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Abstract Policymakers and researchers need to develop
long-term priorities using reliable, quantitative tools to
assess the risks associated with plant diseases over a
range of plant pathogens and over space. EPIWHEAT
is a generic simulation model designed to analyse poten-
tial disease epidemics in wheat, i.e., epidemics that de-
pend only on the physical environment, and that are not
constrained by any disease control. The model is devel-
oped on a core structure involving healthy, latent, infec-
tious, and removed sites, and accounts for lesion expan-
sion. It simulates in a simple way host dynamics (growth
and senescence). The model involves as few parameters
as possible, and a few driving functions. Here, EPIW
HEAT is populated with parameters for brown rust (leaf
rust; Puccinia triticina) and Septoria tritici blotch
(Zymoseptoria tritici). Simulated epidemics are com-
pared to observations at the field, national (France), and
European scales. The model appears to represent a sound
basis for predicting potential epidemics of wheat foliar
diseases at large scales. Areas for model development are
documented and discussed. EPIWHEAT appears to

provide a simple, generic, transparent, flexible, and reli-
able platform to modelling potential epidemics caused by
leaf pathogens of wheat.

Keywords Botanical epidemiology . Epidemiological
modelling .Model evaluation .Wheat diseases

Introduction

The variability in intensity of plant diseases across loca-
tions and seasons is a major obstacle to their strategic
management. The large number of factors that may influ-
ence the occurrence and the intensity of epidemics is a
main difficulty for policy makers and scientists to develop
long term control strategies. Yet, only long term strategies
are likely to significantly contribute to the sustainability of
agricultural systems (Alston et al. 2009). Plant breeders,
for example, must identify selection targets, such as dis-
ease resistances, decades ahead of the use of breeding
products (Duveiller et al. 2007). This is true in particular
in the case of wheat, the first food crop worldwide in
terms of cultivated area and trade, and the second in terms
of human consumption (Shiferaw et al. 2013).

Simulation modelling constitutes a key approach to
quantitatively predict the behaviour of biological systems
such as plant disease epidemics based on their underpin-
ning processes (Rabbinge et al. 1989). Several process-
based simulation models have been developed to predict
the dynamics of disease intensity in specific wheat dis-
eases. Examples include models for leaf rust (e.g., Rossi
et al. 1997; Räder et al. 2007) and for Septoria blotches
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(e.g., Djurle and Yuen 1991; El Jarroudi et al. 2009).
These models have been mainly developed in order to
provide tools to help tactical decisions at the field scale, in
particular to help optimizing fungicide use. Most of these
models are very detailed in terms of the processes
modelled (including, e.g., spore germination or spore
dispersal), the canopy dynamics (including leaf layers),
and sometimes require hourly weather data as input. Such
models can be very useful for tactical decisions, but may
be difficult to share, and may lack of transparency, be-
cause of their complexity. They are usually specific to a
disease, and may address small regional areas.

Developing and deploying long term strategies for
disease management first requires considering the set of
main pathogens affecting a given crop plant: when
considering crop health as a whole, one cannot address
one disease in particular, but the entire array of diseases
that may cause epidemics. In the case of wheat, one
should therefore envision a group of five to 15 diseases,
depending on the scale, country or continent, considered
(Duveiller et al. 2007). Moreover, long term strategies
require considering large spatial scales (Savary et al.
2006), which can be seen as a large (meta-)population
of fields, characterized by robust estimates of epidemic
patterns. Both requirements can be fulfilled by the use of
a simulation model able to handle a wide range of
diseases, that would be generic (same structure across
diseases), transparent and simple (i.e., easy to share, to
test, and to use – with parsimonious parameters and
inputs), and that would provide robust estimates of
epidemic intensity at large spatial scales. Such a model,
EPIRICE, was developed for rice (Savary et al. 2012),
whose structure accommodates fungal, bacterial, and
viral pathogens, which can develop lesions on small
fractions of leaves, entire leaves, entire tillers, or whole
plants.

The purpose of EPIWHEAT is to provide a generic,
robust modelling structure for a wide array of wheat
pathogens that may cause epidemics. The anticipated
utility of EPIWHEAT is to produce reasonably accurate
predictions of potential epidemics, i.e., of epidemics that
would only be driven by climatic conditions, and that
would not be constrained or suppressed by any control
action. Specifically, the blueprint of EPIWHEAT can be
summarized by the following specifications:

1. A simple modelling framework that enables to ac-
count for epidemiological processes, especially pro-
cesses underpinning polycyclic epidemics;

2. A model involving as few parameters as possible,
that can be retrieved from the literature;

3. A model driven by as few environmental factors as
possible, which can be readily retrieved from local,
regional, or international sources;

4. A model that incorporates in a simplified manner
crop growth and plant senescence, which are docu-
mented major causes for epidemiological variability;

5. A model incorporating crop development and age,
in order to account for change in host susceptibility;

6. A model accounting for, if necessary, and in the
most simplified way, the effect of aggregation on
disease increase;

7. A model that considers a convenient system size –
in the case of wheat, 1 m2 of crop;

8. A simple numerical integration: the rectangular
(Euler; Leffelaar 1993; Thornley and France 2007)
integration method over a time step of 1 day.

This article describes the structure of EPIWHEAT,
and its parameterisation, evaluation, and use for two
important wheat diseases in temperate areas (Duveiller
et al. 2007): brown rust (also known as leaf rust) and
Septoria tritici blotch.

Materials and methods

Structure of EPIWHEAT

Modelling structure

The structure of EPIWHEAT is generic, involving the
main monocyclic processes underpinning plant disease
epidemics. EPIWHEAT is derived in its structure from
EPIRICE, a simulation model developed to analyse
potential disease epidemics in rice (Savary et al. 2012).
The core of this structure is based on the seminal epide-
miological model developed by Zadoks (1971), with
sites evolving from healthy, to latent, infectious, and
removed. The structure used here further incorporates
host growth and senescence in a very simplified manner.
Lesion expansion, which was not accounted for in EPIR
ICE, is incorporated in EPIWHEAT. EPIWHEAT is
parameterized for host-pathogen epidemiological inter-
actions and crop growth of soft winter or spring wheat,
but may be used for durum wheat as well. The time step
of EPIWHEAT is 1 day, and the system modelled is
1 m2 of wheat crop.
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Modelled processes

Brown rust and Septoria tritici blotch epidemics are
modelled in the same fashion, considering four state
variables that are expressed as numbers present at any
time in the considered system (i.e., densities): healthy,
latent, infectious, and removed sites. A site is defined as
a fraction of the host tissues where an infection may take
place, and where a lesion may develop (Zadoks 1971;
Savary et al. 1990, 2012; Djurle and Yuen 1991). Sites
becoming infected flow from healthy to latent. Latent
sites become infectious at the end of a latency period, p,
and infectious sites become removed at the end of an
infectious period (i; Fig. 1; Table 1). The rate of infec-
tion (number of newly infected sites per unit time) is
modelled as a function of the number of infectious sites
(INF), a daily multiplication factor (Rc), a correction
factor for diseased sites (COFR), and a coefficient for
disease aggregation (Agg; Waggoner and Rich 1981):

RI ¼ Rc•IN F• COFRð ÞAgg ð1Þ

Equation 1 implies that the rate of variation of infected-
latent sites (LAT, Fig. 1) is proportional to the number of
infectious sites (INF), a power function of the proportion
COFR of sites that are healthy relative to the total number
of sites in the system, and to Rc, the basic infection rate
corrected for removals (Van der Plank 1963).

