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Abstract
Mendelian randomization may give biased causal estimates if the instrument affects the outcome not solely via the exposure 
of interest (violating the exclusion restriction assumption). We demonstrate use of a global randomization test as a falsification 
test for the exclusion restriction assumption. Using simulations, we explored the statistical power of the randomization test to 
detect an association between a genetic instrument and a covariate set due to (a) selection bias or (b) horizontal pleiotropy, 
compared to three approaches examining associations with individual covariates: (i) Bonferroni correction for the number 
of covariates, (ii) correction for the effective number of independent covariates, and (iii) an  r2 permutation-based approach. 
We conducted proof-of-principle analyses in UK Biobank, using CRP as the exposure and coronary heart disease (CHD) as 
the outcome. In simulations, power of the randomization test was higher than the other approaches for detecting selection 
bias when the correlation between the covariates was low  (r2 < 0.1), and at least as powerful as the other approaches across 
all simulated horizontal pleiotropy scenarios. In our applied example, we found strong evidence of selection bias using 
all approaches (e.g., global randomization test p < 0.002). We identified 51 of the 58 CRP genetic variants as horizontally 
pleiotropic, and estimated effects of CRP on CHD attenuated somewhat to the null when excluding these from the genetic 
risk score (OR = 0.96 [95% CI: 0.92, 1.00] versus 0.97 [95% CI: 0.90, 1.05] per 1-unit higher log CRP levels). The global 
randomization test can be a useful addition to the MR researcher’s toolkit.

Keywords Mendelian randomization · Exclusion restriction assumption · Falsification test · Selection bias · Horizontal 
pleiotropy

Introduction

Mendelian randomization (MR) is a valuable approach to 
test for causal effects using observational data, generally 
using a genetic instrumental variable (IV) to proxy for the 
exposure of interest [1–4]. However, three core assumptions 
need to be made, to be able to test for a causal effect using 
MR, and violations of these assumptions may bias results 
[5]. These three assumptions are: (1) the IV is associated 

with the exposure (relevance assumption), (2) there is no 
unmeasured (i.e., unaccounted for) confounding between 
the IV and the outcome (independence assumption) and (3) 
the association of the IV and the outcome is entirely via the 
exposure (exclusion restriction assumption). To estimate the 
magnitude of (not just test for) an effect a further assumption 
of monotonicity or homogeneity is required [4, 6]. The inde-
pendence assumption may be violated by confounding due 
to population stratification, by dynastic effects and assorta-
tive mating [7]. The exclusion restriction assumption may 
be violated due to horizontal pleiotropy, where the genetic 
variant affects the outcome along pathways that are not via 
the exposure, or linkage disequilibrium. Selection bias can 
also violate the exclusion restriction assumption by inducing 
a pathway between the IV and confounders through condi-
tioning on a collider [8].

While only the relevance assumption can be directly 
tested (by testing the strength of the association of the expo-
sure with the IV), the independence and exclusion restriction 
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assumptions can be investigated with sensitivity analy-
ses and falsification tests that test for evidence that these 
assumptions do not hold. A common falsification test for the 
independence assumption is to test for covariate prevalence 
difference (also known as covariate balance), by testing the 
association of the IV with a set of potential confounders. 
Provided these factors are not on the causal path between 
the IV and exposure, or the exposure and outcome, the IV 
should not be associated with these factors if the independ-
ence assumption holds [9]. For example, cis CRP genetic 
variants were not found to be related to risk factors for car-
diovascular disease [10, 11]. Bias can also be estimated, as 
the covariate prevalence difference divided by the exposure 
prevalence difference, and displayed in confounding bias 
plots [9, 12]. This is useful when a researcher wants to com-
pare the potential bias due to confounding in an IV analysis 
with that of a conventional multivariable regression, as the 
bias in the causal MR estimate depends also on the strength 
of the effect of the IV on the exposure [9]. For example, 
confounding bias plots have been used to assess the potential 
bias in IV studies of myopia [13] and education [13, 14].

