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Abstract A data set generated by a multi-year (2003–
2010) and multi-site network of experiments on winter
wheat varieties grown at different levels of crop manage-
ment is analysed in order to assess the importance of
climate on the variability of wheat health. Wheat health
is represented by the multiple pathosystem involving five
components: leaf rust, yellow rust, fusarium head blight,
powdery mildew, and septoria tritici blotch. An overall
framework of associations between multiple diseases and
climate variables is developed. This framework involves
disease levels in a binary form (i.e. epidemic vs. non-
epidemic) and synthesis variables accounting for climate
over spring and early summer. The multiple disease-
climate pattern of associations of this framework con-
forms to disease-specific knowledge of climate effects on
the components of the pathosystem. It also concurs with a

(climate-based) risk factor approach to wheat diseases.
This report emphasizes the value of large scale data in
crop health assessment and the usefulness of a risk factor
approach for both tactical and strategic decisions for crop
health management.
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Introduction

The variation and variability of importance in wheat dis-
eases has been addressed in a very large number of studies
and syntheses. Surveys of wheat diseases for instance
have been conducted, especially in the UK (King 1977;
Polley and Thomas 1991; Hardwick et al. 2001), the
Netherlands (Daamen 1990; Daamen and Stol 1990,
1992, 1994; Daamen et al. 1991, 1992), and Sweden
(Wiik and Ewaldz 2009). These studies examine the
change in plant disease levels in response to a number of
factors, especially to cropmanagement, and notably use of
chemicals. Although these surveys provide a wealth of
critical information in examining these relations, informa-
tion of climate effects on plant disease – in particular, on
the overall crop health and multiple diseases – appears
fragmented. Key references on wheat diseases, such as
Roelfs and Bushnell (1985) and Bockus et al. (2010),
provide overviews of climate-disease relations in different
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wheat-pathogen systems. These relations however are
itemized on a pathosystem basis, and very seldom is an
overview presented, where an analysis of the relationships
between climatic conditions and crop health, incorporat-
ing multiple diseases, would be developed.

An earlier article has presented overall results from the
analysis of a large data set generated from a network of
experiments on winter wheat where a range of varieties
were managed at several levels of crop management
(Savary et al. 2016). A main conclusion from this work
was that climatic years, wheat varieties, and crop manage-
ment, in this decreasing order, define the levels of disease
epidemic risks in the multiple wheat-disease pathosystem.
This conclusion pertained to five winter wheat diseases:
brown rust (BR, leaf rust) caused by Puccinia triticina,
yellow rust (YR, stripe rust) caused by Puccinia
striiformis, fusarium head blight (FHB, involving a com-
plex of pathogens, including: Fusarium graminearum,
F. culmorum, and F. avenaceum; Jennings et al. 2004;
Nielsen et al. 2011), powdery mildew (PM) caused by
Blumeria graminis, and septoria tritici blotch (STB)
caused by Zymoseptoria tritici (Syn. Septoria tritici).

The objective of this report is three-fold: (1) to further
assess the importance of climate on disease variability
reflected in this data set; (2) to develop and examine an
empirical synthesis of climate effects on the multiple
pathosystem: [wheat - leaf rust - yellow rust - fusarium
head blight - powdery mildew - septoria tritici blotch];
and (3) to assess the prospect of a risk factor approach on
wheat health, represented by this multiple pathosystem.

Materials and methods

Network of field experiments

The network of experiments which generated the data
analysed here is described in Savary et al. (2016). We
summarize the information that especially pertains to the
present study. A large network of field experiments has
been established and conducted in France over several
years, where a range of winter wheat varieties together
with up to four levels of crop management were tested.
Each experimental plot (15–68 m2 in size) represented a
given combination of variety by crop management, in
various experimental (split-plot, randomized block, or
strip-plot) designs with three to four replications.

The winter wheat varieties include cultivars with
varying levels of partial resistances to diseases,

especially brown rust. Over the years, the winter wheat
varieties involved in the experimental network have
varied, some varieties being present over many succes-
sive years, others being tested for a limited number of
years only. Experimental data pertaining to varieties
cultivated for only one year at a limited number of
locations were excluded from the data set. As in Savary
et al. (2016), the present study involves data generated
from experiments involving 45 winter wheat varieties.

The four levels of crop management correspond to
four levels of (mostly chemical) extensification. A ref-
erence level is Crop Management 2 (CMGT2), which
corresponds to conventional, site-specific, recommen-
dations in terms of seeding rate, fertilizer inputs (espe-
cially nitrogen), growth regulators, and fungicide.
CMGT1 corresponds to an intensified level, where only
a technical, not an economic, reasoning is used to in-
crease the fertilizer, crop growth regulators, and fungi-
cide inputs. By contrast, CMGT3 represents an
extensified level relative to CMGT2, where chemical
inputs, as well as the seeding rate, are reduced according
to both economic and technical considerations whereby
a reduced wheat yield output is accepted. CMGT4 con-
stitutes a further level of extensification relative to
CMGT3, especially with respect to growth regulators,
(nitrogen) fertilizer, and fungicides. In the context of the
present study, two features of this experimental set-up
are particularly important: (1) these levels of manage-
ment do not correspond to the scaling up of successive
levels of chemical protection against diseases, and do
not include a ‘no protection’ and a ‘complete, full pro-
tection’ levels, and (2) these levels were devised at each
site in accordance to local constraints and contexts (e.g.,
soils, crop rotations), and therefore led to a considerable
degree of overlap between the four CMGT levels in
terms of levels of inputs actually mobilized.

As in Savary et al. (2016), we report here analyses
from 101 experiments conducted during eight succes-
sive years (2003–2010), corresponding to a total popu-
lation of 3525 individual winter wheat plots.

