping process after
several hybridizations and generation of a set of geno-
types of interest that must be investigated in different
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environments and under different conditions. Qualitative
characterization of the genome expression to plant func-
tion in a given environment is done by the visual estima-
tion of human raters. This step is defined as the pheno-
typing process (Fiorani and Schurr 2013). Phenotyping is
the visual description and assessment of plants from
single organs to the canopy during all growth stages
(Fiorani and Schurr 2013). This includes the plant growth
rate, architecture, leaf color, health status, and detection of
abiotic and biotic stress symptoms and their severity.
Depending on the testing property, phenotyping process
may be necessary during the vegetative and generative
phases of a plant. However, it requires a large human
effort and the testing of certain environments limits the
throughput; this is described as the phenotyping bottle-
neck (Furbank and Tester 2011). In addition, traditional
visual estimation of plant disease severity is prone to
errors because plant-pathogen interactions sites are on
the cellular and leaf level and the assessment is subjec-
tively influenced by the rater (Bock et al. 2010; Nutter
et al. 2006). To overcome these circumstances, objective
methods are required but early plant-pathogen interac-
tions are in the submillimeter size, which limits the early
detection even by applying HSI (Mahlein et al. 2012). An
increased spatial resolution of hyperspectral cameras can
be obtained by hyperspectral microscope setups (Kuska
et al. 2015). With this approach, small and subtle patho-
genesis and resistance related reactions of plants against
pathogens can be investigated (Kuska et al. 2017).

Optical sensors enable new possibilities for basic re-
search studies and can be implemented in breeding
routines and field management. Pinto et al. (2016) inves-
tigated the sun induced chlorophyll fluorescence using
HSI and established a method to quantify spatio-temporal
dynamics of the fluorescence of crop canopies and pho-
tosynthetic activities. This enables the assessment of the
photosynthesis performance of vegetation canopies. Nev-
ertheless, spectral images must be also linked to biologic
processes, especially during plant-pathogen interactions.
Recent studies revealed the feasible analysis of plant leaf
chemicals andmetabolites using HSI (Pandey et al. 2017;
Arens et al. 2016), which increases the potential applica-
tions of HSI for plant resistance breeding and precision
agriculture.

As a short summary of the state of the art, it has
been demonstrated that HSI performs for detection
and assessment of specific plant diseases, plant resis-
tance responses, and for determination of abiotic
stresses (Fig. 1). In addition, plant physiological and
histological changes can be assessed byHSI and support
the biological interpretation of a plant hyperspectral
image. Further investigations to linkmolecular data with
HSI data are still necessary. This will open new possi-
bilities in basic research for the development of innova-
tive plant protection strategies and for plant resistance
breeding (Fig. 1). These findings could be used to
improve and calibrate resistance- and disease-
screening systems by applying HSI.
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Fig. 1 Parameters influencing the plant phenotype. Furthermore,
plant parameters and phenotype relevant factors which can be
detected and assessed using hyperspectral imaging are indicated
by the shape of the hexagon. Different stresses can be determined
and assessed by hyperspectral imaging. Physiological and

histological studies are mainly used for the biological interpreta-
tion of the reflectance spectrum like for plant pathogen resistance
detection. The influence of specific gene expression profiles and
enzyme activities on the spectral reflectance pattern of plants are
still unknown



Furthermore, for plant resistance phenotyping the re-
sults from proximal sensing need to be transferred on the
plant and field scale. State-of-the-art phenotyping green-
house facilities were the first step to establish high
throughput screening systems (Yang et al. 2013). In such
approaches, whole plants are measured and new impor-
tant parameters from spectral imaging can be considered
with information, on plant architecture, leaf angle, and
leaf overlapping (Thomas et al. 2017; Virlet et al. 2017).
A future improvement may be the fusion of different
sensor approaches such as 3D cameras for spatial nor-
malization of spectral images (Behmann et al. 2016). This
fusion has to be performed on the data scale.

Methods based on optical sensors can overcome cur-
rent limitations of disease detection and rating, and can
generate objective data and standardized parameters. A
positive consequence will be a more precise plant protec-
tion measure and higher objectivity in plant phenotyping
processes. Both comewith a reduced human effort. How-
ever, existing techniques have to be critically evaluated
and calibrated to each specific disease and situation indi-
vidually. Hyperspectral handheld cameras can enable
more flexible applications without carrier platforms
(Behmann et al. 2018). Therefore, the development of
faster measurement options, auto focus and automated
integration time settings in hyperspectral cameras are
desirable to make HSI an effective practical tool in agri-
culture and plant phenotyping. In addition, user-
optimized data analysis pipelines and measurement
methods must be developed to establish standardized
conditions. There will not be one all-inclusive solution
in the near future. Overall, it is believed that optical
sensors will play a key role in the coming smart farming
activities to ensure sustainable agriculture due to im-
provement in plant breeding and field monitoring in
precision agriculture and integration in practical tools.
This movement will be only successful if experts with
different backgrounds across science, industry, extension
service, and farmers work together and establish a com-
mon vision of reliable approaches.
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