A recent study proposed an approach to compare balance 
or bias of an IV analysis with what would be expected from 
a randomized experiment [15]. Given a set of covariates, 
C, their approach—which we refer to as the global rand-
omization test—uses permutation testing to test whether a 
binary instrument Z is as-if randomized according to p(Z|C), 
by comparing the observed test statistic (e.g., covariate 
bias or balance) with that which we would expect if this 
were true (i.e. no difference in C across values of Z). They 
suggest using the Mahalanobis distance as a global meas-
ure of balance and bias across the set of covariates tested 
(shown to correlated well with bias for a binary outcome 
[16]). Unlike previous IV studies that either reported the 
Mahalanobis distance directly or the summary percentage 
change of imbalance for the IV compared with the exposure 
[17–22], the Branson approach [15] uses permutation testing 
to estimate a P value reflecting the likelihood the observed 
level of balance would be observed by chance alone. In their 
study [15] they assume that C are measured before Z and X 
are assigned, hence assume that there is no alternate path 
between the IV and outcome via C rather than X (i.e. the 
exclusion restriction assumption holds). However, in an MR 
setting with a genetic IV, an association between Z and a 
covariate C may be because of violations of either the inde-
pendence or the exclusion restriction assumptions (or both) 
(see Fig. 1). Thus, in MR studies the randomization test 
has potential to be used as a falsification test for both these 
assumptions, depending on the MR analysis in question.

In this paper we show how the global randomization 
test can be useful in MR studies, to identify potential bias 
due to horizontal pleiotropy or non-random selection. We 
demonstrate the statistical power in these scenarios using 

simulations and demonstrate how this approach can be used 
in practice using proof of principle applications.

Methods

Overview of the randomization test procedure

The global randomization test approach as presented in [15] 
has the following steps:

1. Define set of covariates to test—this depends on the spe-
cific scenario (see applied examples).

2. Calculate the test statistic T, the Mahalanobis distance 
(with values [0,∞)) , which is a global measure of bal-
ance and bias across all covariates tested.

3. Permute the genetic IV  Np times and for each calcu-
late the test statistic t, where  Np is specified by the 
researcher. We use  Np = 5000 in our simulations and 
applied examples below.

4. Calculate the P value as the proportion of permutations with 
a test statistic t at least as strong as T, i.e. |t ≥ T|∕Np.

We generalize the approach in [15] (that focused on 
binary IVs) to continuous, ordinal and binary IVs, as 
described in the following section.

Generalising the Mahalanobis distance to allow continuous, 
ordered categorical and binary variables

We use the Mahalanobis distance as a global measure of 
balance defined for an IV with two categories as:

where C is a m × n matrix of m participants and n covariates, 
and C̄z=a is a vector containing the mean of the covariates for 
the subset of participants where z = a.

Since MD is affinely invariant, this is also a global meas-
ure of bias (i.e. changing prevalence difference C̄z=1 − C̄z=0 
to bias measure C̄z=1−C̄z=0

X̄z=1−X̄z=0

 in the above equation, where X is 
the exposure, would result in the same MD value).

To generalize to IVs with three categories (i.e., SNP dos-
ages) and continuous IVs (i.e., genetic risk scores), we gen-
eralize this equation to:

where meandiff(C) is a vector of length n, of the mean dif-
ference of each covariate per 1 unit higher IV. This assumes 
a linear relationship between the IV and covariates.

MD =

√(
C̄z=1 − C̄z=0

)T
[cov(C)]−1

(
C̄z=1 − C̄z=0

)

MD =

√
meandiff (C)T [cov(C)]−1meandiff (C)
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We estimate the mean difference using the correlation 
between z and each covariate Ci:

where cor(A, B) is the Pearson’s  r2 between A and B, 
and SD(X) is the standard deviation of X. This approach also 
assumes a linear relationship between the IV and covariates 
but is ~12 times faster than estimating the mean difference 
using linear regression (see Supplementary section S1 for 
further details). This is particularly helpful for this work 
as the randomization test uses permutation testing and we 
conduct extensive simulations. Note that the MD is invariant 
to the scale of covariates in C, but not invariant to the scale 
of Z, and the resultant global randomization test P value is 
independent of both.

meandiff
(
Ci

)
= cor

(
z, Ci

)
×
SD

(
Ci

)

SD(z)

Simulations

We conduct simulations to explore scenarios where the 
global randomization test may be useful when testing for 
horizontal pleiotropy and selection bias. We conduct sepa-
rate simulations to test for selection bias and horizontal plei-
otropy, illustrating how the covariates can be chosen to test 
each scenario. We report the aims, data‐generating mecha-
nisms, estimands, methods, and performance measures of 
our simulations (the ADEMP approach) [23].