Disease information

Disease data were collected over an extensive period of
time (2003 to 2010) by a large community of collabo-
rators. Disease assessments concerned five main winter
wheat diseases: brown rust (BR, leaf rust), yellow rust
(YR, stripe rust), fusarium head blight (FHB), powdery
mildew (PM), and septoria tritici blotch (STB). The
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disease data which were retained in this analysis (Savary
et al. 2016) were collected from early booting to early
grain filling, i.e., from development stage 45 to 85
(Zadoks et al. 1974). Disease assessment pertained to
the plot level. In most experiments, foliar diseases (BR,
YR, PM, and STB) were assessed as severity (propor-
tion of leaf area infected). When foliar diseases were
assessed as incidence (proportion of diseased leaves),
disease incidence was converted as severity (I. Félix,
unpublished; Savary et al. 2016). FHB was assessed at
the plot level as disease incidence. Disease measure-
ments were synthesized as disease intensities (disease
severities for the foliage diseases and disease incidence
for FHB), and the frequency distribution of disease
intensities were analysed (Savary et al. 2016).

The very strongly asymmetric distribution frequen-
cies of disease intensities (with a very large number of
individual plots with no disease, some plots with low
disease, and very few plots with high disease intensity)
led to considering disease intensities in a binary form,
i.e., above or below a given threshold (Savary et al.
2016). This threshold must be defined on the basis of
actual distribution frequencies of disease intensity, in
order to enable categorical data analyses (Savary et al.
1995). Categorization of disease information also
allowed reducing data noise due to the long duration
of the network of experiments, and to the different
investigation groups involved in data collection
(Savary et al. 2016). The disease intensity threshold t
was defined as: t = mean - 0.05 (s/mean), where ‘mean’
is the arithmetic mean of disease intensity, and s is its
standard deviation. The respective t values were: 0.102,
0.076, 0.663, 0.233, and 12.91 % for BR, YR, FHB,
PM, and STB, respectively (Savary et al. 2016). Each
disease may thus be considered in two classes
(diseaseBIN =0 or 1) each: BR0 and BR1, YR0 and
YR1, FHB0 and FHB1, PM0 and PM1, and STB0 and
STB1 for brown rust, yellow rust, fusarium head blight,
powdery mildew, and septoria tritici blotch, respective-
ly. These two classes are referred to as ‘non-epidemic’
and ‘epidemic’, respectively, in the following analyses.

Weather data

Owing to the very large number of experiments con-
ducted at many different locations (some in research
stations, but many in farmers’ fields), weather data for
each experimental site - year were not recorded. We used
the spatialized climatological database of Météo-France,

SAFRAN, which covers the 1970–2011 period and the
entire French territory. Surface hourly weather variables
available in SAFRAN are interpolated on an 8 × 8 km2

grid covering France with a mesoscale atmospheric anal-
ysis system (Durand et al. 2009). In their assessment of
the reliability of this interpolated climatological data ba-
se, Quintana-Seguí et al. (2008) concluded that this inter-
polation system was robust. The trials were not
georeferenced. The trials were located at most 50 km
away from the nearest administrative centre.We therefore
chose to represent the climatic conditions at each exper-
imental site - year by daily climatic weather conditions at
the nearest department administrative centre.

Disease assessments considered in the analysis were
made in the late development of the crop, from early
booting to early grain filling (Zadoks et al. 1974; Savary
et al. 2016). Disease measurements at such late devel-
opment stages presumably account well for the devel-
opment of disease in the spring, but probably poorly
account for disease development in the early phase of
plant disease epidemics when primary inoculum comes
into play, is mobilized, and initiates early disease levels.
We developed synthesis climatic variables accounting
for the latter part of the growing season, i.e. fromMarch
till the end of June. Each experimental site - year was
represented by climatic summaries over these four
months: Tn (mean of the daily minimum temperatures),
Tx (mean of the daily maximum temperatures), RR
(mean of daily rainfall), FRD (fraction of rainy days
over the four-month period), RH (mean of the average
daily relative humidity), and GR (mean daily radiation).

Analytical strategy and statistical methods

An initial stage in the analysis of the data consisted in
characterizing the climatic environment of the network
of experiments. This was achieved first through the
graphical examination of variability of synthesis climat-
ic variables over years. Second, a principal component
analysis was conducted on the (standardized to unit
variance) mean of the daily minimum and maximum
temperatures (Tn and Tx), mean of daily rainfall (RR),
and fraction of rainy days over the four-month period
(FRD), considering each experimental site - year as one
possible realization of the combination of these vari-
ables. These four synthesis climate variables (Tx, Tn,
RR, FRD) pertaining to temperature and rainfall were
chosen as they are the most commonly measured in
weather stations and discussed in the literature in their
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relations with wheat diseases. Outputs of the analysis
were examined according to the successive years and
French regions where experiments had been conducted.

Relationships between disease data in a binary form
(non-epidemic vs. epidemic: diseaseBIN =0 or 1; BR0-
BR1, YR0-YR1, FHB0-FHB1, PM0-PM1, and STB0-
STB1) and the synthesis climatic variables were then
examined. In a first stage, the synthesis climatic variables
were converted in their quartiles (TxQUART, TnQUART,
RRQUART, GRQUART, RHQUART, a nd
FRDQUART). Contingency tables were then built,
representing the joint frequency distributions between each
(binary) disease variable and each synthesis climatic vari-
able represented by its quartiles. The level of association
between disease and climate variables was then assessed
by the chi-square values associated with each of these (5
disease × 6 climate variables =30) contingency tables.

