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Abstract A large network of field experiments has
been conducted over several years across France to
identify combinations of winter wheat cultivars and
management practices in which partial resistances under
limited chemical protection would achieve adequate
disease management, while leading to satisfactory yield
performance, and so achieve the double objective of
ecological sustainability and economic viability. Little
information is available to document the variation in
multiple disease levels, a necessary step towards a
chemical extensification process, in wheat networked
experiments. This article provides a description of dis-
ease intensities in a set of 101 experiments totalling
3525 individual wheat plots over eight successive years
(2003–2010). The diseases considered are brown rust

(BR, Puccinia triticina), yellow rust (YR, Puccinia
striiformis), fusarium head blight (FHB, Fusarium
graminearum, F. culmorum, and F. avenaceum), pow-
dery mildew (PM, Blumeria graminis), and septoria
tritici blotch (STB, Zymoseptoria tritici). Hierarchical
cluster analysis led to the identification of three variety
groups associated with (1) moderate-low disease levels
in general, except for YR (moderate levels) – 16 varie-
ties; (2) moderate-low BR, YR, and FHB levels, and
moderate PM and STB levels – 12 varieties; (3) com-
paratively higher BR, YR, FHB, and STB levels, and
moderate PM levels – 17 varieties. The association of
disease levels represented as binary categories (i.e.,
epidemics vs. non-epidemics) with climatic years
corresponded to chi-square values (χ2 = 87.0–1402) that
were one to two orders of magnitude larger than the
values corresponding to the associations of diseases
with variety groups (χ2 = 6.41–321) or with levels of
crop management (χ2 = 21.2–82.1). Multivariate non
parametric analyses indicated the existence of three
disease syndromes, two of which being dominated by
BR or STB, and a third associated with diverse diseases
and frequent FHB. This suggests that STB and BR
might each be considered as key-stone species dominat-
ing specific wheat disease syndromes. Multiple corre-
spondence analysis highlighted the linkages between
multiple epidemic occurrence and the three character-
ized variety groups. Risk factors analyses conducted
through logistic regressions provided quantitative esti-
mates of the contribution of climatic years, variety
groups, and crop management, to the likelihood of
epidemic occurrence for each of the five diseases
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considered. The results indicate that climatic years,
wheat varieties, and crop management, in this decreas-
ing order, define disease epidemic risk in the multiple
wheat-diseases pathosystem.

Keywords Categorical data . Risk factor . Multiple
pathosystem . Cropmanagement . Agricultural
extensification . Sustainable agriculture

Introduction

A large network of field experiments has been conduct-
ed over several years across France to identify combi-
nations of wheat cultivars and management practices
that would achieve the double objective of ecological
sustainability and economic viability (Bouchard et al.
2008; Loyce et al. 2008, 2012). Several reports on this
important project spearheaded by breeders who selected
hardy winter wheat cultivars (Doussinault 1998;
Brancourt-Hulmel et al. 2003) have dealt with crop yield
(Loyce et al. 2008, 2012) and economic performances
(Bouchard et al. 2008; Loyce et al. 2012).

Hardy winter wheat cultivars may be defined as
(Doussinault 1998; Bouchard et al. 2008) wheat varie-
ties that (1) have yield performances approaching those
of the best high yielding wheat varieties at moderate
levels of fertilizer inputs, (2) produce good quality grain
(i.e., with a high protein content), and (3) carry multiple
partial resistances to the main diseases of wheat. An
important objective of this networked experimental pro-
ject was therefore to assess the extent to which disease
might be checked by some varieties under some field
conditions: this is a key to chemical extensification, i.e.,
to a reduction in the use of pesticides. If, in a first stage,
some wheat varieties grown at reduced levels of mineral
fertilizer (especially nitrogen) and under minimal chem-
ical protection were to lead to reduced disease levels,
then such (variety x management) combinations were to
be seen as entry points for chemical extensification. If,
in a second stage, such combinations of wheat varieties
and reduced chemical inputs were to lead to satisfactory
yields of good grain quality, the double objective of
ecological and economical sustainability would be with-
in reach.

Several reports have indicated that this is the case
(Félix et al. 2002; Bouchard et al. 2008; Loyce et al.
2008, 2012). An analysis based on a 2-year period
(2001–2002) indicated that disease (yellow rust, brown

rust and septoria tritici blotch) intensity decreased with
intensifying chemical inputs and with variety resistance
scores (Loyce et al. 2008). Little information however is
available to document multiple disease intensities, their
variation and distribution, their possible combinations
as disease syndromes, and the main factors determining
multiple epidemic risks. The goal of this article is to
provide information on the first stage of a chemical
extensification path, that is, on the level of disease
reduction achieved by hardy winter wheat varieties at
specified intensification levels.

In this article, we provide quantitative information on
the distribution frequencies of five different wheat dis-
eases, and their variability over years. These diseases are:
brown rust (Puccinia triticina), yellow rust (Puccinia
striiformis), fusarium head blight (involving a complex
of pathogens, including: Fusarium graminearum,
F. culmorum, and F. avenaceum; Jennings et al. 2004;
Nielsen et al. 2011), powdery mildew (Blumeria
graminis), and septoria tritici blotch (Zymoseptoria
tritici). A second objective is to assess the hypothesis
of existence of disease syndromes, i.e., of disease asso-
ciations (Willocquet et al. 2008), from the data set. A
third objective is to document the effect of wheat varie-
ties on diseases, and especially to determine if patterns of
reactions exist in the several varieties tested in the exper-
imental network. A fourth objective is to assess the
strength of association between disease variables (in-
cluding, if existing, disease syndromes) and risk factors,
such as climatic years, wheat varieties, and crop man-
agement. A last overall objective of the work reported
here is to assess the use of a generic approach to analyse
large data sets that involve qualitative and quantitative
information, and variable level of data precision, which
has been used elsewhere (Savary et al. 1994; Avelino
et al. 2004; Savary et al. 2006; Zhang et al. 2006).

Materials and methods

Network of experiments

A large set of winter wheat varieties were tested in
France in a network of field experiments established at
different locations (Fig. 1), where each variety was
tested with four levels of crop management. These ex-
periments were conducted for several years. Here, we
report on the years 2003–2010, when a total of 45 wheat
varieties were tested.
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The levels of crop management in the network of
experiments, CMGT1 to CMGT4, have been described
in detail elsewhere (Rolland et al. 2003; Loyce et al.
2008, 2012; Bouchard et al. 2008). They consist in four
levels of agricultural, primarily chemical, extensification,
from a highly intensive CMGT1 to a much more exten-
sive CMGT4. The reasoning of extensification and inten-
sification levels is based on CMGT2, which represents
current recommendations for high yield performances.
The objectives of the different crop management levels
can be summarized as follows.

– CMGT2 aims at local high attainable (i.e., un-in-
jured) crop yields under near-optimal mineral

nutrition: CMGT2 thus entails high seeding
rates (150–400 seeds.m−2; radiation intercep-
tion at early crop growth maximized), high
nitrogen fertilizer inputs (usually 160 kg.ha−1

in three splits; attainable yield maximized),
frequent fungicide applications (one to three
applications; attainable yield achieved), and a
growth regulator when required (one applica-
tion at most; lodging prevented).

– CMGT1 aims at maximized yield: the nitrogen
fertilizer inputs of CMGT2 are increased by
30 kg.ha−1; fungicide application is systematic
(two to three applications); and a growth regulator
is applied once to twice.

107

12 

10364 

Number of plots

Fig. 1 Overview of the network of field experiments on hardy
wheat in 2003–2010. The map shows the distribution of 3525
individual plots corresponding to 101 experiments conducted

during 2003–2010 across French Départements. Colours represent
broad French regions where experiments took place
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– CMGT3 aims at a grain yield lower than CMGT2:
the seeding rate is reduced by 40 %; nitrogen fertil-
izer is reduced by 30 kg.ha−1; growth regulators are
seldom applied; fungicide use is limited (one appli-
cation at heading at half the recommended dose);
and no growth regulator is used.