Another interpretation of Equation 1 is to consider
that the basic reproduction number, R0 (Madden et al.
2007), is equivalent to the integral over i: ∫i Rc • dt.
Equation (1) therefore amounts to: RI≈(R0 • INF) / i
under the following two assumptions: (1) only the first
wave of infections occurring in a population of healthy
sites is considered, and (2) the quantity: Rc is constant
over i (Savary and Willocquet 2014).

Many pathosystems are characterized by the ability of
lesions to expand (Berger et al. 1997), providing to some
diseases the ability to progress even though new infec-
tions cannot occur. Lesion expansion corresponds to the
speed at which tissues infected from expansion become
diseased. Lesion expansion, as a process, therefore incor-
porates the lag phase during which tissues are colonized,
but (lesion expanded) are not yet infectious. The expand-
ed lesion area is therefore infectious almost immediately
(Berger et al. 1997). Lesion expansion translates into a
flow of healthy sites becoming directly infectious as
lesions expand, healthy site infection thus bypassing the

latent stage. Lesion expansion therefore directly depends
on the number of infectious sites and (as the infection
process), is constrained by the carrying capacity of the
host. Lesion expansion is therefore written as:

RLEX ¼ RRLEX • IN F • COFR ð2Þ
Where RRLEX is the relative rate of lesion expansion.

Host growth is hypothesized to result from healthy
sites only. Sites are defined here as leaf area units corre-
sponding to the size of a lesion. Crop growth is repre-
sented as a logistic growth, where a maximum size of the
host is considered (SMax). Crop growth is written as:

RCG ¼ RRG •HSITES • 1− Total�SITES=SMax
� �� �

ð3Þ
Where Total_SITES is the total number of sites currently
present in the modelled system and RRG is the relative
rate of crop growth.

Senescence of healthy sites is hypothesized to de-
pend on both disease and physiological senescence of
plant tissues. The two sub-processes are assumed inde-
pendent and thus additive. Physiological senescence is
made proportional to the number of healthy sites, and to
a relative rate of senescence which increases as crop
develops. Senescence associated to disease is made
equal to the flow of sites becoming removed from the
epidemic, so as to reflect the effect of disease on the
senescence of healthy tissues (Savary et al. 2012).

Effects of crop age, temperature, and rainfall
on infection

The effects of crop age, temperature, and rainfall on
epidemics are incorporated in EPIWHEAT by altering
the daily infection process. Rc is made dependent on
RcOpt, which is the optimum value of Rc, and on
modifiers (Loomis and Adams 1983) corresponding to
three factors:

Rc ¼ RcOpt • RcA • RcT • RcW ð4Þ
Where RcA, RcT, and RcW are modifiers of RcOpt
for crop age, temperature, and moisture duration,
respectively.

Parameterization of EPIWHEAT

EPIWHEATwas parameterized for two important wheat
diseases, brown rust (BR; also referred as leaf rust,
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caused by Puccinia triticina) and Septoria tritici blotch
(SB; Zymoseptoria tritici; former Septoria tritici;
teleomorph Mycosphaerella graminicola) using pub-
lished studies (Table 2).

Monocyclic processes

Values of p and i were retrieved from the literature for
both diseases (Table 2). These values correspond to
optimum conditions for infection, that is, to fully com-
patible host-pathogen interactions under conducive
physical environment.

RcOpt was estimated for each disease following
Savary et al. (2012), i.e., from disease progress curves
representing epidemics developing under optimum en-
vironmental conditions on susceptible varieties. Several

approaches to estimate Rc have been proposed (Van der
Plank 1963; Campbell andMadden 1990; Sun and Zeng
1993; Segarra et al. 2001). In the early stage of an
epidemic:

rl ¼ ln x2=x1ð Þ½ �= t2−t1ð Þ ð5Þ

where x1 and x2 are diseased fractions at two successive
dates t1 and t2, and rl is the apparent rate of disease
increase. Rc can then be estimated from:

Rc ¼ rl= exp −rl • pð Þ–exp −rl • pþ i½ �ð Þf g ð6Þ

Equation 6 was thus used to estimate RcOpt from rl,
estimated from published disease progress curves
(Bowen et al. 1984; Coakley et al. 1985; Table 2) under
near-optimum conditions for both diseases.

HSITES

LAT INF REM

RCG

RSN

COFR

RRG

RI
RT RREM

SMax

Start
Rc

Day INOCP

RcOpt

RcW

RcT

RcA

RRPSN

Agg

SEN

RRLEX

DVS~

T~

RLEX

rain
~

Fig. 1 Simplified representation of EPIWHEAT structure. Only
one feed-back loop (linking INF to RI) is indicated, representing
the disease cycle, from healthy (HSITE) to diseased and latent

(LAT) via the rate of infection (RI), which depends on the amount
of infectious (INF). Not all relationships (simple curved arrows)
present in the model are indicated. See Table 1 for symbols

774 Eur J Plant Pathol (2015) 142:771–790



Lesion expansion was documented from the litera-
ture as well. Lesion expansion is an important feature of
SB. The report by Magboul et al. (1992) allowed deriv-
ing an estimate of RRLEX for this disease (Table 2). A
non-zero lesion expansion for BR is indicated in Berger
et al. (1997), but expansion is comparatively very small.
For the sake of simplicity, it was assumed that RRLEX=

0 in the case of BR. Lesion sizes for both BR (Robert
et al. 2004) and SB (prior to lesion expansion and
coalescence; James 1971; Zhang et al. 2011) were re-
trieved from literature.