Simulation A: Assessing statistical power to detect 
potential selection bias

This simulation is based on the situation where a 
researcher wants to determine whether the GRS relates 
to covariates that are unlikely to be downstream effects of 

Fig. 1  Example scenarios where 
covariate imbalance may be 
seen. Z: instrumental vari-
able; X: exposure; Y: outcome; 
C: covariates; S: selection. 
Branson scenario (a) assumes 
covariates C are measured prior 
to Z and X and may affect both 
X and Y (dashed arrow indi-
cates association tested using 
the randomization test). (b–g) 
Example MR scenarios through 
which covariate imbalance can 
occur. In figure (c) dashed line 
indicates linkage disequilibrium 
(LD) between genetic vari-
ants). Figures (f) and (g) show 
two example scenarios through 
which covariates C become cor-
related with instrument Z due to 
selection bias [40]. Note that in 
the case of (g), where selec-
tion is determined solely by the 
outcome, selection bias may be 
induced when X affects Y; when 
X does not affect Y selection 
bias will not be induced [41]

C

YZ X

b) Horizontal pleiotropy c) Horizontal pleiotropy via LD

C

YZ X

Z2

C

YZ X

e) Vertical pleiotropy - C on causal path
between X and Y

C

YZ X

a) Branson scenario

C

YZ X

d) Vertical pleiotropy - C on causal path
between Z and X

C

YZ X

f) Selection bias - exposure affects
selection

S

C

YZ X

g) Selection bias - outcome affects
selection

S
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the GRS, such that an association would indicate possible 
selection bias. Traits that are downstream effects of a GRS 
and affect selection cannot be assessed here due to their 
association with the GRS irrespective of selection bias. 
Furthermore, it is necessary to assume that the genetic 
determinants of the covariates causing selection are dif-
ferent to, and uncorrelated with, those of the exposure.

Aim: To compare statistical power of the global rand-
omization test compared to alternative tests that test each 
covariate individually, across different (1) number of covari-
ates that affect selection, (2) number of covariates than do 
not affect selection, and (3) correlations between covariates.

Data generating mechanism: The directed acyclic graph 
(DAG) on which our data generating mechanism is based 
is shown in Fig. 2a. We set the proportion selected to 5.5%, 
based on the UK Biobank recruitment rate where 9.2 mil-
lion invited and 5.5% of those joined the study. We use a 
sample size of 920,000, 10% of the number invited in UK 
Biobank to keep the simulation manageable [24]. A set 
of covariates C including those affecting selection Cs and 
those not affecting selection Cs̄ are included. We vary the 
number of covariates affecting selection Ncs , the number 
of covariates not affecting selection Ncs̄ , the correlation 
between all variables in C, r2

c
 , the variance of X explained 

by Z, r2
zx

 , and the pseudo variance of S explained by  Cs 
and X, r2

cxs
 . We use a fully factorial design, running our 

simulation with all combinations of the following values: 
Ncs ∈ {2, 10, 50}, Ncs̄ ∈ {2, 10, 50}, r2

c
 ∈ {0, 0.2, 0.4, 

0.8, N(0, 0.1) }, r2
zx
∈ {0.05, 0.1} , and r2

cxs
∈ {0.05, 0.1, 0.2 }. 

For the r2
c
= N(0, 0.1) setting the covariate correlations 

are generated from a normal distribution with mean = 0 
and standard deviation (SD) = 0.1, to reflect correlations 
reported previously [25]. All covariates in C, and exposure 
X are continuous with mean = 0 and SD = 1. Instrument Z 
is assumed to be a normally distributed genetic risk score 
with mean = 0 and SD = 1.