– CMGT4 aims at a reduction in usage of chemicals:
the seeding rate is similar to CMGT3; nitrogen
fertilizer is reduced by 60 kg.ha−1 compared with
CMGT2; no growth regulator applied; and no fun-
gicides are used.

Since CMGT2 is based on site-specific recommen-
dations, and because the definition of successive levels
of cropmanagement also is site-specific, the entire range
of crop management levels may therefore vary, within
ranges, from one experiment to another.

Experimental designs and field data collection

Experimental designs varied across locations and years.
A typical design was a split-plot with crop management
levels as main units and varieties as sub-units (Loyce
et al. 2008), with four, sometimes three, replications.
However, experiments were also conducted using ran-
domized block or strip-plot designs. A large number of
experiments also only involved CMGT2 and CMGT3
as management levels. The number of wheat varieties,
too, varied depending on the considered experiment. We
selected and included in the analysis reported here ex-
periments which entailed (1) at least three different
wheat varieties, (2) two management levels, and (3) at
least three replications. The number of individual plots
(i.e., combinations of variety x crop management level)
therefore varied from experiment to experiment and
year to year (Fig. 1). The individual plot size (wheat
variety x crop management in one replication) was also
variable among experiments, from 15 to 68 m2.

A variable amount of information was collected in
each experiment. All experiments reported yield perfor-
mances estimated at a grain moisture content of 15 %.
Disease measurements were also made, with a range of
methods, including severity (proportion of leaf area
infected) and incidence (proportion of infected leaves)
of diseases of the foliage, and disease incidence of head
disease. Disease assessments pertained to five diseases
(Table 1): brown rust (BR), yellow rust (YR), fusarium
head blight (FHB), powdery mildew (PM) and septoria
tritici blotch (STB).

Data set

Experiments were conducted in the network at many
locations nation-wide. Figure 1 shows the distribution of
individual experimental plots accumulated over the con-
sidered period, with large numbers in the center-north,
and center-west, but smaller in the west, and south-west
of France. These areas account for the bulk of the wheat
production in the country.

The experimental network generated a large data set.
The experimental data was first sorted and selected
using two criteria. First, only experiments where disease
assessments had been performed were considered. And
second, we retained experiments in which assessments
had been made during a consistent range of crop devel-
opment stages (early booting to early grain filling, i.e.,
development stage 45 to 85, Zadoks et al. 1974). The
latter choice reflects the need to consider (1) comparable
disease levels at similar crop development stage, and (2)
disease levels that have been reliably assessed, since
disease assessment on senescing leaves at the ripening
stage is likely to be more inaccurate. Disease informa-
tion was standardized throughout the entire data set, so
that LR, YR, PM, and STB are expressed in disease
severity (% leaf area infected), and FHB in disease
incidence (% heads infected).

The resulting data set involves 101 experiments con-
ducted during 8 successive years (2003–2010), corre-
sponding to 3525 individual wheat plots.

Analytical strategy

The resulting data set involved a very large number of
wheat varieties, some of which had been extensively
tested in many experiments over a long fraction of the
considered period of time, while others only appeared in
a limited number of trials over few years. On the other
hand, the data set involved five different wheat diseases,
some of which were very frequently encountered (STB,
BR), while others were documented in few trials and
few individual plots in these trials.

Departing from former analyses on similar data
(Bouchard et al. 2008; Loyce et al. 2008), we considered
the individual experimental plot as a statistical unit,
enabling multivariate approaches. A second decision
was to recognize that the data had been collected over
a long period of time, by different investigation groups
with various emphases; thus categorizing the informa-
tion (Savary et al. 1995) was considered a main avenue
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to reduce data noise, and stabilize very large variances.
Third, while detail on the behaviour of each individual
wheat variety, or characteristics of the five different
diseases, or again, the specific disease responses to the
different levels of intensification all are important ques-
tions, we focused on multiple disease responses (i.e.,
plant health) of wheat varieties. Therefore, approaches
to assemble varieties in broad groups, and to identify
disease responses as tractable overall plant health re-
sponses, were considered. Grouping methods for wheat
varieties and multiple disease responses (i.e., injury
profiles, or disease syndromes; Savary et al. 1994,
2006) were therefore sought. Fourth, each year of ex-
periments and data collection corresponded to different
climatic conditions. The year of data collection was
therefore considered a variable of its own, correspond-
ing to a climatic year. Fifth, the individual disease

responses, or the combined disease syndrome response,
were addressed as the realization of given disease risks
associated with diverse risk predictors, i.e., wheat vari-
eties, cropmanagement, and climatic years. A risk factor
approach (Savary et al. 2011) to data analysis was
therefore adopted.

Analytical steps

A first step in the analysis was to address the large
variances in measured disease intensities, and devise
suitable data transformation. This required consider-
ation of the distribution frequencies of disease intensi-
ties, in view of their categorization (Savary et al. 1995).

A second step concerned the identification of plant
health syndromes. This was achieved using
(categorized) disease data pertaining to each of the

Table 1 List of variables involved in the analysis of multiple disease data in a multi-site and multi-year evaluation of wheat varieties

Variable type Variable Symbol Notes a

Original disease intensities

Brown rust severity BR Fraction leaf area infected (%)

Yellow rust severity YR Fraction leaf area infected (%)

Fusarium head blight incidence FHB Fraction heads infected (%)

Powdery mildew severity PM Fraction leaf area infected (%)

Septoria tritici blotch severity STB Fraction leaf area infected (%)

Crop management levels

Levels of crop management CMGT4
to CMGT1

CMGT4, CMGT3,
CMGT2,
CMGT1

Increasing levels of fertilizer, fungicides, crop growth regulators
use, and seeding rates, from the lowest, CMGT4, to the
highest, CMGT1

Disease intensities as binary categories Non-epidemics Epidemics

Binary categories of BR severity BRBIN BR < 0.102 BRBIN = BR0
n = 2855

BR ≥ 0.102 BRBIN = BR1
n = 670

Binary categories of YR severity YRBIN YR < 0.076 YRBIN = YR0
n = 3470

YR ≥ 0.076 YRBIN = YR1
n = 55

Binary categories of FHB incidence FHBBIN FHB < 0.663 FHBIN = FHB0
n = 3058

FHB ≥ 0.663 FHBBIN = FHB1
n = 467

Binary categories of PM severity PMBIN PM < 0.233 PMBIN = PM0
n = 3322

PM ≥ 0.233 PMBIN = PM1
n = 203

Binary categories of STB severity STBBIN STB < 12.91 STBIN = STB0
n = 2527

STB ≥ 12.91 STBBIN = STB1
n = 998

Grouping metavariables

Clusters of individual experimental
plots according to disease
intensities as binary categories

CLUSDISEASE Three clusters, X, Y, Z; Generated from hierarchical cluster
analysis (Chi-square distance, Ward criterion; see text)

Clusters of wheat varieties according
to untransformed disease
intensities

VARGROUP Three clusters, VARGROUPA, B, C; Generated from
hierarchical cluster analysis of mean variety disease
performances (Euclidean distance, Ward criterion; see text)

a n number of plots in the dataset
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3525 plots, and considering each of them as one reali-
zation of one of several possible disease syndromes
affecting the entire population. This step involved a
hierarchical cluster analysis using the Ward criterion
and the chi-square distance.

A third step considered the wheat varieties that had
been tested, and their (multiple) disease(s) responses.
The disease response of a given variety may be seen as a
function of its genotype and the variable climatic year.
This response can be further affected by crop manage-
ment, especially because crop management entailed
variable, sometimes high, use of fungicides that can
suppress disease response. Ideally, this analysis should
have been conducted in absence of any fungicide use,
and might therefore have been conducted using the
subset of individual plots of CMGT4. However,
CMGT4 was represented by only 321 plots. Closer
inspection of these 321 plots indicated that some varie-
ties were very poorly represented or absent from this
subset. This analysis was therefore conducted on plots
belonging to the CMGT3 crop management level (1572
plots), where fungicide use is relatively low, where all
five diseases were recorded, with comparatively lower
variability thus enabling disease means and variances to
represent each variety. Disease response of varieties was
characterised by grouping varieties according to disease
intensities observed in plots under CMGT3. To achieve
this, a hierarchical cluster analysis was performed, based
on the mean and standard deviations of the five diseases
across all plots grown under CMGT3. The cluster anal-
ysis used the Euclidian distance and the Ward criterion
(Lames and McCulloch 1990; Wilkinson et al. 2007).