Disease aggregation was a point of specific consid-
eration. The two diseases quite differ in their dispersal
(e.g., Bockus et al. 2010), BR having a predominantly

Table 1 List of EPIWHEAT variables, rates, parameters, dynamically computed values, and driving functions. The systemmodelled is 1 m2

of a wheat crop stand

Variable type Acronym Variable meaning Unit

State variables AUSPC Area under severity progress curve

HSITES Number of healthy sites NSites

INF Number of infectious sites NSites

LAT Number of latent sites NSites

REM Number of post-infectious (removed) sites NSites

SEN Number of senesced sites NSites

Rates RCG Rate of crop growth NSites day
−1

RI Rate of infection NSites day
−1

RLEX Rate of lesion extension NSites day
−1

RREM Rate of removal NSites day
−1

RSN Rate of senescence NSites day
−1

RT Rate of transit (LAT to INF) NSites day
−1

Parameters Agg Aggregation coefficient –

day Day number from simulation start day

i Duration of infectious period day

INOCP Amount of primary infections NSites

p Duration of latency period day

RcOpt Optimum Rc value NSites NSites
−1day−1

RRG Relative rate of crop growth NSites NSites
−1day−1

RRLEX Relative rate of lesion extension NSites NSites
−1day−1

SMax Maximum number of sites NSites

START Date of epidemic onset day

Computed values COFR Correction factor –

DISITES Total number of infected sites NSites

Rc Daily Rc value NSites NSites
−1day−1

SEV Disease severity –

TotalSITES Running current number of sites in the system NSites

Climate drivers nbcrd Number of consecutive rainy days (over previous 4 days) day

rain Daily rainfall

T Daily temperature °C

Driving functions DVS02 Development stage scaled 0–2 –

RcA Rc modifier for crop age –

RcT Rc modifier for temperature –

RcW Rc modifier for wetness –

RRPSN Relative rate of physiological senescence NSites NSites
−1day−1
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wind-driven, dry dispersal mechanism, whereas SB is
commonly assumed to have a strong rain splash dispers-
al component (e.g., Magboul et al. 1992; Bockus et al.
2010). One may therefore expect different levels of
overall disease aggregation, which may further be ex-
pected to differentially interact with crop growth, so that
Agg not only varies over time (Campbell and Madden
1990; McRoberts et al. 1996), but also with crop growth
and canopy structure (e.g., Lannou and Savary 1991;
Yang and TeBeest 1992; Xu and Madden 2002). For the
sake of simplicity again, a neutral hypothesis was made,
and Agg was set to 1 for both diseases.

Modifiers

Functional responses of BR to temperature and plant age
were derived fromDeVallavieille-Pope et al. (1995) and
Tomerlin et al. (1984), respectively (Table 2). Wetness
was assumed not to influence the monocycle of BR
(Bockus et al. 2010). Conversely, functional responses
of SB to temperature and wetness were derived from
Magboul et al. (1992), and the response to plant age was
documented fromWainshilbaum and Lipps (1991). The
standard procedure to link driving functions (e.g., tem-
perature) to functional responses (e.g., infection effi-
ciency) was used, that is, through linear interpolation
thus producing the desired numerical response to a
given running value of the driving function between
two experimentally measured (driving function) -
(response) couplets (Savary and Willocquet 2014).

Carrying capacities, crop growth and plant
development

SMax (Fig. 1, Table 1) represents the maximum number
of sites that can be sustained by a canopy covering 1 m2

of a wheat crop, i.e., the disease carrying capacity. SMax
values (Table 2) were determined considering (1) an
LAI of 3, (2) the maximum number of lesions that can
be carried by a leaf given (3) an average lesion size, and
(4) an average leaf size (18.27 cm2; Zhang et al. 2011).
In the case of BR, an estimated SMax value of 750,000
was derived, assuming a lesion size of 4 mm2 (Robert
et al. 2004). In the case of SB, the Smax value was
174,055, considering a maximum possible severity (%
leaf area actually covered with lesion) of 25 %,
consisting of 106 individual lesions per leaf (James
1971). A maximum SB severity of 25 % concurs with
observations (22.87 %) by Eyal and Brown (1976).

The relative rates of growth (Spitters and Kramer
1985) and senescence (Willocquet et al. 2008) of
healthy sites were determined from the literature, as well
as crop development, which was described as a function
of the daily temperature sum using a base temperature of
0 °C (Spitters et al. 1989; Willocquet et al. 2008)

Model initialization

The initialisation of EPIWHEAT was designed so that
simulations begin when spring growth starts, i.e., when
the sum of temperature accumulated since January 1 has
reached 200 °C.day (base 0 °C; Spitters et al. 1989), in
the case of winter wheat. This corresponds to a develop-
ment stage of approximately 0.33 on a 0–2 scale (Penning
de Vries et al. 1989). The initial development stage of
wheat growth was set to 0.33 at the beginning of each run
(day = 0), which corresponds to a sum of temperature of
500 °C.day from seedling emergence. Epidemics are
initiated by a single inflow (INOCP, Fig. 1) of infections
(10 infections in the case of BR, and 15 in the case of SB)
at day = 20. The initial number of sites was set to 250 for
both diseases, which is commensurate with the smallest
LAI value reported by Groot (1987) at the end of winter.

Driving functions

Daily mean temperature and rainfall (Fig. 1) were used
as drivers influencing RcT and RcW (the latter set to a
default 1 value for BR). A simple rule was applied to
translate rainy days into wetness effects on infection
efficiency in SB (Magboul et al. 1992) via the wetness
modifier RcW (Fig. 1, Table 1): absence of rainfall over
four consecutive days corresponds to a RcW = 0.23, 1
rainy day to RcW=0.36, and 2, 3, and 4 consecutive
rainy days to RcW values of 0.68, 0.93, and 1, respec-
tively (Magboul et al. 1992). Daily mean temperature
was also used as a driver to compute daily changes in
crop development stage.

Starting day 1, running time and driving functions
start feeding the computation sequence, and the numer-
ical integrations follow the rectangular (Euler; Leffelaar
1993; Thornley and France 2007) method for each day.

Model evaluation

Given the objectives of EPIWHEAT, model evaluation
was conducted not only at the field scale, but also at the
regional (country) scale, in order to evaluate the capacity
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of EPIWHEAT to provide robust estimate of epidemic
severity at a spatial scales that are beyond the individual
field.

Comparison of simulated and reported disease progress
curves

Comparison of observed and simulated epidemics was
conducted using published disease progress curves for
both diseases, with two steps: (1) visual examination of
the dynamics of simulated vs. observed disease severity
(Penning de Vries 1977) and (2) regression analyses of
simulated over observed values (Teng 1981). Disease
progress curves under conditions where disease was not
controlled (use of susceptible varieties, no chemical
protection) were sought in the literature; disease prog-
ress curves reported by Kulkarni et al. (1981) were used
for BR, and from Hess and Shaner (1987a) for SB. The
corresponding weather data (mean daily temperatures
and rainfal l) were retr ieved from the India
Meteorological Department website (http://www.imd.
gov.in/) and from the Indiana State Climate Office,
Purdue University website (http://www.iclimate.org/
data_archive.asp), for BR and SB, respectively.