A DAG with simulation parameters is shown in Sup-
plementary Figure 1a. The outcome Y is not modelled as, 
according to our DAG in Fig. 2a, the association between the 
SNPs and covariates induced by conditioning on selection 
does not depend on our definition of Y.

Estimand or other target: Our target is the test of the null 
hypothesis of no association between the GRS and covari-
ate set. Note that in this scenario (in contrast to simulation 
B, see below) we use the randomization test with the GRS 
as we assume (see DAG in Fig. 1a) the exposure of inter-
est affects selection, hence selection bias would impact all 
instruments jointly (and testing using the GRS rather than 
SNPs individually maximizes statistical power).

Methods: We compare the global randomization test with 
3 alternative approaches to test the association of the IV 
with C:

a. individual tests of each covariate with Bonferroni cor-
rection, referred to as test-Bonf.

b. individual tests of each covariate with correction for the 
effective number of tests performed, referred to as test-
indep.

c. permutation testing where the test statistic is the maxi-
mum  r2 of each of the covariates with the IV, referred to 
as test-r2perm.

To calculate (a) and (b) we first regress the IV on each 
of the covariates using univariable regression, and find the 
lowest P value of these results, pvaluemin. The test-Bonf P 
value is then calculated as min

(
1, pvaluemin × Nc

)
 . The P 

value for test-indep in calculated as min
(
1, pvaluemin × NI

)
 , 

where NI is the estimated effective number of independ-
ent tests calculated using spectral decomposition [26, 27]. 
Spectral decomposition estimates the effective number of 

a) Selec on bias

b) Horizontal pleiotropy

YZ X

SCsCs

YX

Chp Chp

Zhp

Zhp

Fig. 2  DAGs for simulation data generating mechanisms. a Selection 
bias, b Horizontal pleiotropy. DAG (a): Covariates Cs and Cs̄ are con-
founders of X and Y. Covariates Cs and exposure X affect selection 
(S) inducing an association between instrument Z and Cs. X, Cs and 
Cs̄ may affect Y but effects on Y do not impact associations between 
Z and Cs tested by global randomization test. The total effect of the 
following paths on the DAG is kept constant irrespective of the num-
ber of covariates in Cs and Cs̄ : Cs → X ; Cs → Y  ; Cs → S ; Cs̄ → X ; 
Cs̄ → Y . Dashed line indicates a statistical association induced 
through conditioning on S. DAG (b): Covariates Chp and Ch̄p are con-
founders of X and Y. In this DAG we depict a horizontally pleiotropic 
instrument that affects Y both via and not via X. While this isn’t nec-
essarily the case (i.e.  Zhp might affect Y via X only, or directly (i.e. 
not via X)) here we are showing an example—the exact relationship 
between the instruments and X and Y does not impact the randomi-
zation test because the randomization test only tests the association 
between each instrument and the covariate set, and the relationships 
with X and Y do not impact the strength of these associations (unlike 
in the selection bias example where e.g. the effect of Z on X impacts 
the magnitude of the selection induced association between Z and the 
covariate set).
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independent tests from the phenotype correlation matrix, and 
has been shown to be accurate (compared to the more com-
putationally intensive permutation testing approach) [28].

Performance measures: We evaluate statistical power 
using rejection percentage [23], which is the proportion of 
simulation repetitions, nsim , where the null hypothesis is 
rejected (see further details in Supplementary section S3). 
We set nsim = 500 in all our simulations. The four tests 
(global randomization test, test-Bonf, test-indep and test-
r2perm) are applied to the same simulated dataset in each 
simulation repetition.

We repeated these simulations, including only half the covari-
ates in Cs and Cs̄ to represent the scenario where only a subset 
of these covariates is either available or hypothesized to affect 
selection. We also repeated these simulations in the whole sam-
ple (i.e., with no selection) to check that we observe ~5% type-1 
error, i.e., around 5% of the permutations incorrectly identify an 
association between the IV and covariate set.