A fourth step considered the level and significance of
associations between the generated meta-variables (dis-
ease syndromes and variety groups) along with individ-
ual variables (individual disease levels and climatic
years). These associations were assessed by conducting
a series of chi-square tests on the corresponding contin-
gency tables (Savary et al. 1995).

The nature and variability of the nominal crop
management levels (CMGT1–4) was addressed in
a fifth step, in order to better qualify the nature of
this factor in the analyses. For this purpose, a
principal component analysis (Hau and Kranz 1990;
Lames and McCulloch 1990) was performed, involving
the levels of chemicals applied on the wheat plots across
years and sites.

A sixth step consisted in generating an overall picture
of the multiple links between climatic years and disease

levels, varieties and variety groups, and crop manage-
ment through a multiple correspondence analysis
(Benzécri 1973; Greenacre 1984; Savary et al. 1995).
This step was designed to bring together the intermedi-
ate results of the former steps.

A risk factor analysis involving logistic regressions
(Harrell 2001; Esker et al. 2006; Savary et al. 2011) was
followed in the last step. In this phase, the likelihood of
occurrence of disease epidemics was considered the
outcome of a series of predictors: climatic years, crop
management, and variety groups.

Results

Distribution frequencies of disease intensities

The distribution frequencies (Fig. 2) of the five diseases
were strongly skewed, with very large proportions of
plots showing very little or no disease, and very small
proportions with large disease intensities. There were
also very strong variations in disease intensities over the
successive years (Fig. 2). Brown rust (BR, Table 1)
occurred in most years (except 2004), with a maximum
level in 2007. Yellow rust (YR) occurred only in four
consecutive years (2007–2010) in a total of 55 individ-
ual wheat plots, with severities in most cases equal to, or
lower than, 2 % (medians in the range of 1 to 10 %).
Fusarium head blight (FHB) also occurred unevenly,
often with very large variances, as in 2008, when it
reached maximum levels. Similarly, powdery mildew
(PM) occurred in some years only, and at low levels
(medians in the range of a few percent). By contrast,
septoria tritici blotch (STB) occurred in all years, with
medians often in the range of 10 % severity and with
large variances as well.

Overall disease variation across varieties

The very large effect of wheat varieties on disease
intensities is shown in Fig. 3. Overall differences in
intensities among the five disease is indicated again,
with moderate overall levels of brown rust and fusarium
head blight, low levels of yellow rust and powdery
mildew, and much higher levels of septoria tritici blotch
(Fig. 3). Variability among wheat varieties in specific
disease intensities suggests the existence of strong dif-
ferences with respect to susceptibility to brown rust and
possibly (given the low levels observed), to yellow rust
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and powdery mildew. The response of wheat varieties to
FHB seems more homogeneous. Variation of STB in-
tensity among varieties also suggests quantitative varie-
tal differences.

Transformation of disease data in a binary form

The observed distribution frequencies of disease inten-
sities (Fig. 2) led to considering the disease-related
information in a way similar to earlier studies conducted
on large samples of monitored crop stands (Savary et al.
1994; Avelino et al. 2004, 2006; Zhang et al. 2006), with
the use of categories to account for variability of quan-
titative measurements (Savary et al. 1995). In such large
data sets, disease level data generally may be associated
to two broad processes: disease establishment, and dis-
ease intensification in the host population (Lenné and
Jeger 1994; Savary et al. 1994). Quantitative informa-
tion pertaining to the observed level of disease can
be very useful – reflecting conditions that may
have favoured or hampered disease intensification
–, but is dependent on the prior of disease
establishment.

Examination of raw data indicated that large differ-
ences in disease assessment could occur from location to
location and from year to year. This may be attributed to
differences of emphasis from diverse observation teams,
and differences in disease measurement itself (Reddy

et al. 2011). Further, the distribution frequencies of
Fig. 2 indicate that the occurrence of any disease (except
STB) at any level higher than 5 % severity (incidence in
the case of FHB) is infrequent in the analysed data set.
The decision was therefore reached to emphasize dis-
ease establishment over epidemic intensification, and
thus to represent disease data in a binary form (De
Wolf et al. 2003; Esker et al. 2006), 0 indicating absence
or very low disease level, and 1 indicating any disease
level above a given, low, threshold. The thresholds for
conversion in a binary formwere calculated as: t = mean
– 0.05 (s/mean), where ‘mean’ is the arithmetic mean of
disease intensity, and s is its standard deviation. The
corresponding values (Table 1) of the thresholds were
0.102, 0.076, 0.663, 0.233, and 12.91 % for BR, YR,
FHB, PM, and STB, respectively. Disease levels above
or below these threshold were further referred to as
‘epidemics’ or ‘non-epidemics’ (Esker et al. 2006).

Disease syndromes: hierarchical cluster analysis
on binarized disease data

Hierarchical cluster analysis on individual plots repre-
sented by their levels of disease intensities in a binary
form led to the identification of three broad groups of
injury profiles (Fig. 4). A large group X (2273 plots)
corresponds to the most diverse occurrence of diseases.
Only in this first group do YR, FHB, and PM epidemics

Fig. 2 Distribution frequencies and box-plots of individual disease
distributions over years. Top: log-transformed variation in disease
intensities (severities or incidences, see Table 1) over years. Abscissa:
years, ordinates: log-transformed (base 10) disease intensities. Note
the differences in scales of ordinates depending on diseases. Bottom:

distribution frequencies of untransformed disease intensities (disease
severities: BR, YR, PM, and STB; or incidence: FHB) in 3525wheat
plots of a network of wheat experiments in France. Top and bottom:
BR: brown rust, YR: yellow rust, FHB: fusarium head blight, PM:
powdery mildew, and STB: septoria tritici blotch
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Fig 3 Box-plots of patterns of disease responses across wheat
varieties. Each box-plot indicates a distribution of untransformed
disease intensity across wheat varieties. Abscissa: wheat varieties,

ordinates: disease intensities (severities or incidences, see Table 1).
BR: brown rust, YR: yellow rust, FHB: fusarium head blight, PM:
powdery mildew, STB: septoria tritici blotch
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occur. The observed frequency of epidemic occurrence
(i.e., binary disease level = 1) makes it possible for
multiple epidemics to occur simultaneously in the same
individual wheat plot. Group X is associated with pos-
sible brown rust epidemics (BRBIN =1 in 279 cases),
possible yellow rust epidemics (YRBIN =1 in 55 cases),
frequent FHB epidemics (FHBIN =1 in 515 cases),
possible PM epidemics (PMBIN =1 in 215 cases), and
possible STB epidemics (STBIN =1 in 418 cases).
Group Y (543 plots) is predominantly associated with
the occurrence of brown rust (BR = 1 in 440 cases).
Group Z (709 plots), by contrast, is predominantly as-
sociated with the occurrence of septoria tritici blotch
epidemics (STB = 1 in 634 cases). The three groups
therefore correspond to three distinct disease syn-
dromes, the first with a likely combination of multiple
wheat diseases, the second with brown rust, and the
third with septoria tritici blotch.