Comparison of simulated and reported disease
occurrence in France

The French ministry for agriculture (Organisation
Nationale de la Protection des Végétaux, ONPV) pub-
lishes yearly reports summarizing the status of plant
health in the past growing season for a number of crops.
We used the reports for the period 2005–2010 for wheat.
These reports describe the overall levels of the various
wheat diseases in the form of maps or tables where the
regions of France are displayed and disease intensities
are indicated in three classes: Bsevere^, Baverage^, and
Bweak to absent^. Some reports split the Bweak to
absent^ in two. Some regions do not report information
in some years, thus leading to missing data. These
reports were compiled in yearly tables for each of the
two diseases for the period 2005–2010, where only three
classes of observations (BRobs and SBobs) were con-
sidered: Bweak to absent^, Baverage^, or Bsevere^, and
coded as: ‘0’, ‘1’, and ‘2’, respectively.

The regional crop health assessments provided infor-
mation on BR and on Septoria blotches. While little
doubt exists on the diagnosis of BR in these reports, no
distinction is made in the reports between Septoria tritici

blotch (Zymoseptoria tritici; teleomorphMycosphaerella
graminicola) and Septoria nodorum blotch (caused by
Parastagonospora nodorum; syns. Stagonospora,
Septoria, Phaeosphaeria nodorum). Z. tritici is widely
predominant in France, and therefore the reported
BSeptoria^ disease was attributed to this disease.

The observed levels were then binarized. Reported
BR levels (BRobs) in the regional crop health assess-
ments indicated a majority of non-epidemic region-
years (i.e., BRobs=0), especially before 2007. All
region-years with BRobs=1 or 2 were therefore catego-
rized as ‘epidemic’ (i.e., BRobs=1). On the contrary, a
majority of the reported SB levels (SBobs) indicated
occurrence of the disease at Baverage^ level (i.e.,
SBobs≠0). Only region-years were SB was reported as
Bsevere^ were therefore categorized as ‘epidemic’ (i.e.,
SBobs=1, and SBobs=0 otherwise).

Weather data corresponding to French regions and
years were retrieved from the MARS (Monitoring
Agricultural ResourceS; see details below) meteorolog-
ical database, enabling simulations for both diseases,
and the computation of areas under disease progress
curves (AUDPC; Campbell and Madden 1990) for a
period of 120 days for each region-year. The simulated
AUDPCs (AUBRPC and AUSBPC for BR and SB,
respectively) were in turn converted in binary variables
(BRsim and SBsim, respectively) using the means and
standard deviations of the simulated AUDPCs:

if AUBRPC ≥ Mean AUBRPCð Þ þ 0:5*SD AUBRPCð Þ;
then BRsim ¼ 1; and BRsim ¼ 0 otherwise; and

if AUSBPC ≥ Mean AUSBPCð Þ þ 0:5*SD AUSBPCð Þ;
then SBsim ¼ 1; and SBsim ¼ 0 otherwise:

The association between the binarized simulated
AUDPCs (BRsim and SBsim) and reported disease
intensities (BRobs and SBobs) were tested by means
of chi-square tests. Furthermore, logistic regressions
involving the binarized reported intensities and the con-
tinuous simulated AUDPC variables were then tested:

ln Prob BRobs ¼ 1ð Þ= 1−Prob BRobs ¼ 1ð Þð Þð Þ
¼ αBR þ βBR*AUBRPC; and

ln Prob SBobs ¼ 1ð Þ= 1−Prob SBobs ¼ 1ð Þð Þð Þ
¼ αSB þ βSB*AUSBPC:

Logistic regressions and statistical tests associated to
them, and to Bayesian statistics in general, provide a
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powerful and formal, as well as an intuitive way to
assess a model during its development phase and to test
its ability to predict and to guide for decision (Yuen and
Hughes 2002). Such an approach has been used in
several instances to develop and assess models for dis-
ease management (i.e., Pethybridge et al. 2009; Caffi
et al. 2011).

Sensitivity analyses

Sensitivity analyses were performed to assess the model
behaviour with varying input parameters, therefore en-
abling model verification (Teng 1981). Four parameters
were addressed: RcOpt, the timing of inflow of primary
infections (Day, Fig. 1), temperature (T), and rainfall
patterns (rain, only for SB) in simulation runs of
120 days.

The default values of RcOpt were set to 1.472
and 1.17–RRLEX for BR and SB, respectively. For
each disease, three values of RcOpt were consid-
ered: the default RcOpt value, and the default
value + or − 20 %. The default value for Day
was set to 20 for both diseases. Three values were
again considered: the default Day value and its
variation of + or − 20 %. T was made constant
over the simulations. Default values of 15 and
22 °C (corresponding to optimum temperatures
for infection efficiency for each disease) were set
for BR and SB respectively. For each disease, two
T values were used: the default value and the
default value − 20 %. The default rainfall patterns
(rain) considered for SB corresponded to 12 rainy
days (chosen at random) out of 30 days. This
frequency corresponds to the average number of
rainy days per month in France from March to
July, when accounting for the range of climatic
regions of wheat production. Patterns with an ad-
ditional 20 %, and a reduced 20 % rainy days
were then considered. Two or three additional (or
removed) rainy days were thus chosen at random
every other month, and added (or removed) to the
rainy patterns set in the first stage, in order to
consider the 20 % variation above (or below) the
default rainy pattern. All combinations of levels of
inputs yielded 18 and 54 simulations for BR and
SB, respectively. The dynamics of severity were
displayed for most combinations for visual exami-
nation, and AUDPCs were computed for all
combinations.

Simulation of potential epidemics in Europe

Weather data

Daily meteorological data from 1993 to 2012
(20 years) on a 50×50 km grid across Europe
and its neighbouring countries were retrieved from
the MARS (Monitoring Agricultural ResourceS)
meteorological database at http://mars.jrc.ec.europa.eu/
mars/About-us/AGRI4CAST/Data-distribution/
AGRI4CAST-Interpolated-Meteorological-Data. These
data are generated from spatial interpolation of weather
data collected by meteorological stations. A detailed
description of the database is available at: http://
marswiki.jrc.ec.europa.eu/agri4castwiki/index.php/
Meteorological_data_from_ground_stations. Three
daily meteorological variables were used: mean
rainfall (rain, mm), and maximum (Tx, °C) and
minimum (Tn, °C) daily temperatures.

Simulation runs

EPIWHEAT was developed using STELLA® (2008)
and translated to the R language (R Development Core
Team, 2014, http://www.r-project.org) for multiple
simulations purpose. R is a free, multiplatform,
statistical programming environment, which can be
linked to database and GIS softwares as was done for
rice diseases (Savary et al. 2012). For each disease, the
model was run at all locations of theMARS grid, i.e., for
all year-site climatic situations using the same initial
conditions as indicated above, and the AUDPC of epi-
demics were computed over 120 days.