Multiple correspondence analysis (Benzécri 1973;
Greenacre 1984; Savary et al. 1995) was then used to
synthesize and graphically display the multiple associa-
tions between the five diseases and climate variables,
using a chi-square metric. Several multiple correspon-
dence analyses were conducted. Strong associations
among climate variables (e.g., between RR and FRD,
represented here by their quartile conversions,
RRQUARTand FRDQUART) led many of the analyses
performed to yield similar patterns of associations. Mul-
tiple correspondence analysis outputs were compared
with respect to fraction inertia accounted for by axes
and squared-cosines associated with variables (Benzécri
1973; Greenacre 1984; Savary et al. 1995). The multiple
correspondence analysis which synthesized best the
overall associations among climate variables, and which
involved TxQuart, TnQUART, and RRQUART, was
retained. This analysis is also in line with the former
principal component analysis, which involves tempera-
ture and rainfall information.

In a last stage, binary logistic regression (Harrell
2001; Steinberg and Colla 2007; Savary et al. 2011)
was used to analyse relationships between disease oc-
currence and synthesis climate variables. For each dis-
ease, the following model was used:

ln P diseaseBIN ¼ 1ð Þ
.

1–P diseaseBIN ¼ 1ð Þð Þ
h i

¼ αþΣ βiCLIMi

where diseaseBIN is a binarized disease intensity,
with diseaseBIN =0 representing a non-epidemic and

diseaseBIN =1 representing an epidemic, CLIMi is a
vector (Tn, Tx, RR, GR, RH, and FRD) of continuous
climate variables, α is a constant and βi is a vector of
parameters. In this phase of the analyses, each disease
was considered separately, and the likelihood of occur-
rence of epidemic of a given disease was considered the
outcome of the combination of the synthesis climate
variables pertaining to each plot in each site-year, so
that climate variables were considered as predictors of
epidemic occurrence.

Results

Variation in climate over years and regions

An overview of the contrasts in climatic conditions
among years is provided by Fig. 1. Figure 1 indicates
large variation over years of the mean daily minimum
(Tn) and maximum (Tx) temperatures over the period
March–June. One may distinguish warm years such as
years 2003 and 2007, which are associated with the
highest median values of Tn; and years 2003, 2007,
and 2009, which are associated with the highest median
values of Tx. Cold years are 2004 and 2010, corre-
sponding to the lowest Tn values; and years 2004,
2006, and 2008, when the lowest median values of Tx
were observed. Large differences between years in av-
erage daily rainfall (RR) and frequency of rainy days
(FRD) for the period March–June are also indicated:
years 2007 and 2008 correspond to both the highest
rainfall amounts and the highest frequencies of rainy
days; and years 2003 and 2010 have the lowest frequen-
cy of rainy days.

Principal component analysis of climate variables at
the locations and years corresponding to the network of
experiments indicates correlations between temperature
variables (Tx, Tn) and rainfall variables (RR, FRD). The
latter are collinear to the first principal component, while
the former are collinear to the second principal compo-
nent, indicating independence of these two groups
(Fig. 2a). The contrasting climatic conditions across
growing seasons of the successive years are shown in
Fig. 2b, where experimental sites - years are plotted and
grouped by years. Figure 2b indicates that warm-rainy
growing seasons (2007) are contrasted against dry-cold
ones (2004, 2010). Some years (especially 2003, also
2009) show wide temperature variation (along the
second, temperature-correlated, axis) and narrow
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rainfall levels (along the first, rainfall-correlated, axis).
Experimental sites - years are shown again, but grouped
by French regions, in Fig. 2c, where the overall contrasts
are shown among growing regions, from rainy and cool
regions (Bretagne) to colder (Normandie), to dryer and
warmer (SudBP: South of Paris basin), and rainy and
warm (Sud-Ouest).

Climate - multiple disease linkages: Chi-squares
and multiple correspondence analysis

The levels of associations of climate variables with
binary disease levels are shown in Table 1. All the chi-
square values (with three degrees of freedom each)
associated with paired climate and disease variables
are significant (P < 0.001). Chi square values provide
measures of the level of linkage between binary disease
variables and climate variables represented by the quar-
tiles of their distributions. Chi-square values involving

temperatures (TxQUART and TnQUART) are especial-
ly high with brown rust (BR: χ2 = 1345.48 and 599.56,
respectively), and also fusarium head blight (FHB:
χ2 = 117.75 and 122.84). TnQUART is also strongly
associated with PMBIN and STBIN.Mean daily rainfall
(RRquart) is especially strongly associated with FHB
(χ2 = 1245.95), and also with the binary levels of brown
rust (χ2 = 182.78) and septoria tritici blotch (STB:
χ2 = 170.24). Chi-square values involving daily global
radiation (GR) broadly follow the combined patterns of
associations that involve temperatures (Tx, Tn) and
rainfall (RR), with strong associations of GR with BR,
FHB, and STB; conversely, chi square values involving
relative humidity (RH) are especially high in the case of
BR (χ2 = 239.53) and FHB (χ2 = 250.94); and the chi-
square values involving the fraction of rainy days (FRD;
χ2 especially high for BR, FHB, and also STB) match
those associated with daily rainfall (RR) and tempera-
tures (Tx and Tn).

Tn Tx RR

GR RH FRD
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Fig. 1 Boxplots of the variations in daily minimum and maxi-
mum temperature, average daily rainfall, and proportion of rainy
days over wheat growing seasons Tn: Mean daily minimum air
temperature (°C); Tx: Mean daily maximum air temperature (°C);
RR:Mean daily rainfall (mm); GR: Global radiation (kJ.m−2); RH:
Relative humidity; FRD:Mean fraction of rainy days (no unit).The

period considered is March to June in each year from 2003 to
2010. Median values are shown as horizontal marks across boxes.
Stars represent outside values, i.e., values within a 1.5 to 3.0
interquartile range from the box edge; open circles represent far-
outside values, i.e., values beyond a 3.0 interquartile range from
the box edge
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Pair-wise distributional associations (i.e. contingency
tables) provide the basis of correspondence analysis
between climate and disease variables. Correspondence
analysis generates a numerical and graphical synthesis
of associations described in multiple contingency tables
(Greenacre 1984). We report here outputs of only one of
the correspondence analyses conducted since climate
variables are strongly correlated; this analysis provides
a summary of the patterns of associations found.