Variety groups: hierarchical cluster analysis
on untransformed mean disease data in CMGT3

Three wheat variety groups (VARGROUP-A -C)
were identified from a hierarchical cluster analysis
involving the arithmetic means and standard devi-
ations of each of the five diseases (Fig. 5). From
this classification based on variety performances
under CMGT3 (i.e., limited pesticide use; Table 1),
the three variety groups were characterized as
follows:

– VARGROUP-A, consisting of 16 varieties, corre-
sponds to moderate-low disease levels in general,
except for YR (moderate levels);

– VARGROUP-B, with 12 varieties, corresponds to
moderate-low BR, YR, and FHB levels, and mod-
erate PM and STB levels;

– VARGROUP-C, with 17 varieties, corresponds to
comparatively higher BR, YR, FHB, and STB
levels, and moderate PM levels.

These differences among variety groups are further
shown in Table 2, where the distribution frequencies of
epidemics and non-epidemics in each variety group are
tested in the entire data set (i.e., considering all four crop
management levels). The resulting χ2 values lead to
rejection of the null hypothesis of independence of
disease intensity (severity or incidence) across the three
groups of varieties (P < 0.05) for the five considered
diseases. Table 2 also indicates that variety groups are
significantly (P < 0.05) associated with the occurrence
of epidemics or non-epidemics for each of the five
diseases. The independence of distribution of individual
wheat plots among the three identified disease syn-
dromes (X, Y, or Z) and the three variety groups
(VARGROUP-A - B) is further rejected (χ2 = 134.67,
P < 0.001).

Strength of variable associations: chi-square tests

Table 2 further provides an overview of the association
of disease levels as binary categories (epidemics vs.
non-epidemics) or of the occurrences of the three dis-
ease syndromes and successive climatic years. Chi-
square values obtained indicate rejection (P < 0.001)
of the null hypotheses of independence between any of
the five wheat diseases (or disease syndrome,

X

Y

Z

0 50 100 150 200 250

Distances
Fig. 4 Hierarchical cluster analysis of wheat plots using binary
levels of disease intensities. The cluster tree results from a hierar-
chical cluster analysis of individual wheat field plots represented
by disease levels in a binary form (BRBIN, YRBIN, FHBIN,
PMBIN, STBIN, Table 1) using a Chi-square distance and a
Ward criterion. Three groups, X, Y, Z, of individual wheat plots
are indicated: X: possible BR epidemics; possible YR epidemics;
frequent FHB epidemics; possible PM epidemics; possible STB
epidemics (n = 2273 plots); Y: frequent BR epidemics; no YR
epidemics; no FHB epidemics; no PM epidemics; no STB epi-
demics (n = 543 plots); Z: no BR epidemics; no YR epidemics; no
FHB epidemics; no PM epidemics; frequent STB epidemics
(n = 709 plots)
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CLUSDISEASE) and year (see also Fig. 2). Similarly,
the use of binary disease data enables the testing of the
independence of disease occurrences in the different
crop management treatments, leading to the rejection
of this hypothesis (P < 0.001) for all five diseases, as
well as for disease syndromes. The series of chi-square
values listed in Table 2 provide a numerical overview of
the strength of relationships among qualitative (e.g.,
variety groups, crop management treatments), ordinal
and qualitative (e.g., climatic years) variables and the
observed responses expressed as binary (i.e., 0–1, or:
non-epidemic vs. epidemic) disease responses. Overall,
the association of climatic years with disease responses

is very large (χ2 = 87.0–1402), followed by the associ-
ation of variety groups (χ2 = 6.41–321), while the
associations of crop management with disease levels
has smaller, but the least variable, chi-squares
(χ2 = 21.2–82.1). These associations provide the basis
of multiple correspondence analysis.

Patterns of epidemics and non-epidemics over years

The variability of multiple disease occurrences over
years is further documented in Fig. 6, which displays
the distribution frequencies of epidemics and non-
epidemics over climatic years. The diagram indicates
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Fig. 5 Hierarchical cluster analysis of wheat varieties based on
observed disease intensities. Cluster tree resulting from an analysis
using a Euclidean distance and a Ward minimum variance criteri-
on. The analysis was performed on a data set where each wheat

variety is represented by its mean (untransformed) disease sever-
ities and the associated standard deviations across all plots under
CMGT3 (See Table 1). All five diseases (BR, YR, STB, PM, and
FHB, Table 1) were involved in the analysis
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the absolute as well as the relative frequencies of epi-
demic and non-epidemic events. Frequent brown rust
epidemics (Fig. 6a) occurred during the studied period,
especially in 2007, with additional cases in 2003, 2005,
and 2009. Yellow rust epidemics (Fig. 6b) were quite
rare, with some cases only in 2008. There were fusarium
head blight epidemics (Fig. 6c) in 2003, followed by a
long lapse, and a succession of cases in 2007, 2008,
2009, and 2010. Powdery mildew epidemics
(Fig. 6d) were rather rare, except in 2005 and
2009, when some cases were observed. Septoria
tritici blotch epidemics (Fig. 6e) occurred every
year, especially in 2005 and 2007–2009 (nearly
half the wheat plots grown in 2008 were consid-
ered as epidemic cases). The data structure shown
in Fig. 6 provides the framework for further logistic
regressions.

Variability within, and overlap between, crop
management levels

The nature of the four crop management (CMGT,
Table 1) treatments was investigated in a principal com-
ponent analysis (PCA) of the levels of chemicals in-
volved. In this case, each plot is seen as one realization
of one of the four management levels. PCA led to the
identification of two main axes accounting for 34.2 and
21.7 % of total variance, respectively (Fig. 7). The
analysis shows the large extent of overlap among crop
management treatments, indicated by the successive
ellipses of confidence associated with CMGT1 to
CMGT4 (Fig. 7, right). This analysis indicates that the
nominal differences in crop management level do not
always correspond to large differences in terms of fre-
quency of chemical inputs to the wheat crop. Rather, one
may interpret the successive crop management levels,
CMGT4 to CMGT1, as a gradient of increasing chem-
ical and seed inputs.

Mapping association between disease intensity, climatic
year, and varieties: multiple correspondence analysis

Using the contingency tables leading to the chi-square
tests listed in Table 2, a Burt table involving the succes-
sive years and the binarized levels of disease was built.
A Burt table is a series of juxtaposed contingency tables,
where, similarly to a correlation matrix, each pair of
distributional associations is taken one after the other.
In this case, the Burt table involves, in turn, the five
diseases represented by their binarized levels, the eight
considered years, and the three variety groups
(VARGROUP-A, −B, and -C). This multiple contingen-
cy table generated a multiple correspondence analysis.
The two first axes of the correspondence analysis
(Table 3) accounted for 12.73 and 11.42%, respectively,
of the total inertia represented by the variables: BRBIN,
YRBIN, FHBBIN, PMBIN, and STBBIN; years 2003
to 2010; and VARGROUP-A, VARGROUP-B, and
VARGROUP-C.

This system of axes (Fig. 8) was then used to project
additional variables, enabling to map the degree of
linkage of these additional variables with the active
variables that determine the system of axes. A first
group of additional variables are the individual wheat
varieties that had been involved in the network of ex-
periments. Figure 8 provides further information
pertaining to the variety groups (VARGROUP), which

Table 2 Chi square tests between levels of wheat diseases as
binary categories, crop management, variety groups, and years

X-variable Y-variable Pearson
Chi-square

df P

YEAR BRBIN 1401.81 7 < 0.001

YRBIN 87.01 7 < 0.001

FHBBIN 757.95 7 < 0.001

PMBIN 203.21 7 < 0.001

STBBIN 384.55 7 < 0.001

CLUSDISEASE 1005.13 14 < 0.001

CMGT BRBIN 31.87 3 < 0.001

YRBIN 50.21 3 < 0.001

FHBBIN 40.38 3 < 0.001

PMBIN 21.22 3 < 0.001

STBBIN 82.06 3 < 0.001

CLUSDISEASE 32.48 6 < 0.001

CLUSDISEASE BRBIN 1621.88 2 < 0.001

YRBIN 30.06 2 < 0.001

FHBBIN 289.59 2 < 0.001

PMBIN 115.88 2 < 0.001

STBBIN 1624.50 2 < 0.001

VARGROUP BRBIN 6.41 2 0.041

YRBIN 24.06 2 <0.001

FHBBIN 24.45 2 < 0.001

PMBIN 86.90 2 < 0.001

STBBIN 321.14 2 < 0.001

CLUSDISEASE 134.67 4 < 0.001

df degrees of freedom of the Chi-square test; P P-value associated
with the Pearson’s Chi-square test
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had been determined separately, using the mean and
standard deviation of disease levels in hierarchical clus-
ter analysis (Fig. 5) on a subset of data consisting of
plots from CMGT3. A second group of additional var-
iables are the levels of crop management CMGT1–4.