Disease maps

Elevation data were retrieved from http://api.
geonames.org/astergdem (derived from the Aster
Global Digital Elevation Model; http://asterweb.
jpl.nasa.gov/gdem.asp). Points of the weather
database grid corresponding to an elevation above
1000 m were excluded. The spatial grain chosen to
display simulation outputs corresponds to the
NUTS (Nomenclature of territorial units for
statistics classification) European geographic units.
This spatial grain (called level 2, or NUTS2)
corresponds to a total of 270 units in Europe (and
translates for France in its 22 administrative
BRégions^). This spatial grain also allows using base
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maps from the EUROSTAT website: (http://epp.
eurostat.ec.europa.eu/portal/page/portal/nuts_
nomenclature/introduction).

The means and standard deviations over years of
AUDPCs in each NUTS were computed and partitioned
in quintiles corresponding to different shades. Maps
displaying these means and standard deviations of po-
tential BR and SB epidemics were developed.

Evaluation of simulated maps for potential epidemics

A third phase of evaluation consisted in assessing the
simulated potential epidemic maps. A key reference for
this purpose is the Atlas of Cereal Diseases and Pests in
Europe (Zadoks and Rijsdijk 1984). It is important to
note that the Atlas (1) was often based on ‘soft’ rather
than on ‘hard’ evidence, (2) was developed using infor-
mation that pertains to the period 1965–70, and (3) did
not refer to epidemics, but rather to crop losses.
Comparison of simulated outputs with maps of the
Atlas should therefore be done carefully, considering
broad patterns rather than specific geographical details.

Results

Model evaluation - disease progress curves

Figure 2a indicates a good agreement of observed
(symbols) vs. brown rust (BR) simulated severities
(curve). EPIWHEAT tends to slightly overestimate se-
verities in the beginning of epidemic, but as the epidem-
ic amplifies, the adjustment of simulated and observed
severities seems good. A regression of simulated on
observed BR severities (R2=0.979; regression:
F=187.69, P<0.001) yielded a non-significant intercept
(b=0.067, SE=0.041, P=0.180) and a significant slope
(a=0.849, SE=0.062, P=0.0002). t-tests of the null
hypotheses that b equals 0 and a equals 1 yielded
P values of 0.18 and 0.07, respectively.

The simulated progress of Septoria tritici blotch (SB)
seems to produce a better fit than that of BR in the
beginning of the observed epidemic (Fig. 2b), but as
the epidemic intensifies, EPIWHEAT tends to progres-
sively overestimate severity. A regression of simulated
on observed SB severities (R2=0.991; regression:
F=289.85, P<0.001) yielded a non-significant intercept
(b=−0.021, SE=0.033, P=0.554) and a significant
slope (a=1.211, SE=0.071, P<0.001). t-tests of the null

hypotheses that a equals 1 and b equals 0 yielded
P values of 0.55 and 0.03, respectively.

Model evaluation - disease variation in French regions

Data retrieved from the Organisation Nationale de la
Protection des Végétaux (ONPV) indicated relatively
regular variation in SB over the six considered years
(2005–2010), but a sharp increase of BR in 2007. That
year actually corresponds to the emergence of new BR
pathotypes, associated with the widespread deployment
of resistance genes Lr10, Lr13, and Lr37 (Huerta-
Espino et al. 2011; Goyeau and Lannou 2011), as well
as Lr14a and Lr23 in durumwheat (Goyeau et al. 2012).
Important changes in the ranking of host plant resis-
tances to BR were therefore expected to be reflected in
the data after 2006, and therefore our analyses were
limited for this disease to the years 2005 and 2006.

Building a contingency table for observed and simu-
lated BR levels, there was one false negative (BRsim=0
whereas BRobs=1), 4 false positives (BRsim=1 where-
as BRobs=0), 12 true negatives (BRsim=BRobs=0),
and 24 true positives (BRsim=BRobs=1), totalling 41
cases (Table 3). This yielded a chi-square value of 22.7
allowing rejection (P<0.001) of the null hypothesis that
BRobs and BRsim are independently distributed.
Analysis of binarized information on SB yielded 0 false
positives and negatives, 71 true negatives, and 23 true
positives, and a chi-square value of 94.0, leading to
rejection (P<0.001) of independence of binarized dis-
tributions of SBsim and SBobs (Table 4).

A plot comparing the three classes of reported disease
levels (Bweak to absent^, Baverage^, and Bsevere^) with
the simulated areas under disease progress curves
(Fig. 3) indicates that EPIWHEATwas unable to distin-
guish Bsevere^ from Baverage^ BR levels, but was
however a reasonable predictor of Bweak to absent^
vs. other levels (Fig. 3a). EPIWHEAT performed better
for SB (Fig. 3b), with gradual distinction between the
three levels, despite some overlap.

Further analysis of observed (ONPV) and simulated
epidemics involved the binarized version of the ob-
served epidemics (i.e., ‘epidemic’ vs. ‘non-epidemic’)
and the numerical values of the areas under the simulat-
ed disease progress curves (AUBRPC and AUSBPC for
BR and SB, respectively).

Both logistic models were significant (P<0.01,
Table 5), with likelihood ratios of 21.2 and 10.6 for
BR and SB, respectively. Both models yielded
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significant (P<0.01, Table 5) and positive estimates of
slope parameters. These logistic models correspond to
areas under the receiver operating characteristic curves
(ROC) of 0.87 for BR and 0.72 for SB. ROC curve
displays the relationship between the sensitivity (pro-
portion of true positive; TPP) and 1 - specificity (pro-
portion of false positive; FPP) of the model. ROC curves
with shapes corresponding to TPP close to 1 and FPP
close to zero correspond to a model with good perfor-
mances, i.e., enabling a good discrimination of epi-
demics vs. non epidemics (Hughes et al. 1999).The
shapes of the ROC curves (Fig. 3) show the differences
in logistic predictions, largely binary (Bweak to absent^
vs. Baverage^ or Bsevere^) in the case of BR, and more
gradual for SB.

Sensitivity analyses

Sensitivity analysis of EPIWHEAT for BR indicates a
large effect of Rc (Fig. 4, A1), with epidemics achieving
faster saturation of the host population when Rc is high.
Comparing disease progression curves may sometimes

be misleading. The distribution of simulated areas under
progress curves (Fig. 4, A4) confirms the overall effect
of variations in Rc: each of the 3rd areas are larger than
the two preceding ones among the parameter combina-
tions tested. A similar conclusion is reached with the
day of epidemic initiation day (Fig. 4, A2); however, the
effect of earlier epidemic initiation seems much stronger
than that of a later one (Fig. 4, A4). Temperature T
(Fig. 4, A3) has also a very strong effect on epidemics,
the higher temperatures leading to stronger epidemics
(Fig. 4, A4).