Simulation B: Assessing statistical power to detect 
potential horizontal pleiotropy

This simulation is based on the situation where a researcher 
has a GRS but wants to determine whether any of the SNPs 
included may affect the outcome via horizontally pleiotropic 
pathways rather than (solely) via the exposure of interest.

Aim: To compare statistical power of the global randomi-
zation test with alternatives that test the association of a SNP 
with each covariate individually, to identify whether the SNP 
acts via a horizontally pleiotropic pathway. We evaluate this 
across different: (1) numbers of covariates affected and not 
affected by a horizontally pleiotropic SNP, and (2) magni-
tude of effect of a horizontally pleiotropic SNP on covariates 
on the horizontal pleiotropy pathway.

Data generating mechanisms: The DAG on which our 
DGM is based is shown in Fig. 2b. We use a sample size of 
500,000 reflecting the size of UK Biobank. We include one 
horizontally pleiotropic SNP, Zhp, and one non-horizontally 
pleiotropic Zh̄p . We generate a set of covariates C including 
those affected by Zhp , and not affected by Zhp , denoted Chp 
and Ch̄p , respectively. We vary the number of covariates in 
Chp and Ch̄p , denoted Nchp and Nch̄p , the variance of each 
covariate in Chp explained by Zhp , r2zchp , and the correlation 
between all variables in C, r2

c
 . We use a fully factorial design 

where Nchp ∈ {1, 5}, Nch̄p ∈ {1, 5}, r2
zchp

∈ {0.001, 0.005, 
0.01}, and r2

c
 ∈ {0, 0.2, 0.4, 0.8, N(0, 0.1) }. The exposure X 

and outcome Y are not modelled as, according to our DAG 
in Fig. 2b, the association between the SNPs and covariates 
are not dependent on X or Y.

All covariates in C are continuous with mean = 0 
and SD = 1. Each SNP is a 3-category ordinal variable 

(representing SNP dosages) assuming allele frequencies 
of 0.8 and 0.2 and assuming Hardy Weinberg Equilibrium 
(such that  Pdosage0 = 0.64,  Pdosage1 = 0.32, and  Pdosage2 = 0.04). 
A DAG with simulation parameters is shown in Supplemen-
tary Figure 1b.

Estimand or other target: Our target is the test of the 
null hypothesis of no association between each SNP in Zhp 
and the covariates. Note that in this scenario (in contrast to 
simulation A, see above) we use the randomization test with 
the SNPs individually, as we are seeking to identify which 
SNPs may affect the outcome via horizontally pleiotropic 
pathways.

Methods: As in simulation A, we compare 4 approaches 
to test the association of the IV with C: the global randomi-
zation test, test-Bonf, and test-indep and test-r2perm.

Performance measures: We evaluate statistical power 
using rejection percentage [23].

We also estimated these performance measures using Zh̄p 
to check that we observe ~5% type-1 error, i.e., around 5% of 
the permutations incorrectly identify an association between 
Zh̄p and C.

Applied examples

Study population

UK Biobank is a prospective cohort of 503 325 men and 
women in the UK aged between 37 and 73 years (99.5% 
were between 40 and 69 years). This cohort includes a large 
and diverse range of data from blood, urine and saliva sam-
ples and health and lifestyle questionnaires. UK Biobank 
received ethical approval from the UK National Health Ser-
vice’s National Research Ethics Service (ref 11/NW/0382). 
This research was conducted under UK Biobank application 
number 16729, using phenotypic dataset ID 48196.

Of the 463,005 UK Biobank participants with genetic 
data passing quality control [29], we removed 77,758 mini-
mally related participants, 48,233 non-white British partici-
pants, and 39 participants who had since withdrawn from the 
study. Our sample therefore included 336,975 participants. 
A data flow diagram is provided in Supplementary Figure 2.