The two first axes accounted for the inertia of the
(binary) disease variables to varying degrees, as indicat-
ed by their squared cosines (Table 3). The two first axes
therefore accounted well for the variability in BR (axis
1: 19.3 and axis 2: 60.2 %), FHB (24.1 and 10.9 %), and
STB (37.0 and 4.5 %); they did not account well for the
variability in YR (0.2 and 0.5 %) and PM (1.2 and
1.3 %). The two axes also accounted well for some
year-variables: 2004 (1 % and 14 %), 2006 (0.4 % and
14 %), 2007 (23 % and 52 %), 2008 (42 % and 1.4 %).
These years correspond to frequent epidemic cases of
the different diseases shown in Fig. 6. The system of
axes therefore provides a good overall representation of
the variables, with a particular emphasis on brown rust,
fusarium head blight, and septoria tritici blotch epi-
demics, as well as some of the years covered by the
present analysis.

Variety groups were associated with variable squared
cosines (Table 3). The first and second axes accounted
for 12.3 and 0.01 %, 2.7 and 5.6 %, and 27.5 and 6.9 %
of the inertia of VARGROUP-A, −B, and -C, respec-
tively. Accumulated squared cosines therefore indicate
that variety VARGROUP-C (34.4 %) is strongly asso-
ciated with differing (binarized) disease levels, while
VARGROUP-A (12.4 %) and VARGROUP-B (8.3 %)
are associated with more uniform distributions of epi-
demics and non-epidemics. By contrast, crop manage-
ment levels are associated with uniformly small squared
cosines (0.02 to 0.69 % on the first axis, and 0.13 to
1.03 % on the second axis, for CMGT1, 2, 3, and 4),
indicating that crop management levels were not in
general associated with very large differences in epi-
demic and non-epidemic occurrence.

Figure 8 displays the positions of the centres of
inertia of binarized disease levels, successive years,
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correspond to thresholds used for converting disease data in a
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and variety groups. While VARGROUP-C appears
strongly associatedwith occurrence of FHB and septoria
tritici blotch, as well as (more weakly) yellow rust and
powdery mildew, VARGROUP-A and -B are only
weakly associated with powdery mildew and yellow
rust occurrence. The occurrence of brown rust (BR1)
plays an important role in the associations displayed in
Fig. 8, being strongly associated with 1 year variable
(2007). Occurrence of brown rust appears weakly asso-
ciated with both variety groups A and C, but discon-
nected from variety group B. Crop management levels
(CMGT1–4), being very close to the origin of axes, are
not shown in Fig. 8.

Individual wheat varieties are also displayed in
Fig. 8. The location of the different varieties belonging
to a given variety group can be widely scattered about
their respective centres of inertia. VARGROUP-C
appears distinct, with its linkages with occurrences
of four diseases (FHB1, STB1, BR1, and YR1).
VARGROUP-A and B broadly overlap, being
however distinguishable on the horizontal axis
where varieties of group A appear to be quite apart
from multiple disease occurrence. While brown rust
occurrence appears very strongly associated with one
variety of group C, the vector BR0-BR1 provides addi-
tional discrimination between varieties of group A

(which in general are closer to BR1, and away from
BR0) and varieties of group B (which in general are
away from BR1, and may be close to BR0).

Risk factor analysis: logistic regressions

Logistic regressions (Table 4) provide quantitative esti-
mates of the contribution of climatic years, variety
groups, and crop management to the likelihood of epi-
demic occurrence for each of the five diseases consid-
ered. In each of the five logistic regressions tested,
climatic years (YEAR), variety groups (VARGROUP)
and cropmanagement (CMGT) are therefore considered
as possible predictors of disease epidemics detected in
the data set.

Depending on the considered disease, the logistic
models addressed different numbers of cases, that is,
the number of epidemics detected in the data set varied,
and was in some cases small. In a total population of
3525 plots (Fig. 1), 670, 55, 467, 203, and 998 epi-
demics of brown rust, yellow rust, fusarium head blight,
powdery mildew, and septoria tritici blotch, respective-
ly, were considered. In spite of this, the logistic models
converged for all five diseases, with significant likeli-
hood ratios associated with the complete model tested.
Each of the five logistic regressions tested correspond to

CMGT1

CMGT2
CMGT3

CMGT4

a b

Fig. 7 Principal component analysis of the levels of chemical
inputs involved in four levels of wheat crop management. a
distribution of individual experimental plots involved in the anal-
ysis (dots) and projection of vectors involved in the analysis along
its two first axes. The bar chart indicates successive eigenvalues.

Axes 1 and 2 account for 34.2 and 21.7 % of variance, respective-
ly. Insert: proportion of variances accounted by the successive
eigenvalues: 34.2, 21.7, 19.4, 13.6, 9.1, and 5 %. b projection of
the four cropmanagement levels on the system of axes and ellipses
of confidence (95 %) of accurate positioning of individual plots
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areas under the receiver operating characteristic curves
(ROC) that are larger than 0.5 and close to 1. This
further indicates that the predictors considered account
for a fair fraction of the variability of epidemics for the
five diseases (Harrell 2001). Each parameter of the
logistic models of Table 4 is documented by its estimate,
its standard error and associated probability, and its odds
ratio. The sign of the estimate indicates the direction of
the parameter effect. Large odds ratios indicate a strong
association of the predictor with epidemics, while odds
ratios close to 0 indicate a strong association of the
predictor with non-epidemics (Harrell 2001).

For example, in the case of brown rust, years 2003,
2005, 2007, and 2009 (year 2010 being the reference)

are positively, significantly, associated with the likeli-
hood of epidemics. In particular, very large odds ratios
were obtained for years 2003 and 2007, indicating their
strong association with epidemics. VARGROUP-A and
B (VARGROUP-C being the reference) are significantly
associated with non-epidemics, and CMGT1–3
(CMGT4 being the reference) are also significantly
associated with non-epidemics.

The other logistic regressions of Table 4 can be
interpreted in a similar manner. In the case of yellow
rust, climatic years 2007 and 2008, and variety group
A, were significantly associated with epidemics,
while crop management levels 2 and 3 were associated
to non-epidemics.

Table 3 Multiple correspondence analysis of levels of diseases as binary categories, climatic years, and wheat variety groups

Variables (classes)a Inertia Axis 1 (inertia: 12.73 %) Axis 2 (inertia: 11.42 %)