SB epidemics, too, appear very sensitive to Rc
(Fig. 4, B1); as for BR epidemics, each of the 3rd areas
under progress curve is always higher than the preced-
ing two (Fig. 4, B5). The effect of day (Fig. 4, B2) seems
higher in this case, with regular decreases from early, to
medium, and to late onsets (Fig. 4, B5). One of the
strongest effects seems to be that of T (Fig. 4, B3), a
reduction in T leading to a strong reduction of epidemic.
By contrast, the effect of rain seems moderate, with
disease curves largely overlapping (Fig. 4, B4), and this
is confirmed by the comparisons of disease progress
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Fig. 2 Simulated and observed disease progress curves for brown rust (a) and Septoria tritici blotch (b). Symbols and lines represent
observations and simulations, respectively. See text for details

Table 3 Contingency table of observed vs. simulated epidemic
status for brown rust

Simulated Observed

Non epidemic Epidemic

Non epidemic 12 1

Epidemic 4 24

Chi-square value=22.7; P<0.001

Table 4 Contingency table of observed vs. simulated epidemic
status for septoria blotch

Simulated Observed

Non epidemic Epidemic

Non epidemic 71 0

Epidemic 0 23

Chi-square value=94.0; P<0.001
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curves (Fig. 4, B5). Simulations conducted with a num-
ber of rainy days reduced by 20 % as compared to the
default value yielded to simulated epidemics with
reduced speed, and to reduced AUDPC (results not
shown). The range of reduction (in epidemic speed
and AUDPC) was similar to the range of increase
obtained from sensitivity analyses with a number
of rainy days increased by 20 % (corresponding to
Fig. 4).

Potential wheat epidemics in Europe

The simulated potential epidemics generated by EPIW
HEAT, expressed as areas under disease progress curves
(AUDPCs), are mapped in Fig. 5.

Potential BR epidemics (mean AUBRPC, Fig. 5a)
are expected to be on average stronger in the north-
eastern parts of Europe, owing to abrupt springs and
relatively warm summers. They also are predicted to be
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Fig. 3 Comparisons between disease intensity reported in wheat
health annual reports (BRPVand SBPV, abscissa) and areas under
simulated disease progress curves (AUDPC, ordinates) in French
regions. a: leaf rust (2005 and 2006 only, see text); b: septoria
blotch (2005–2010). Abscissas: reported disease levels. Ordinates:
areas under simulated disease progress curves for brown rust (BR)
and septoria blotch (SB). Box plots indicate medians between first

and third quartiles (boxes) and further interquartile ranges (bars).
Insert in each box plots are the ROC curves corresponding to the
simulated area progress curves as predictors of binarized
(see text) reported disease intensities in logistic regressions. The
logistic models (Table 3) are of the shape: ln [Bin(xONPV)/
(1 - (Bin(xONPV))]=α+β * AUxPC. where Bin (xONPV) refers
to binarized (see text) reported disease (x) levels

Table 5 Logistic regressions of epidemic occurrence using areas under simulated diseases progress curves as predictors

Disease Parameters of logistic regressionsa Logistic regressions

Parameter Estimate SE P Odds Ratio Likelihood ratio df P(likelihood ratio)

Brown rustb Constant −74.0 24.7 0.0028 – 21.2 1 <0.0001

AUBRPCc 5.02 1.67 0.0026 151.6

Septoria blotchd Constant −5.14 1.25 <0.0001 – 10.6 1 0.0011

AUSBPCe 0.41 0.13 0.0020 1.51

a Logistic regressions consider non-epidemics (0) as controls vs. epidemics (1)
b Analysis for brown rust covered 2005 and 2006, involving 40 region-years (16 non-epidemics and 24 epidemics)
c Area under simulated brown rust progress curve
dAnalysis for septoria blotch covered 2005 to 2010, involving 126 region-years (103 non-epidemics and 23 epidemics)
e Area under simulated septoria blotch progress curve
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strong in the Southern part of the Nordic countries, as a
result of cool springs and relatively warm summers as
well. They are predicted to be strong in the southern part
of the Iberian Peninsula too (as well as in Sicily), which
reflects a rapid crop growth and development in the
spring, and warm, but not hot, periods when the crops
approach maturity. Western Europe, with mild weather
in the spring (allowing rapid crop development, but not
necessarily favouring BR multiplication) and cool sum-
mer (that are sub-optimal for rust) are not mapped as
conducive to strong epidemics. Central Eastern Europe
is predicted unfavourable too, reflecting surging temper-
atures when the crop approaches maturity. The map for
standard deviations in mean values of areas under prog-
ress curves of potential BR (Fig. 5b) indicates a strong
West–east gradient, variability increasing when moving
East, where temperature variability in the end of the
cropping season increases.

The mean values of potential SB (Fig. 5c) epidemics
indicate by contrast a clear West–east decreasing gradi-
ent of intensity. This spatial pattern may be attributed to
the combined effects of temperature and rainfall pat-
terns. The more humid, cooler parts of Europe (includ-
ing parts of the Alps where wheat cultivation below
1000 m of elevation is considered in these simulations)
are predicted to bemore strongly affected by the disease.
The distribution of standard deviation of AUSBPC
(Fig. 5d) appears in agreement with this pattern, as the
strongest variances are found in the western part (where
summers may vary in wetness and temperatures) and the
eastern part (where summers may bemore rainy in some
years) of Europe.

Discussion

Modelling objectives

The objective of this work was to develop and test the
generic value of a modelling structure that can mobilize
existing quantitative information on some key wheat
diseases, and generate robust estimates of patterns of
potential epidemics at spatial scales higher than the
individual field. This structure was designed to be as
simple, involving as few parameters, as possible, in
order to be easily tested, improved, shared, and used.
In the present work, the modelling structure has been
populated with processes and parameters pertaining to
two important wheat diseases, but it is flexible enough

to be modified so as to address other wheat diseases.
The geographical domain addressed here is Europe
and France, but the model structure should enable
applications in any environment where wheat is grown
in the world.

Specifically, we made use of (1) a well-established
modelling framework that has been applied in a number
of pathosystems, temperate or not, on cereals or on other
crops, and (2) a set of published studies directly provid-
ing, or enabling easy calculation of, the required param-
eters. The modelling structure is based on the design of
Zadoks (1971) as a numerical integration of the integro-
differential equation 8.3 of Van Der Plank (1963), which
Madden et al. (2007, Chap. 5) discuss in detail. A
number of epidemiological simulation models using this
design have been developed successfully, for cereal
diseases (e.g., Teng et al. 1980; Djurle and Yuen 1991;
Rossi et al. 1997) or dicotyledonous crops (e.g., Savary
et al. 1990; Berger et al. 1995). The epidemiological
characteristics of the two wheat diseases considered
here, on the other hand, are quite well documented, so
that parameterization of EPIWHEAT using reliable data
was made possible (Table 2).

Key hypotheses

The specifications of EPIWHEAT listed in the
Introduction are driven by the overall objective of
modelling patterns of potential epidemics, that is, of
epidemics that only depend on physical environmental
conditions, and therefore that are not constrained by any
disease management actions, whether direct or indirect
(i.e., host plant resistance, chemicals, crop management,
landscape and timing of crop establishment).