Example 1: Testing for evidence of selection bias

We assess the potential for selection bias in Mendelian ran-
domization studies in UK Biobank that use C-reactive pro-
tein (CRP) as the exposure of interest. A previous GWAS 
meta-analysis (that did not include UK Biobank) identified 
58 SNPs robustly associated with CRP [30]. We generate 
the CRP GRS as a weighted sum of the 58 SNPs, weighted 
by the effect size of the CRP-increasing allele of each SNP 
on CRP.
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We use two sets of covariates, a restricted set and a more 
liberal set. The restricted set comprises just age and sex—
two factors that cannot be on the causal path between the 
(constituent SNPs of the) CRP GRS and outcome. The lib-
eral set were chosen as phenotypes that, given our expo-
sure of interest (CRP) we believe are not likely to either 
be on the causal pathway between the CRP GRS and CRP, 
determinants of SNPs in CRP GRS, or downstream effects 
of CRP (or CRP GRS), such that if an association exists 
between this set and the CRP GRS we would think it is 
more likely that this is due to selection bias rather than a 
causal effect of one or more of the CRP SNPs on (one or 
more of) these traits. This second set additionally includes 
socio-economic factors (Townsend deprivation index, age 
completed full time education), north and east coordinates of 
home location, and height [31]. Age, sex, home location and 
education were self-reported at baseline. Sex was validated 
against genetic sex. Height was measured at baseline, to the 
nearest cm using a Seca 202 device. The participant’s age 
when completing full time education was used as a measure 
of education level. Townsend deprivation index (a score rep-
resenting the deprivation of the participant’s neighbourhood) 
was calculated immediately prior to participants joining UK 
Biobank using their self-reported postcode of residence. 
This gave 7 variables included in the liberal covariate set.

We ran the global randomization test and alternative 
approaches to test for an association of the CRP GRS with 
the restricted and liberal covariate sets, respectively. We also 
repeated these analyses using the rs2794520 cis CRP SNP 
only, to explore detection of selection bias using the SNP 
set (in this case just one SNP) that is unlikely to be horizon-
tally pleiotropic. SNP rs2794520 was used as it is only cis 
CRP SNP among the 58 independent SNPs identified in the 
GWAS (and used in the GRS above).

Example 2: Testing for evidence of horizontal pleiotropy 
among CRP SNPs

We used the global randomization test to identify CRP-asso-
ciated SNPs that may have horizontally pleiotropic effects 
on coronary heart disease (CHD). We formed our covariate 
set using a previous study [10] that found little evidence of 
an association of cis CRP SNPs with a set of CHD risk fac-
tors. These risk factors are therefore unlikely to be on the 
causal pathway between CRP levels and CHD, such that 
associations with other CRP-associated SNPs (or a com-
bined CRP GRS) would be most likely due to this SNP being 
horizontally pleiotropic. These risk factors can therefore be 
used as the covariate set in the randomization test, to test for 
evidence of horizontal pleiotropy.

Our covariate set comprised the subset of these pheno-
types that were measured in the full UKB sample (e.g., some 
such as LDL cholesterol were only available in the NMR 

metabolomics UKB subsample), namely: BMI, systolic 
blood pressure (SBP), diastolic blood pressure (DBP), total 
cholesterol, HDL cholesterol, apolipoprotein A1, apolipo-
protein B, albumin, lipoprotein A, leukocyte count, glucose, 
smoking pack years, weight and waist hip ratio. Details of 
the covariates are provided in Supplementary section S4. 
CHD events were ascertained using both self-reported data 
and linkage to mortality data and hospital inpatient records 
(see Supplementary section S5 for further details).

We estimated the causal effect of CRP on CHD using 
two-stage IV probit regression, first using all CRP SNPs 
and then using only those not identified as horizontally 
pleiotropic, using a nominal threshold of p < 0.05. We use 
log transformed CRP levels (mg/L) such that the IV probit 
regression estimate is the difference in probit index per 1 
unit higher log CRP levels. We then took the exponent of 
1.6 times the probit regression estimates, to approximate 
the association in terms of the change of odds per 1 unit 
higher log CRP levels [32]. We repeated analyses using a 
threshold of p < 0.001, to assess the sensitivity of results to 
the stringency of SNP selection.