The graphical output of this analysis is shown in
Fig. 3, where patterns of climatic conditions during a
growing season are apparent. First, seasons with high
rainfall (RR4) are opposed to growing seasons with low
rainfall (RR1 and RR2) along the first diagonal of the
graph; second, warm growing seasons (Tx4, Tn3, Tn4)
are contrasted against cold ones (Tx1, Tn2) along the
second diagonal. As a result, four quadrants, ‘rainy,
‘cold’, dry’, and ‘warm’may be identified on the graph.
Non-epidemics (BR0, YR0, FHB0, PM0, and STB0)
are clustered at the origin of axes, indicating their pre-
dominant occurrence under average, neutral climatic
conditions. By contrast, occurrence of brown rust
(BR1) is strongly associated with warm temperatures
(Tx4, Tn3); fusarium head blight (FHB1) is strongly
associated with rainy (RR4) conditions; and yellow rust
YR1 appears to correspond to colder (Tx1, Tn2) grow-
ing seasons. Occurrence of powdery mildew (PM1)
appears associated with intermediate climate conditions,
involving both rainy conditions, but not in the extreme,
along the first diagonal (RR4 and RR3 vs. RR1 and
RR2), and moderately warm conditions along the sec-
ond diagonal (Tx4, Tn3, Tn4 vs. Tn2, Tx1). Occurrence
of septoria tritici blotch (STB1) appears mostly associ-
ated with rainy conditions, irrespective of temperatures.

Table 2 provides the numerical background of the
correspondence graph of Fig. 3. Interpretation of a cor-
respondence analysis is based on the inertia of variable-

Tx Tn

RR

FRD

a

b

c

�Fig. 2 Principal component analysis of weather data over the
successive experimental years, 2003–2010, in a network of
winter wheat experiments in France. Statistical units are
individual location-years. a factor map of weather variables of
the analysis. Tn, Tx, RR, and FRD are average daily minimum
temperature, average daily maximum temperature, average daily
rainfall, and average fraction of rainy days over the period March–
June of each growing season, respectively. b Distribution of
climatic years at the different locations-years (confidence ellipses
around years, 95 %). c Distribution of regional weather patterns at
the different location-years (confidence ellipses around French
regions, 95 %)
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classes (i.e., their frequency), their coordinates along
each generated axis, their contributions to axes (the
fraction of axis inertia accounted for by each variable-
class), and their reciprocal contributions to axes (or
‘squared cosines’, the fraction of inertia of each
variable-class which is accounted by each of the gener-
ated axes). Only the two first axes of the analysis (which
are used to plot the graph of Fig. 3) are discussed here,
which represent 16.15 and 13.35 %, thus an accumulat-
ed 29.50 %, of the total inertia of the analysed data.
Table 2 shows an even distribution of inertias among the
successive classes of each climate variable, i.e., Tx1…
Tx4, Tn1…Tn4, and RR1…RR4, reflecting the use of
quartiles to represent their variation. This is not the case
for disease variables in their binary form (disease-0 and
disease-1) since these classes are defined on the frequen-
cy distributions of the intensity of each disease (Savary
et al. 2016).

Direct contributions to axes indicate that, among the
disease variables, brown rust (BR1) and to a lesser
extent FHB (FHB1) and PM (PM1) contribute to defin-
ing axis 1 (horizontal), while FHB (FHB1) and STB
(STB0 and STB1), and to a lesser extent BR (BR1),
contribute to defining axis 2. Disease variables such as
brown rust (BR0 and BR1) and fusarium head blight
(FHB0 and FHB1) are associated with high reciprocal
contributions of axes to the inertia of individual
variable-classes (the accumulated reciprocal contribu-
tions over the two first axes are in the range of 0.50 to
0.60). This correspondence analysis thus accounts well
for these binary variables (as 50 to 60 % of the inertia of
each variable class is accounted for by the two first

axes). On the other hand, reciprocal contributions for
STB0 and STB1 by the two first axes are moderate
(0.166, or 16.6 % of the inertia accounted for), small
for powdery mildew (PM0 and PM1), and the smallest
for YR0 and YR1. Powdery mildew and yellow rust are

Table 1 Chi-square values of associations between climate variables and binarized disease levels

Weather variable quartiles BRBIN YRBIN FHBBIN PMBIN STBBIN

TxQUART 1345.48 38.13 117.75 47.16 99.65

TnQUART 599.56 56.05 122.84 161.60 171.67

RRQUART 182.78 64.78 1245.95 66.70 170.24

GRQUART 501.98 56.62 133.23 7.58 304.56

RHQUART 239.53 44.95 250.94 37.36 30.48

FRDQUART 300.61 42.21 456.43 85.60 165.82

Entries are values of chi-squares with: (2 disease levels – 1) x (4 weather variable quartiles – 1) = 3 degrees of freedom. All chi-squares are
significant at P < 0.001

BRBIN, YRBIN, FHBBIN, PMBIN, STBBIN: Binarized levels (non-epidemic vs. epidemic) of brown rust (BR), yellow rust (YR),
fusarium head blight (FHB), powdery mildew (PM), and septoria tritici blotch (STB), respectively