The structure of EPIWHEAT is congruent with
our modelling objectives and with the specifications
listed in its blueprint. These specifications have gener-
ated a series of key modelling hypotheses, which we can
list as follow:

a. Specification 1 (a simple model structure) implies
that the spatial properties and attributes of epidemics
are not addressed in EPIWHEAT, except for the
inclusion of an aggregation coefficient (specifica-
tion 6). The model therefore implicitly assumes
random distribution of diseased sites and uniform
vulnerability (equation 1) of healthy sites. This hy-
pothesis corresponds to the implicit assumption that
any healthy site may become infected, and derives
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Fig. 4 Sensitivity analyses of EPIWHEAT. a. Brown rust simula-
tions. 1, 2, 3, disease progress curves at varying values ofRc, day, and
T, respectively. 4, corresponding areas under disease progress curves
represented as bars. The reference forRc, day, and T is shown in dark.

b. Septoria tritici blotch simulations. 1, 2, 3, 4, disease progress curves
at varying values of Rc, day, T, and rain, respectively. 5, correspond-
ing areas under disease progress curves represented as bars. The
reference for Rc, day, T, and rain is shown in dark. See text for details
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from the integro-differential model of Van der Plank
(1963). Such a simplifying hypothesis is shared by a
number of epidemiological models, which neverthe-
less have proven to be acceptable research tools
(Zadoks and Schein 1979). This simplifying hy-
pothesis does not appear to hamper strongly EPIW
HEAT as a model for potential epidemics; this is
further addressed below.

b. Specifications 1, 2 (as few processes and parameters
as possible) and 3 (few environmental factors

considered) lead to the use of modifiers that reflect
daily changes in temperature and (for SB) in wet-
ness. This modelling hypothesis leads to processing
environmental information in a most simplified
manner, which may entail risks. The use of mean
daily temperature, for instance, leads to erasing
daily temperature variation that may have important
consequences on epidemiological processes (e.g.,
Scherm and Van Bruggen 1994). Similarly, the rep-
resentation of canopy moisture is very crude. While

A B

C D

Fig. 5 EPIWHEAT simulated distribution of potential brown rust
(a and b) and Septoria tritici blotch (c and d) in Europe using daily
meteorological data from 1993 to 2012 (20 years) on a 50×50 km

grid across Europe. Maps indicate quintiles of the distributions of
means (a and c) and of standard deviations (b and d) of the areas
under simulated disease progress curve over 120 days
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improvements of these aspects should be sought, it
seems that the resulting outputs can provide a rea-
sonably good working basis.

c. Specifications 1 and 4 (inclusion of crop growth and
plant senescence) lead to using a simple logistic
function to account for crop growth, and to make
the rate of senescence an additive function of
(exponential) senescence and of (disease-
induced) removal (Fig. 1, Table 1). The model-
ling of crop dynamics provides much more
realism to the simulations. Incorporation of
crop growth in an epidemiological simulation
model does represent a considerable improvement
of its own (Campbell and Madden 1990; Savary
et al. 2012).

d. Specification 5 (effect of crop development on host
susceptibility) corresponds to a very simple function
(RcA, Table 2) representing physiological age; this
constitutes the only element to characterize the qual-
ity of healthy sites in the model. Under this hypoth-
esis, a simple, tabular representation (RcA, Table 2)
of change in site susceptibility is supposed ade-
quate. Our simulation outputs suggest that this
seems to be the case.

e. Specification 6 (accounting for aggregation) pro-
vides some flexibility in the capacity of EPIW
HEAT to reflect some spatial structure, although in
a very simple manner (which was not actually put
into use in the two pathosystems considered here).
Further, the combination of site age (RcA, above),
aggregation (current hypothesis), and crop growth
(modelling hypothesis c) can produce an implicit
representation of disease in time and space.

f. Specifications 7 (system’s dimension of 1 m2) and 8
(1-day time-step, Euler integration method) further
emphasize the design of a very simple model struc-
ture, which assumes a system in a steady state of
propagule inflow and outflow (specification 6), and
implies that the model must involve processes with
time characteristics matching this time-step. This
modelling hypothesis implies that processes un-
derpinning epidemics may be accounted for in
such a small system size, and with a 1 day
time step. This hypothesis is commonly used in
epidemiological systems (e.g., Teng 1985;
Rossi et al. 1997; Savary et al. 2006). It entails
explicit and implicit assumptions which deserve
further discussion, even for a generic model of
potential epidemics.

Evaluation of hypotheses

EPIWHEAT entails a number of simplifying hypothe-
ses, some of which are inherent to the class of epidemi-
ological models it belongs to, and others that result from
its particular features. We shall not dwell on the former,
which have been discussed in detail (Zadoks 1971; Teng
et al. 1980; Teng 1985; Madden et al. 2007; Segarra
et al. 2001; Savary and Willocquet 2014), and rather
emphasize the latter.

An important hypothesis is related to the use of an
integration time step of 1 day. This choice amounts to
consider that all the processes considered in the system
have time characteristics such that their variation can
accurately be modelled within a 1 day time-step. The
hypothesis can be summarized in saying that variation
of each of the six processes (i.e., their six rates) shown in
Fig. 1 – for example the rate of infection (RI) – can be
reliably modelled using a 1-day interval. This has im-
plications in terms of reaction time of the system
modelled (Leffelaar 1993). Many epidemiological
mechanisms involved in the infection process actually
have time constants that are quite smaller than 1 day: for
instance, spores may be liberated within seconds
through, for example, the ‘tap and puff’ phenomenon
(Hirst and Stedman 1963); spore deposition may be
slow, or quite fast, for instance in the case of
dry spore deposition on wet canopies (Chamberlain
1967; Savary et al. 1990); and the sequence from prop-
agule germination to infection initiation may take place
at different periods of the climatic day, sometimes
favourable and consecutive (and thus, within a few
hours), or sometimes unfavourable, causing delays
of several days (Zadoks and Schein 1979). These
infection sub-processes, and many others, each
may take place in less than 1 day, leading to the
biological possibility of infection itself taking less
than a day.

Rapilly (1983) referred to the concatenation of sub-
processes as ‘epidemiological sequences’, which consti-
tute the biological heart of an epidemic. In detailed
simulation models, one approach is to consider daily
weather patterns where the relative rate of each sub-
process is assigned a value, given the current state of a
range of environmental variables represented by driving
functions (e.g., Savary et al. 1990). Despite their impor-
tance, sub-processes cannot be explicitly incorporated in
simple modelling structures: they must be summarized.
In a very simple manner, EPIWHEAT uses daily
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weather patterns which translate into changing values of
modifiers (RcT and RcW, Table 1).