Coordinate Contribution b Coordinate Contribution b

To axis Reciprocal To axis Reciprocal

BR0 0.0136 0.21 0.021 0.193 −0.38 0.072 0.602

BR1 0.0579 −0.91 0.088 0.193 1.60 0.305 0.602

YR0 0.0011 −0.01 0.000 0.002 0.01 0.000 0.005

YR1 0.0703 0.33 0.001 0.002 0.54 0.003 0.005

FHB0 0.0095 −0.19 0.018 0.241 −0.13 0.009 0.109

FHB1 0.0620 1.26 0.118 0.241 0.84 0.059 0.109

PM0 0.0041 −0.03 0.000 0.013 −0.03 0.000 0.012

PM1 0.0673 0.46 0.007 0.013 0.44 0.007 0.012

STB0 0.0202 −0.38 0.059 0.370 −0.13 0.008 0.045

STB1 0.0512 0.97 0.149 0.370 0.33 0.020 0.045

Y2003 0.0690 −0.11 0.000 0.000 0.59 0.008 0.012

Y2004 0.0645 −0.36 0.007 0.014 −1.14 0.080 0.141

Y2005 0.0575 −0.39 0.017 0.037 −0.47 0.027 0.054

Y2006 0.0619 −0.51 0.020 0.041 −0.96 0.077 0.141

Y2007 0.0585 −1.02 0.105 0.229 1.53 0.265 0.517

Y2008 0.0569 1.29 0.190 0.424 0.24 0.007 0.014

Y2009 0.0652 0.63 0.020 0.038 0.01 0.000 0.000

Y2010 0.0665 0.73 0.021 0.040 −0.22 0.002 0.004

VARGROUP-A 0.0473 −0.49 0.046 0.123 −0.03 0.000 0.000

VARGROUP-B 0.0467 −0.23 0.010 0.027 −0.33 0.023 0.056

VARGROUP-C 0.0489 0.77 0.106 0.275 0.38 0.030 0.069

aVariables are categories (classes) of the original quantitative variables. Disease variables are disease levels as binary categories, i.e., non-
epidemics (0) vs. epidemic (1); Successive years (Y2003-Y2010) are processed as categories; and three variety groups (VARGROUP-A -C)
are considered
b Contributions to axes are fractions of axis inertia (sum over contributions of variables to each axis = 1) that are accounted for by each
individual variable (class); Reciprocal contributions are fractions of variable (class) inertia that are accounted for by successive axes (sum
over axes of successive relative contributions for each variable =1)
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In the case of fusarium head blight, years 2003 and
2008 are significant predictors of epidemics, and 2006,
2007, and 2009 are significant predictors of non-
epidemics; VARGROUP-A is a (weak, P = 0.072) pre-
dictor of non-epidemics, while crop management
CMGT1–3 all are significant predictors of epidemics,
i.e., CMGT1, CMGT2, and CMGT3 all are significantly
associated with FHB occurrence.

Year 2010 could not be used as a reference for
the powdery mildew model, since no epidemic
occurred that year. Using year 2005 as a reference
instead, years 2006–2009 are significant predictors
of non-epidemics, VARGROUP-A is a predictor of
non-epidemics, while CMGT2 is a predictors of
non-epidemics.

Lastly, in the case of septoria tritici blotch, years
2003, 2004, and 2006 are significant predictors of
non-epidemics and years 2008 and 2009 are sig-
nificant predictors of epidemics; both VARGROUP-A
and VARGROUP-B are significant predictors of
non-epidemics, and CMGT2 is a predictor of
non-epidemics.

Discussion

The analyses presented here contribute to under-
stand the rich information generated by this net-
work of experiments on hardy wheat varieties in
France. We discuss first the successive results re-
ported here, and then introduce further analyses to
be reported.

Distribution frequencies and conversion of disease data
in a binary form

Figure 2 illustrates a common finding of many large
scale experiments, or of farmers’ field surveys (Savary
et al. 1994, 1995): in four of the five wheat diseases
considered in this study (BR, YR, FHB, PM), disease
intensity (severity or incidence) distributions are very
strongly skewed, with a very large majority of plots
having no or very low disease intensity, while only a
minority have variable disease intensity. The distribu-
tion frequency associated to STB severity shows a more
complex structure, with three groups of individual

ACCOR

AEROBIC

ALDRIC

ALTAMIRA

ALTIGO

ANDALOU

APACHE

AREZZO

ATTLASS

AUBUSSON

BAGOU

BOISSEAU

CAMPERO

CEZANNE

CHARGER

DINOSOR

EPIDOC

EUCLIDE

EXELCIOR
GARCIA

GONCOURT

HYSTAR

HYSUN

INSTINCT

ISENGRAIN
KORELI

MAXYL

MENDEL

MENESTREL
MERCATO

NIRVANA

ORATORIO

ORVANTIS
PALEDOR

PR22R58

PREMIO

ROYSSAC

RUSTIC

SANKARA

SOLEHIO

TIAGO

TIMBER
TOISONDOR

CAPHORN

Vargroup A

Vargroup B

Vargroup C

VALODOR

BR0

BR1

YR0

YR1

FHB0

FHB1

PM0

PM1

STB0

STB1

Y2003

Y2004

Y2005

Y2006

Y2007

Y2008

Y2009

Y2010

Vargroup A

Vargroup B

Vargroup C

-1.5

-1

-0.5

0

0.5

1

1.5

2

2.5

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2
-1.5

-1

-0.5

0

0.5

1

1.5

2

2.5

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

a b

Fig. 8 Projection of wheat varieties characterized by their disease
performances onto a multiple correspondence graph of the associ-
ation of years and binary disease levels. Multiple correspondence
analysis involves disease levels in a binary form (Table 1) and
successive years (2003–2010) as active variables. The two first
axes (accounting for 12.73 and 11.42 % of total inertia, respec-
tively) are used. Wheat varieties are independent variables
projected on the system of axes based on their levels of BR, YR,
FHB, PM, and FHB in a binary form. a location of wheat varieties

on the graph. Colour of labels corresponds to variety groups (A, B,
C; Fig. 5). The area of each circle is proportional to the number of
wheat plots under a given variety. b locations of the centres of
inertia of years, disease levels (1: epidemics, 0: non-epidemics),
and centres of inertia of the projected variety groups (A, B, and C).
Note that variety groups (VARGROUP A-C) were not derived
from analysis of binary data on the entire data set, but from
untransformed means and standard deviations of disease levels
assessed in CMGT3 (see text and Fig. 5)
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Table 4 Logistic regressions of occurrence of individual wheat disease epidemics with years, variety groups, and crop management levels

Disease Likelihood ratioa Area under
ROC curveb

Parameter statistics by component (year, variety group, crop management)

LR P Parameterc Estimated SE P Odds ratio

BR brown rust
n = 670 epidemics

1383.779 <0.001 0.902 Constant −1.925 0.317 <0.001 -

VARGROUP-A −0.272 0.147 0.064 0.762

VARGROUP-B −0.391 0.147 0.008 0.676

CMGT1 −1.568 0.460 0.001 0.208

CMGT2 −1.972 0.207 <0.001 0.139

CMGT3 −1.143 0.194 <0.001 0.319

Year 2003 2.984 0.415 <0.001 19.760

Year 2004 NA(1) NA(1) NA(1) NA(1)

Year 2005 1.694 0.331 <0.001 5.442

Year 2006 0.366 0.395 0.353 1.442

Year 2007 4.556 0.336 <0.001 95.215

Year 2008 −0.541 0.397 0.173 0.582

Year 2009 1.442 0.355 <0.001 4.227

YR yellow rust
n = 55 epidemics

152.943 <0.001 0.907 Constant −3.719 0.732 <0.001 -

VARGROUP-A 0.760 0.305 0.012 2.140

VARGROUP-B −1.217 0.631 0.054 0.296

CMGT1 NA(2) NA(2) NA(2) NA(2)

CMGT2 −2.928 0.481 <0.001 0.054

CMGT3 −1.475 0.351 <0.001 0.229

Year 2003 NA(2) NA(2) NA(2) NA(2)

Year 2004 NA(2) NA(2) NA(2) NA(2)

Year 2005 NA(2) NA(2) NA(2) NA(2)

Year 2006 NA(2) NA(2) NA(2) NA(2)

Year 2007 1.694 0.803 0.035 5.442

Year 2008 2.051 0.749 0.006 7.777

Year 2009 0.228 1.016 0.823 1.256

FHB Fusarium head blight
n = 467 epidemics

815.548 <0.001 0.864 Constant −2.682 0.295 <0.001 -

VARGROUP-A −0.252 0.140 0.072 0.777

VARGROUP-B 0.127 0.146 0.384 1.135

CMGT1 1.278 0.465 0.006 3.589

CMGT2 0.928 0.266 <0.001 2.530

CMGT3 1.348 0.264 <0.001 3.850

Year 2003 1.768 0.300 <0.001 5.861

Year 2004 NA(3) NA(3) NA(3) NA(3)