TxQUART, TnQUART, RRQUART, GRQUART, RHQUART, NBRQUART: quartiles ofmean daily maximum temperature (Tx) over four
months (March–June), of meanminimum daily temperature (Tn), of daily rainfall (RR), of daily global radiation (GR), of mean daily relative
humidity (RH), and of average frequency of rainy days (FRD)

BR1

Tx1

BR0

Tx2

Tx3

Tx4

Tn1

Tn2

Tn3

Tn4

RR1

RR2

RR3 RR4

PM1

PM0

FHB1

FHB0

STB1

STB0 YR1

YR0

A
xi

s 
1

Axis 2

Fig. 3 Multiple correspondence analysis of binarized disease
levels and quartiles of climate variables distributions. Binarized
disease levels: non-epidemics (0) and epidemics (1) of brown rust
(BR), yellow rust (YR), fusarium head blight (FHB), powdery
mildew (PM) and septoria tritici blotch (STB). Successive quar-
tiles of mean daily maximum (Tx) and minimum (Tn) tempera-
ture, and daily rainfall (RR) are indexed from 1 to 4. Axes 1 and 2
account for 16.15 and 13.35 % of total inertia, respectively.
Dashed ellipses and comments (‘dry’, ‘rainy’, ‘warm’, ‘cold’)
are the authors’ interpretations (see text)
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actually better accounted for on axes other than axes 1
and 2, which are not shown in this analysis.

Risk analyses and logistic regressions

A logistic regression model was tested for each disease
variable in turn, represented by their binary form:
BRBIN, YRBIN, FHBBIN, PMBIN, and STBBIN.
The analyses are synthesized in Table 3. All models
are associated with significant (P < 0.001) likelihood
ratios. The area under the Receiver Operating

Characteristic (ROC) curve was computed for each
model and used to assess their predictive ability
(Harrell 2001). Areas under the ROC values were close
to 1 in the case of brown rust, fusarium head blight, and
powdery mildew, but smaller in the case of yellow rust
and septoria tritici blotch.

One important outcome of logistic regression is the
derivation of estimates of risk factors (Harrell 2001;
Savary et al. 2011), which correspond to the βi coeffi-
cients of the tested logisticmodel. Furthermore, the odds
ratio, computed as exp (βi), corresponds to the change in

Table 2 Multiple correspondence analysis of weather variables and binarized levels of diseases

Variables (classes) Inertia Axis 1 (inertia: 16.15 %) Axis 2 (inertia: 13.35 %)

Coordinate Contribution Coordinate Contribution

To axis Reciprocal To axis Reciprocal

Tx1 0.0536 −0.61 0.041 0.122 0.81 0.086 0.215

Tx2 0.0562 −0.77 0.056 0.160 −0.31 0.011 0.026

Tx3 0.0525 −0.14 0.002 0.007 −0.06 0.001 0.002

Tx4 0.0519 1.28 0.199 0.620 −0.43 0.027 0.070

Tn1 0.0542 −1.17 0.145 0.432 −0.42 0.023 0.056

Tn2 0.0534 −0.42 0.020 0.059 0.70 0.067 0.166

Tn3 0.0539 0.93 0.094 0.282 −0.37 0.019 0.046

Tn4 0.0528 0.61 0.043 0.130 0.06 0.001 0.001

RR1 0.0538 −0.29 0.009 0.028 −0.64 0.054 0.134

RR2 0.0536 −0.65 0.046 0.140 −0.25 0.008 0.021

RR3 0.0538 0.49 0.027 0.080 −0.50 0.033 0.081

RR4 0.0532 0.44 0.022 0.066 1.34 0.247 0.619

BR0 0.0142 −0.37 0.049 0.552 0.12 0.006 0.057

BR1 0.0572 1.49 0.196 0.552 −0.48 0.024 0.057

YR0 0.0011 0.01 0.000 0.002 −0.01 0.000 0.008

YR1 0.0703 −0.34 0.001 0.002 0.73 0.004 0.008

FHB0 0.0102 −0.09 0.003 0.049 −0.30 0.043 0.560

FHB1 0.0613 0.54 0.018 0.049 1.84 0.257 0.560

PM0 0.0042 −0.05 0.001 0.047 −0.04 0.001 0.026

PM1 0.0672 0.87 0.020 0.047 0.64 0.013 0.026

STB0 0.0207 −0.10 0.003 0.023 −0.24 0.022 0.143

STB1 0.0507 0.23 0.007 0.023 0.59 0.054 0.143

Variables are categories (classes) of the original quantitative variables. Disease variables are binarized disease levels, i.e., non-epidemics (0)
vs. epidemic

Tx1–4, Tn1–4, RR1–4: quartiles of mean daily maximum temperature (Tx), of mean daily minimum temperature (Tn), and of daily rainfall
(RR) over four months (March–June)

Contributions to axes are fractions of axis inertia (sum over contributions of variables to each axis = 1) that are accounted for by each
individual variable (class)

Reciprocal contributions are fractions of variable (class) inertia that are accounted for by successive axes (sum over axes of successive
relative contributions for each variable =1)
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the odds of an epidemic occurring per unit change in
Xi, the corresponding predictor (Harrell 2001). Large
positive values of βi and of the associated odds ratio

correspond to a strong, positive relationship between the
predictor and the occurrence of an epidemic, while large
negative values of βi and odds ratio close to 0

Table 3 Logistic regressions of the likelihood of epidemic occurrences with weather variables as predictors