EPIWHEAT involves only two climate driving func-
tions, daily rainfall and temperature ― far fewer than
most mechanistic epidemiological simulation models
(e.g., Rossi et al. 1997). This is a considerable advantage
in terms of portability of the structure: most global
climate data provide this basic climate information.
However, this ignores the considerable knowledge ac-
cumulated on the strong effects of moisture on Septoria
blotches (e.g., Hess and Shaner 1987b; Magboul et al.
1992). Djurle and Yuen (1991) for instance compute leaf
moisture on 10 canopy layers in their detailed model for
Septoria nodorum blotch. Another example is the effect
of leaf moisture on the infection efficiency of P. triticina
(Rossi et al. 1997), which was not incorporated here.
Further evaluation of EPIWHEAT, especially when ad-
ditional diseases are considered, should further assess
the need of incorporating additional driving climate
functions.

A common limitation of simple epidemiological
models such as EPIWHEAT is the lack of account for
the spatial disease aggregation, which can have impor-
tant consequences on the speed of epidemics (Madden
and Hugues 1995). The aggregation coefficient intro-
duced in the model may help overcoming this limitation.
Campbell and Madden (1990) however pointed to is-
sues with the approach of Waggoner and Rich (1981),
which we used: disease aggregation is dynamic,
too, and cannot be constant throughout an epidemic.
Additional work is necessary on this aspect in two
directions, first a further evaluation of the use of an
aggregation coefficient, and second, the implementation
of a dynamic aggregation.

In EPIWHEAT, disease-induced senescence is made
equal to the rate of site removal. The underlying as-
sumption is that the number of sites senescing from
disease corresponds to the number of sites becoming
removed from the epidemiological process. While this
may be an acceptable simplification in the case of
necrotrophic pathogens, it may be questioned for
biotrophic pathogens. This is however rendered suitable
by the very long infectious period of BR (31 days,
Table 2).

The simulations with EPIWHEAT used fixed values
of p and i for the two diseases. Both parameters are well
known to vary, especially with temperature, in the
course of an epidemic. Further, variation of p and i do
affect very strongly the speed of epidemics (Zadoks and

Schein 1979; Savary and Willocquet 2014). Further
improvements of EPIWHEAT will have to incorporate
variable latency and infectious periods, which are well
documented in the literature.

The modelled pattern of epidemic initiation is anoth-
er element which entails hypotheses. Epidemics have
been initiated as single impulses of inoculum (INOCP)
injected in the system at a given date (START, Fig. 1,
Table 2). The analysis of epidemiological importance of
the primary inoculum made by Bergamin Filho and
Amorim (1996) underlines the very large differences
in epidemics resulting from the temporal shape of pri-
mary inoculum inflow. This concurs with simulation
results obtained by Savary et al. (1990). Further, there
is accumulated knowledge on wheat diseases (e.g., SB;
Suffert et al. 2011) to indicate that complex patterns of
inflows of primary inoculum may occur. New research
(Duvivier et al. 2013) suggests that disease spread in
septoria tritici blotch may owe much to dispersal of
ascospores, rather than pycnidiospores. This has poten-
tially strong implications on (1) the amount of primary
inoculum that initiates epidemics, (2) the pattern of
initial inoculum inflow, and (3) secondary infections
throughout entire SB epidemics. Better representation
of epidemic onset, through (1) the initial influx of infec-
tions (INOCP), and (2) its pattern of distribution over
time (START), possibly represents the single most im-
portant change to incorporate in the modelling structure,
and warrants the need for further improvements.

Model evaluations

The evaluation of EPIWHEAT was conducted in suc-
cessive phases. The first phase entails the conventional
comparison of simulated vs. actually observed disease
progress curves. The overall shapes of disease progress
curves (Penning de Vries et al. 1989) for both BR and
SB correspond well to the observed patterns for the two
diseases. Visual examination of simulations vs. ob-
served data suggest that EPIWHEAT provides a good
account of the early progress of SB epidemics, which
frequently show a lag phase in its early increase (e.g.,
Thomas et al. 1989), compared to that of typical rusts
such as P. triticina. From a formal statistical standpoint,
the comparison between observed and simulated sever-
ities suggests that EPIWHEAT is correctly simulating
BR epidemics, whereas SB epidemics are over-
estimated by the model at the end of epidemics
(Fig. 2b). Overall, the performances of EPIWHEAT
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nevertheless appear to be acceptable with respect to this
first evaluation phase.

Comparison of EPIWHEAT outputs with qualitative
data retrieved from reports of the Organisation
Nationale de la Protection des Végétaux (ONPV)
allowed assessing the model in a range of French re-
gions over two (2005–2006) or six (2005–2010) years
for BR and SB, respectively, i.e., at a spatial scale
beyond the individual field. In a first stage, chi-square
tests allowed to reject (P<0.001) the null hypothesis that
the distribution of binarized simulation outputs (‘epi-
demic’ vs. ‘non-epidemic’) and the binarized reported
(ONPV) levels of disease were independently distribut-
ed for both diseases. In a second stage, logistic regres-
sions of the likelihood of strong epidemics (Baverage^
or Bsevere^, and Bsevere^, for BR and SB, respectively)
being observed were tested, using the simulated areas
under (120-day) disease progress curves as predictors.
Both logistic models were significant, with positive,
significant coefficients. This second phase of evaluation
suggests that EPIWHEAT is sufficiently robust to ac-
count for epidemics occurring in different locations and
climatic conditions.

A third phase of evaluation consists in comparing the
simulated potential epidemic maps with maps of the
Atlas of Cereal Diseases and Pests in Europe (Zadoks
and Rijsdijk 1984), bearing in mind the differences and
reservations indicated earlier in Materials and Methods.
As the Atlas does, the EPIWHEAT-generated map for
BR shows an increasing disease gradient from West to
East, with a maximum level in Central Europe (Fig. 5a).
But unlike the Atlas, the simulated map shows a decline
east of the Carpathian mountains; and unlike the Atlas,
the simulated map shows no BR decline in Northern
Germany, Poland, and the Nordic countries. The simu-
lated variance however increases in Northern Europe,
and even more so, in Eastern Europe, while the Atlas
(by construction) provides no indication of variability.
The simulated outputs therefore do indicate that strong
epidemics can occur in Eastern Europe, and are weaker
in Northern Europe, as the Atlas indicates. Simulated
maps for SB (Fig. 5c and d) concur with the Atlas, with
strong epidemics occurring in the British Isles and
Northern France, and a steady decline towards the
south-east of Europe. Overall, the mapped outputs from
EPIWHEAT can therefore be considered satisfactory.

In spite of several shortcomings that are mostly
reflecting its simplicity, and which can in many cases
be addressed, EPIWHEAT therefore appears to

represent a sound basis for predicting potential epi-
demics of wheat foliar diseases. Further efforts will
focus on the improvement of the predicting ability of
the model from the careful addition of biological
characteristics of brown rust and Septoria tritici
blotch, and on the expansion of EPIWHEAT to a range
of wheat diseases.
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