Year 2005 NA(3) NA(3) NA(3) NA(3)

Year 2006 −2.944 0.488 <0.001 0.053

Year 2007 −0.694 0.231 0.003 0.499

Year 2008 1.179 0.200 <0.001 3.250

Year 2009 −0.507 0.259 0.050 0.602

PMe powdery mildew
n = 203 epidemics

253.141 <0.001 0.800 Constant −1.087 0.281 <0.001 -

VARGROUP-A −2.491 0.361 <0.001 0.083

VARGROUP-B 0.007 0.167 0.967 1.007

CMGT1 NA(4) NA(4) NA(4) NA(4)
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wheat plots: a first large group with no or very low STB
severity, a third one, quite small, with fairly high disease
severity, and a small intermediate group where disease
severity is average. This distributional pattern has been
documented in different pathosystems (Savary et al.
1994; Avelino et al. 2004; Zhang et al. 2006), and has
been associated with successive stages of disease dy-
namics, from establishment to intensification (Savary
et al. 1995), at the plot level. Such variable distribution
frequencies represent challenges in data analysis, which
can be addressed through data categorization (Savary

et al. 1995), or, as here, through data conversion in a
binary form (Esker et al. 2006). The transformation of
quantitative, continuous data into categories has been
discussed, especially in plant pathology. Data categori-
zation entails the loss of some information, but enables
useful analyses. Direct benefits from the use of catego-
ries in large, multi-year, data sets involving a number of
field observers, such as the material of this analysis, are
to standardize information across the data set (years,
locations, and observers), and to account for observa-
tional errors (Savary et al. 1995).

Table 4 (continued)

Disease Likelihood ratioa Area under
ROC curveb

Parameter statistics by component (year, variety group, crop management)

LR P Parameterc Estimated SE P Odds ratio

CMGT2 −0.603 0.283 0.033 0.547

CMGT3 0.072 0.271 0.791 1.075

Year 2003 NA(4) NA(4) NA(4) NA(4)

Year 2004 NA(4) NA(4) NA(4) NA(4)

Year 2006 −1.129 0.241 <0.001 0.323

Year 2007 −1.907 0.282 <0.001 0.148

Year 2008 −1.817 0.259 <0.001 0.162

Year 2009 −0.526 0.212 0.013 0.591

Year 2010 NA(4) NA(4) NA(4) NA(4)

STB septoria tritici blotch
n = 998 epidemics

715.794 <0.001 0.772 Constant 0.097 0.175 0.581 -

VARGROUP-A −1.729 0.117 <0.001 0.178

VARGROUP-B −0.365 0.098 <0.001 0.694

CMGT1 −0.176 0.357 0.622 0.838

CMGT2 −0.949 0.147 <0.001 0.387

CMGT3 −0.271 0.144 0.060 0.762

Year 2003 −0.931 0.366 0.011 0.394

Year 2004 −0.379 0.207 0.067 0.685

Year 2005 −0.283 0.173 0.103 0.753

Year 2006 −1.054 0.212 <0.001 0.349

Year 2007 −0.294 0.179 0.099 0.745

Year 2008 1.212 0.166 <0.001 3.360

Year 2009 0.506 0.185 0.006 1.659

The reference disease levels to all logistic regressions are non-epidemics (BR0, YR0, FHB0, PM0, STB0; See Table 1 for threshold values)
a Sample size: n = 3525 plots;
b Area under the receiver operating characteristic curve
c Parameters: Years 2003 to 2010 (Year 2010 as reference, except for PM: 2005); variety groups VARGROUP-A and VARGROUP-B
(VARGROUP-C as reference); crop management CMGT1, CMGT2, and CMGT3 (CMGT4 as reference)
d NA(1) : no brown rust epidemic under the considered combination of predictors; NA(2) : no yellow rust epidemic under the considered
combination of predictors; NA(3) : no fusarium head blight epidemic under the considered combination of predictors; NA(4) : no powdery
mildew epidemic under the considered combination of predictors
e The reference year for PM is 2005, as no PM epidemic was recorded in 2010
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Categorization of data also concerns the experimental
years, which are in effect converted into, and processed
as, categorical variables, so that ‘climatic years’ become
predictors in the course of the analysis. The nature of
these ‘climatic years’, in terms of actual climate, e.g., the
temperatures and rainfalls that had occurred during the
growing season, will be discussed in a companion
article.

The very large effect of wheat varieties on disease
levels is partly illustrated by Fig. 3. For some diseases
such as BR, YR, and PM, these effects seem apparent
(with most varieties showing very little or any disease at
all), whereas they remain unclear for other diseases,
such as FHB and STB (with all varieties showing some
disease, albeit at varying levels).

Cluster analyses

Hierarchical cluster analysis of crop health data at the
plot level (Fig. 4) yields a clear structure in disease
syndromes, with three groups: dominated by STB
(group Z), dominated by BR (group Y), and diverse,
with fairly high levels of FHB, combined with possible
occurrence of other diseases (group X). This analysis
therefore suggests that STB and BR might, respectively,
be considered key-stone species dominating specific
wheat disease syndromes. We are not aware of such
finding in the literature on wheat pathology, and this
deserves further investigation. The overall result of
Fig. 4, with the characterization of crop health syn-
dromes in the case of wheat, concurs with similar results
obtained in a range of very diverse pathosystems
(Savary et al. 2006), further confirming the value of
the concept.

A hierarchical cluster analysis of variety responses
performed on a subset of data (CMGT3, i.e., reduced
level of chemical intensification, including limited
pesticide use) is shown in Fig. 5. Three groups,
VARGROUP-C, −B, and -A, are generated, corre-
sponding to 17, 12, and 16 wheat varieties, respective-
ly. VARGROUP-C corresponds to moderate BR, high
FHB, low-moderate PM, high STB; whereas
VARGROUP-B corresponds to moderate-low BR, low
YR, low FHB, low PM, and moderate STB; while
VARGROUP-A corresponds to moderate-low BR,
low-moderate YR, moderate FHB, low PM, lower
STB. The characteristics of the groups generated in the
present study quite differ from a similar analysis report-
ed by Loyce et al. (2008), which contrasted three

groups: (a) susceptible to BR and STB; (b) susceptible
to YR and moderately resistant to BR and STB; and (c)
moderately susceptible to STB, and resistant to BR and
YR. Three main reasons explain the differences between
the two analyses: (1) the analysis reported by Loyce
et al. (2008) involved data from regular varietal field
trials that were specifically designed to assess suscepti-
bility, whereas the analysis of Fig. 5 reflects measure-
ments in a network of field experiments where input
levels (including fungicides; see Fig. 7, CMGT3), var-
ied; (2) the analysis reported by Loyce et al. (2008)
concerns data from 2001 to 2002, i.e. was conducted
before the beginning of the experimental period (2003–
2010) reported here; and (3) the analysis discussed in the
present study involves two diseases (powdery mildew
and fusarium head blight), which were not considered
by Loyce et al. (2008), in addition to brown rust, yellow
rust and septoria tritici blotch. Our results do suggest
varieties that experienced lower disease levels through-
out the period; this is the case for brown rust, yellow
rust, and fusarium head blight in VARGROUP-B; and
for powdery mildew and septoria tritici blotch in
VARGROUP-A. The result concerning BR is consistent
with available information on wheat resistances. Results
concerning YR and PM are to be considered cautiously,
the overall disease levels during the period having been
often so low. The results concerning FHB, on the other
hand, may lead to useful hypotheses with respect to host
plant resistances regarding this disease, since the levels
of disease have been fairly high in some site x year
combinations.