Variable Number of cases
with BIN = 1

Likehood Ratio Area under
ROC Curve

Parameter Statistics by Weather Variable

LR P Parameter Estimate SE P Odds ratio

BRBIN 719 −1075 <0.001 0.909 Constant −58.757 2.824 <0.001 10−26

Tn −0.024 0.993 0.08 0.98

Tx 2.567 0.116 <0.001 13.03

RR −1.275 0.199 <0.001 0.28

GR −0.002 0.001 0.001 1.00

RH 0.183 0.027 <0.001 1.20

FRD 0.084 0.012 <0.001 1.09

YRBIN 55 −256 <0.001 0.787 Constant 18.754 6.106 0.002 108

Tn 0.057 0.279 0.837 1.06

Tx −0.427 0.279 0.125 0.65

RR 0.686 0.468 0.143 1.99

GR −0.004 0.002 0.029 1.00

RH −0.186 0.073 0.011 0.83

FRD 0.042 0.034 0.218 1.04

FHBBIN 515 −1191 <0.001 0.849 Constant −0.45 2.319 0.846 0.64

Tn −0.86 0.121 <0.001 0.42

Tx 0.812 0.111 <0.001 2.25

RR 2.223 0.196 <0.001 9.23

GR −0.002 0.001 0.008 1.00

RH −0.178 0.029 <0.001 0.84

FRD 0.067 0.012 <0.001 1.07

PMBIN 215 −618 <0.001 0.836 Constant −52.194 3.899 <0.001 10−23

Tn 0.854 0.12 <0.001 2.35

Tx 0.178 0.14 0.204 1.19

RR −1.206 0.271 <0.001 0.30

GR 0.008 0.001 <0.001 1.01

RH 0.35 0.04 <0.001 1.42

FRD 0.021 0.015 0.158 1.02

STBBIN 1052 −2058 <0.001 0.659 Constant 8.919 1.625 <0.001 7472

Tn −0.101 0.07 0.151 0.90

Tx −0.035 0.072 0.625 0.97

RR 0.454 0.136 0.001 1.57

GR −0.001 0 0.031 1.00

RH −0.142 0.019 <0.001 0.87

FRD 0.051 0.008 <0.001 1.05

Variables: BRBIN, YRBIN, FHBBIN, PMBIN, STBBIN: Binarized levels (non-epidemic vs. epidemic) of brown rust (BR), yellow rust
(YR), fusarium head blight (FHB), powdery mildew (PM), and septoria tritici blotch (STB), respectively

Parameters: mean over four months (March–June) of daily minimum temperature (Tn), of mean maximum daily temperature (Tx), of daily
rainfall (RR), of daily global radiation (GR), of mean daily relative humidity (RH), and of average frequency of rainy days (FRD)
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correspond to a strong, negative relationship between
the predictor and the occurrence of an epidemic.

In the case of brown rust, Table 3 indicates that all the
predictors considered have significant (P < 0.01) contri-
butions to the odds of an epidemic occurring, except the
mean daily minimum temperature (Tn): Tx (mean daily
maximum temperature), RH (mean relative humidity),
and FRD (fraction of rainy days) are positively associ-
ated with increased odds, whereas RR (mean daily
rainfall) and GR (global radiation) are negatively asso-
ciated with increased odds of epidemic occurrence. By
contrast, only two significant (P < 0.05) predictors, GR
and RH, were identified in the case of yellow rust, both
with negative association with the odds of epidemic
occurrence. In the case of fusarium head blight a number
of significant (P < 0.01) predictors were found, Tx, RR,
and FRD having positive, and Tn, GR, and RH having
negative associations with increased odds of FHB epi-
demics. Four predictors were identified in the case of
powdery mildew: Tn, GR, and RH, with positive asso-
ciations, and RR with a negative association with the
occurrence of PM epidemics. In the case of septoria
tritici blotch, four predictors (P < 0.05) were found,
RR and FRD with positive, and GR and RH with
negative contributions to the odds of STB epidemics
occurrence.

Table 3 provides parameters for logistic models of the
relative odds of epidemic occurrence for five wheat
diseases. Comparison of the absolute value of parame-
ters within a logistic model, and between models, in

Table 3 is however rendered difficult by the differences
in dimensions among the predictor variables (Tn, Tx,
RR, GR, RH, and FRD). To facilitate comparison of the
effects of different predictors on the same disease, and
compare the effects of the same predictor across differ-
ent diseases, Fig. 4 provides corrected odds ratios
(corOR), which were first computed according to the
range of the variables (Harrell 2001), and which, when
smaller than 1, were transformed as 1/corOR to repre-
sent odds of non-epidemics. In Fig. 4, factors positively
associated with epidemics are shown in red (dark red
when P < 0.01), and factors negatively associated with
epidemics (positively associated with non-epidemics)
are shown in blue (dark blue when P < 0.01). Figure 4
points at the strong effect of high maximum temperature
(Tx), associated with high relative humidity (RH) and
high fraction of rainy days (FRD), on the likelihood of
BR epidemics; high rainfall (RR), and to some extent,
high global radiation (GR), are by contrast associated
with non-epidemics. Only two risk factors emerge in the
case of YR, both in a negative association with the odds
of yellow rust epidemics: high global radiation (GR) and
high relative humidity (RH) are associated with non-
epidemics; among the other climate variables one notes
the negative effect of high maximum temperatures (Tx),
and the positive effects of high rainfall (RR) and fre-
quent rainy days (FRD) on the odds of yellow rust
epidemics, but in this case P > 0.01. Three risk factors
are positively associated with the odds of FHB: Tx, RR,
and FRD, and three risk factors are negatively
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Fig. 4 Bar chart of odds ratios of climate risk factors of wheat
diseases corrected for their distributional ranges. Disease risks are
binarized (epidemic vs. non-epidemic) levels of brown rust
(BRBIN), yellow rust (YRBIN), fusarium head blight (FHB),
powdery mildew (PMBIN), and septoria tritici blotch (STB).
Parameters for predictors in logistic regressions are plotted as
vertical bars on logarithmic scales. Parameters with positive effects
are plotted from bottom to top (left axis); Parameters with negative

effects are plotted from top to bottom (right axis). To facilitate
comparison of the effects of different predictors, corrected odds
ratios (corOR) were first computed according to the range of the
variables (Harrell 2001). Second, corrected odds ratios were trans-
formed as 1/corORi when they were below 1, to represent odds of
non epidemics. Dark bars indicate probability of a predictor being
significant P < 0.01; Hued bars indicate P > 0.01
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associated with these odds: Tn and RH, and to some
extent GR. Three risk factors are associated with the
odds of powdery mildew epidemics: Tn, GR, and RH,
and RR is one factor opposed to these odds. Lastly, high
rainfall (RR) and high fraction of rainy days (FRD) are
risk factors positively and significantly associated with
STB epidemics, whereas high RH is opposed to this
association.

Discussion

Overall climate - multiple disease patterns

Correspondence analysis generates a very general image
of the relationships of wheat diseases with climate.
According to Fig. 3, brown rust is associatedwith warm,
fairly rainy growing seasons; Yellow rust corresponds to
cool seasons and very variable rainfall patterns; Fusari-
um head blight is associated with rainy growing seasons
and variable temperatures; Powdery mildew corre-
sponds to fairly warm and rainy conditions; and septoria
tritici blotch is associated to rainy rather than dry
conditions.

Such a picture broadly conforms with the large body
of literature on the topic. Brown rust is well-adapted to
warm conditions, with, for instance, (1) a high (26 °C)
optimum temperature for its latency period duration
(Eversmeyer et al. 1980), and (2) a very broad temper-
ature range for spore germination (0 to 32 °C; Tollenaar
1985) as well as for infection (5 to 25 °C; Tomerlin et al.
1983; de Vallavieille-Pope et al. 1995). Brown rust also
requires moisture to accomplish its cycle (e.g., 4–6 h of
moisture for infection to take place), a requirement
which is shared by yellow rust (de Vallavieille-Pope
et al. 1995). Yellow rust has been widely reported as a
pathogen of cool environments (Rapilly 1979). Thresh-
old (minimal and maximal) temperatures for spore ger-
mination of P. striiformis have been reported to be 5 and
20 °C (optimum 15 °C; Clifford and Harris 1981);
infection has been associated with a narrow (5 to
12 °C) temperature range (de Vallavieille-Pope et al.
1995); and a wide range of temperatures where the
latency period duration is moderately affected has been
reported (latency period of 10–14 days between 13 and
23 °C; Tollenaar and Houston 1967). By contrast, Fu-
sarium head blight has been widely associated with
humid conditions (Kriss et al. 2010; Shah et al. 2013,
2014), with markers such as relative humidity and

various measures of moisture or wetness clearly associ-
ated with increased disease. Sudden daily variation in
relative humidity (sharp increases at the end of the day)
has been reported to trigger ascospore liberation in FHB
(Paulitz 1996). Consideration of relative humidity
brings about temperature variation, in addition to rain-
fall, among the main climatic factors of this disease
(Parry et al. 1995). Figure 3 indicates that occurrence
of FHB is at the same (chi-square) distance from Tx1
and Tn2, on the one hand, and Tn4, on the other, and
therefore this output does not specifically point at high
temperatures associated with FHB. The factorial map of
Fig. 3, which only accounts for 16.15 + 13.35 = 29.50%
of total inertia, is necessarily incomplete. The climatic
factors associated with powdery mildew in wheat have
comparatively been less studied in detailed experiments.
The analysis by Te Beest et al. (2008) points at humid,
rainy, and fairly warm conditions in spring and early
summer favouring powdery mildew, in agreement with
Fig. 3. By contrast, Daamen et al. (1992) emphasise the
erratic behaviour of powdery mildew in the growing
season, much in contrast with its predictability from
the preceding autumn and winter temperatures. The
critical role of moisture and rain in the spore wash-off
from the canopy, spore survival prior to liberation, and
infection efficiency is quantitatively documented in the
detailed simulation model by Rossi and Giosuè (2003).
Regarding septoria tritici blotch, Fig. 3 is suggestive
only on the non-association of STB with dry conditions.
There are many references in the literature on the link-
ages of STB with rainfall (e.g., Holmes and Colhoun
1974; Shaner and Finney 1976). By contrast with yel-
low rust, the response of STB appears less sensitive to
temperature in its monocycle (Wainshilbaum and Lipps
1991).

Logistic regression and risk factors for individual wheat
diseases

Logistic regressions (Table 3, Fig. 4) further document
climate associations with wheat diseases. These results
broadly concur with the many reports on the effects of
climate variables during the growing season on wheat
diseases, which were briefly summarized above. These
results may also suggest in some cases specific charac-
teristics of the considered disease cycles. For instance,
the contrasting associations of Tx (positive) and Tn
(negative) with the odds ratios of an FHB epidemic
occurrence, together with the associations of moisture
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variables (RR, RH, FRD), may reflect daily characteris-
tics favouring disease development. Similarly, STB ep-
idemics are associated with increased (RR), and more
frequent (FRD) rainfall, but not with increased (mean)
relative humidity (RH). Mean daily relative humidity
cannot account for the effects of daily variation (mini-
mum or maximum) in relative humidity on STB. How-
ever, a high mean daily relative humidity does account
for both high maximum and high minimum relative
humidity in a day. This analysis thus does not lead to
associating humid days (minimum and maximum) with
STB. Only two risk factors are found for yellow rust,
possibly reflecting: (1) the existence of far more impor-
tant determinants of disease than climate in the case of
yellow rust – the data set incorporates observations on a
range of different varieties, (2) the importance of climate
factors affecting yellow rust epidemics in the preceding
autumn and winter, and (3) the fact that very few (55)
cases of epidemics were considered in a population of
3525 observations.