Levels of crop management

Principal component analysis on the amounts
(frequency) of chemical inputs (Fig. 7) leads to consid-
ering the successive levels of crop management,
CMGT1 to 4, much more as transitions towards a re-
duction of chemicals (fertilizer, pesticides, growth reg-
ulators) rather than pre-set, fixed levels. While these
levels of crop management may very well correspond
to clearly categorized yield targets, they certainly have
been associated with progressively variable levels of
disease control. This further strengthens the approach
followed here (through categorization of disease
levels, multivariate analyses, and logistic regres-
sion), since a linear model, where crop manage-
ment would be seen as a fixed effect (Loyce et al.
2008), would not have been appropriate.
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Associations between factors and diseases

Table 2 documents the strength of associations between
factors (climatic years, crop management, variety
groups) and binarized disease levels. The association
of diseases with years is usually very strong (chi-square
values ranging from 87 to 1402, Table 2), indicating the
very strong effect of climatic years on occurrence of
epidemics. The strength of disease associations with
variety groups comes next, with variable chi-square
values ranging from 6.41 to 321. The association of
disease levels with crop management level comes last,
with comparatively smaller but significant chi-square
values (21 to 82). Tests involving disease syn-
dromes (CLUSDISEASE) provide a summary of
the magnitude of the association of wheat diseases
with factors, from very large with years (1005), to
large with variety groups (134), and smaller with
crop management (32).

Plant disease epidemics may be considered in two
broad phases, (1) disease establishment in the host pop-
ulation, and (2) disease intensification (Lenné and Jeger
1994). Conversion of disease data in a binary form leads
the analysis to collapse these two phases into one, and to
consider plant disease in one dimension only, which was
referred to as ‘epidemic’, as opposed to ‘non-epidemic’
when disease does not occur, or when epidemic fails to
intensify. The occurrence of favourable climatic condi-
tions throughout a cropping season (Year) and the de-
ployment of a susceptible variety (VARGROUP) en-
ables both disease establishment and intensification,
thus explaining why chi-square values associated with
Year and VARGROUP (Table 2) can be so large. By
contrast, crop management generally only affects dis-
ease intensification, conditional to disease establish-
ment; thus the comparatively smaller chi-square values
associated with CMGT. This explains why climatic
years, and why variety groups, correspond to chi-
square values (Table 2) that are, respectively, one or
two orders of magnitude, and one order of magnitude,
larger than values corresponding to crop management.
Another element of explanation of the low effect of crop
management on disease is that chemical intensification
from CMGT4 to CMGT1 corresponds to pesticide in-
tensification, which is expected to reduce disease inten-
sity, and nitrogen intensification, which in general fa-
vours biotrophic pathogen such as rusts and powdery
mildew (e.g., de Wit 1992), as well as STB (e.g., Leitch
and Jenkins 1995). The shifts in crop management

components therefore have opposite effects on disease,
which partly cancel each other.

Multiple correspondence analysis

Multiple correspondence analysis (Fig. 8) generates a
synthesis of paired associations using a chi-square met-
ric (chi-square tests, Table 2), with three domains. A first
domain is that of regular occurrence of FHB, STB, PM,
and YR epidemics and of fairly frequent BR epidemics,
where varieties of VARGROUP-C predominate.
A second domain corresponds to possible PM, YR,
and BR epidemics, associated with VARGROUP-A. A
third domain is associated with infrequent disease epi-
demics in general, and is associated with varieties of
VARGROUP-B. As in earlier analysis, the positioning
of PM and YR is difficult, owing to the relative low
frequency of epidemics of these two diseases. The two
axes of Fig. 8 only account for very small fractions of
the inertias of CMGT1, CMGT2, CMGT3, and
CMGT4, respectively. The four crop management treat-
ments are located at the origin of axes, and thus could
not be represented in Fig. 8. This suggests that climatic
years, first, varieties, second, and crop management,
last, contributed to the occurrence of wheat disease
epidemics, individually or collectively. This concurs
with the examination of chi-square values.

Epidemics and non-epidemics, logistic regressions,
and risk factors

The overall result of conversion of disease intensities in
a binary form is shown in Fig. 6. Distributions of epi-
demics vs. non-epidemics indicate differing patterns
depending on diseases, with several years of frequent
epidemics in the case of BR, FHB, and STB, and a few
years when few epidemics occurred in the case of YR
and PM. Year 2007, when a pathogen population shift
took place across France (Goyeau and Lannou 2011;
Goyeau et al. 2012) and presumably a strong BR epi-
demic occurred in western Europe (Berry et al. 2010), is
visible in the binarized BR data (Fig. 6a), illustrating
that the conversion of disease data in a binary form
retained important features of recorded epidemics.
Figure 6 suggests that while predictions of STB epi-
demics may be rather straightforward, that of BR and
FHB is more challenging, and that of YR, could be very
hard, based on the data set used. This is in line with the
frequency of epidemics of the various diseases.
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Logistic regressions confirm this. Quantifying the
relative role of factors in determining the likelihood of
epidemics is the objective of logistic regression of epi-
demic occurrences. Logistic regression enables the de-
velopment of models where the occurrence of epidemics
can be related to a number of variables (VARGROUP,
CMGT, and YEAR). These variables are addressed in
logistic regression as risk factors, represented by a pa-
rameter and the associated odds ratio (Harrell 2001).
The models summarized in Table 4 indicate that, irre-
spective of the disease, a given climatic year always can
be a significant predictor of epidemics. This is also true
for VARGROUP and for CMGT. This series of analyses
illustrates the value of a risk factor approach (Savary
et al. 2011), where the occurrence of disease epidemics
is considered as the outcome of a series of predictors,
climatic years, crop management, and variety groups.

A risk factor approach can provide insights in the
main elements influencing crop health in large data sets.
Such an analysis for instance enabled to characterize and
hierarchize risk factors associated with production situa-
tion in rice from a large survey data set in several
hundreds of Asian farmers’ fields (Savary et al. 2011).
In this risk factor analysis of rice health in Asia, produc-
tion situation components were further decomposed,
indicating (1) their respective importance with respect
to rice crop health, and (2) that the individual effect of
any production situation component was one or two
orders of magnitude smaller than that of any production
situation considered as a whole (Savary et al. 2011).
Table 4 provides an analogous information for wheat in
France, with the effects of climatic years, variety groups,
and crop management levels. The analysis reported here
cannot enter the lower hierarchy of components of crop
management (fertilizer inputs, pesticide use, seeding
rate, growth regulators), because these were involved in
each experiment as locally-defined and fixed combina-
tions. Nevertheless, the five models derived for each
disease provide an overview of the risk factors associated
with occurrence of epidemics of wheat diseases. Beyond
the analysis of this particular data set, this approach
might well be worth considering for the strategic man-
agement of wheat diseases in Europe.

Conclusion

Better documentation of disease levels is a necessary
first step to further improve disease management,

including in the important case of winter wheat in
France and in Europe where pesticide use must be
reduced, and the potential of genetic diversity fully
enhanced. This article focused on disease levels, their
combinations, and their determinants, in a network of
wheat field experiments involving a range of climatic
years, crop management, and varieties in France.

The different analyses indicate that climatic years,
wheat varieties, and crop management, in this decreasing
order, define disease risk in the multiple wheat-diseases
pathosystem in this network of experiments. The com-
paratively lower effect of CMGT on diseases may be
related to three groups of reasons. A first reason is that
CMGT effects were assessed on disease information
which had been simplified into a binary form, epidemic
vs. non-epidemic. As a result, analyses did not address
the intensification of epidemics, which can strongly be
influenced by crop management. A second reason is the
confounded pesticide and fertilizer effects across CMGT
levels. A third reason is that only a few management
components are included in the data set used.
Management components with potentially important ef-
fects on diseases such as crop rotation, crop establishment
date, or landscape diversity (Palti 1981; Wiese 1982;
Zadoks 1993; Savary 2014) were not considered here.

Among several other questions, the nature of climatic
years requires further investigation, which will be ad-
dressed in a companion article. Questions pertaining to
the succession of effect of crop management and varie-
ties, first on disease levels, and second on yield perfor-
mances, further require new analyses that account for
the very large variability observed in these data. This
can be achieved through formal meta-analyses, which
also will be reported in a companion article.
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