Shifts in population structures

The data analysed in this work were collected in the last
years preceding important transitions in population
structures of Puccinia striiformis in many parts of the
world, including Europe (Milus et al. 2009; Hovmøller
et al. 2011; Ali et al. 2014) and France (Sørensen et al.
2014). New strains of the pathogen present striking
differences with the previously existing ones, including
an adaptation to warmer conditions (Hovmøller et al.
2011). Had this analysis been conducted on more recent
data, the positioning of yellow rust in Fig. 3, as well as
the risk factors associated with the disease, might have
been different.

Better addressing the early stages of plant disease
epidemics

The core of the disease information available in the
analysed data set is constituted by assessments at the
late stages of crop development. This information is
necessary to inform on the status of disease, but the
absence of disease information at an early stage of crop
development (e.g., tillering) precludes the incorporation
of factors which might have played an important role in
the early stage of disease epidemics. Much of the epi-
demiological literature emphasises this early stage, since
the survival, mobilization, and early multiplication of

the primary inoculum may have strong bearings on the
ensuing dynamics (Savary 2014). This has been partic-
ularly documented in the case of yellow rust epidemics
(Coakley and Line 1981), which are favoured by mild
winters, enabling the primary inoculum to survive
(Hovmøller 2001; Gladders et al. 2007). Winter condi-
tions appear to also affect the survival of the primary
inoculum of brown rust (Eversmeyer and Kramer 1998)
and septoria tritici blotch (Suffert et al. 2011). Further,
Daamen et al. (1992) also identified a series of climate
factors (warm autumns and winter enabling inoculum
survival; warm spring allowing its mobilisation) that
influence powdery mildew epidemics.

Categorical information, synthesis climate variables,
and binarized disease data

In these analyses, we: (1) chose to use synthesis climatic
variables, (2) pertaining only to spring and summer
(March–June), in line with the late development stages
when disease data were available, and (3) opted to
compact the available disease intensity information in
a binary form. Each disease epidemic in an individual
plot was thus represented by a single binary disease
measure, and a vector of simplified climate variables.
In the process, many potentially important elements of
the relationships between climatic conditions and dis-
ease development were excluded from the study, such as
the effects of climate on the early stage of disease
development, and also the accumulated effects of cli-
mate on disease epidemics, in interaction with crop
growth.

The categorization of disease data made use of dis-
tribution-dependent, and therefore disease-dependent,
thresholds. As a result, these thresholds distinguished
near-absence from any level of disease (in the case of
yellow rust and powdery mildew), very low levels of
disease from any higher disease level (in the case of
brown rust and fusarium head blight), and low disease
levels from higher levels (in the case of septoria tritici
blotch). For convenience, these levels have been re-
ferred to in binary form as ‘non-epidemic’ and ‘epidem-
ic’, despite the fact that they may represent quite differ-
ent stages in the course of an epidemic: STB0 includes
some plots where the early stages of a septoria tritici
blotch epidemic had taken place, while this is not the
case for yellow rust in plots categorized as YR0. Cau-
tion therefore is necessary in interpreting results across
diseases.
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Despite this simplified approach, correspondence
analysis leads to fairly interpretable results that are
broadly in accordance with the known behaviour of
the considered diseases with varying climatic condi-
tions. The logistic models of Table 3 agree with the
correspondence analysis and its supporting chi-squares
(Table 1). These models actually involve many climate
variables in four cases (brown rust, fusarium head
blight, powdery mildew, and septoria tritici blotch); only
in the case of yellow rust are only two climatic variables
identified significantly.

These results indicate the value of such large scale
data. They are encouraging in indicating that the ap-
proach used here might generate far more applicable
results, should more precise disease data be available.
Disease progress may be represented through several
attributes (Kranz 1988; Campbell and Madden 1990;
Madden et al. 2007): date of onset, maximum intensity,
successive disease levels at pre-set development stages,
and area under progress curve, for example. The avail-
ability of measurement of disease intensity at multiple
stages in the crop development would certainly improve
the quality of analyses, and enable distinguishing factors
that are associated: first, with disease establishment, and
then, with disease intensification, which are essential to
understand disease dynamics and their management.

Plant health and risk factors

Plant health is a fuzzy term (Döring et al. 2012), which
we operationalized here, perhaps in a narrow, but trac-
table, manner, as the collection of main diseases occur-
ring on a crop in a given geographical and temporal
space. We believe that a risk factor approach is espe-
cially suited to address crop health.

Risk factor approaches have been followed to ad-
dress individual wheat diseases, such as yellow rust
and powdery mildew (Te Beest et al. 2008), or septoria
tritici blotch (Te Beest et al. 2009). These studies ad-
dress individual diseases with fairly detailed climatic
variables. A hierarchical risk factor approach that ad-
dresses crop health as a whole, involving multiple dis-
eases, has seldom been used in plant pathology (e.g.,
Savary et al. 2011). Yet, risk factor analysis is a key
instrument, for instance in public health (Lim et al.
2012): (1) to address multiple environmental factors
influencing diseases, (2) which may be infectious or
non-infectious, and (3) to generate hierarchies on the
respective influences of these factors. This can have

applications to tactical (within season) disease manage-
ment, but also strategic management through control
instruments that require careful deployment over space
(regions, landscapes) and time (successive seasons)
such as host plant resistances, and also implications for
the definition of crop health policies. Addressing simul-
taneously the entire set of plant diseases in a risk factor
approach carries great promises in quantifying risk hi-
erarchies and priorities for crop health management.
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