Analyses were performed in R version 4.0.3, Stata version 
15 and Matlab r2015a, and all of our analysis code are avail-
able at https:// github. com/ MRCIEU/ MR- rando mizat ion- test. 
Git tag v0.2 corresponds to the version of the analyses pre-
sented here.

Results

Simulation results

Using the randomization test to detect selection bias

Figure 3 shows the results of our selection bias simulations, 
with an IV strength of  r2 = 0.05, including all covariates in 
the tests of association (as results for test-r2perm were simi-
lar to test-indep these are provided in Supplementary Fig-
ure 3). Results for IV strength  r2 = 0.1 and including half the 
covariates in the tests of association are shown in Supple-
mentary Figure 4. The approach with the highest statistical 
power depended on the scenario, with the randomization test 
tending to have greater statistical power with low covariate 
correlations (usually for both the  r2 = 0 and  r2 = N(0, 0.1)).

The statistical power of the global randomization test 
changed relatively little across covariate correlations, 
compared with the test-r2perm, test-Bonf and test-indep 
approaches, which were sensitive to this (Fig.  3). For 
example, when there were 10 covariates affecting selec-
tion, 2 covariates not affecting selection and a total effect 
on selection of  r2 = 0.05, power ranged between 0.254 
(MCSE = 0.02) and 0.31 (MCSE = 0.02) for the global ran-
domization test (correlation between covariates  r2 = 0 and 

https://github.com/MRCIEU/MR-randomization-test
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0.8, respectively), and between 0.15 (MCSE = 0.02) and 
0.66 (MCSE = 0.02) for the test-indep approach (correlation 
between covariates  r2 = 0 and 0.8, respectively).

The statistical power of the global randomization test was 
well controlled (i.e., with ~5% type-1 error when no selec-
tion bias is present) across all scenarios of our selection bias 
simulation (see Supplementary Figure 5).

Using the randomization test to detect horizontal 
pleiotropy

Figure 4 shows the results of our horizontal pleiotropy 
simulations. As results for test-r2perm were similar to test-
indep these are provided in Supplementary Figure 6. In all 
except one simulated scenario, statistical power of the global 

randomization test was either comparable to the power of the 
alternative tests or had greater power. For example, with an 
effect of the horizontally pleiotropic SNP of 0.001 on each 
covariate, and 5 horizontal pleiotropy covariates ( Nchp = 5) 
and 5 non HP ( Nch̄p = 5) , when the covariates were uncor-
related ( r2

c
= 0) we estimated similar statistical power 

across all approaches (e.g. 0.15 (MCSE = 0.02) and 0.12 
(MCSE = 0.01) for the global randomization and test-indep 
approaches). In contrast, when the covariates were gener-
ated with normally distributed correlation ( r2

c
 = N(0, 0.1) ), 

power of the global randomization was larger than the 
other tests (0.26 (MCSE = 0.02) compared with e.g., 0.13 
(MCSE = 0.02) for the test-indep approach).

The statistical power of the global randomization 
test was well controlled (i.e., with ~5% type-1 error for 

Fig. 3  Results of selection bias simulations for instrument strength 
 r2 = 0.05 and all covariates included in test a Total effect of covari-
ates  CS and X on selection  r2 = 0.05 b Total effect of covariates  CS 
and X on selection  r2 = 0.1. SE: standard error. Total effect on selec-
tion: the total effect of covariates  CS and X on selection S. Confi-
dence intervals are ± 1.96*MCSE (Monte Carlo standard error). Each 
graph shows the statistical power of a given approach to identifying 
covariate imbalance due to selection bias, as the number of covariates 
not affecting selection (x-axis) and the correlation between covari-

ates (shown in legend) are varied. Each graph shows the results for 
a particular number of covariates affecting selection (N

cs
; columns), 

and approach (rows), for a given total effect of covariates  CS and X 
on selection  (r2 = 0.05 in (a) and  r2 = 0.1 in (b)). When  r2 = 0.2 for 
the total effect on selection, power was at or near 1 in all scenarios. 
Results for the r.2 permutation testing approach were very similar to 
the independent approach and not shown here (see Supplementary 
Figure 3 for these)
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non-horizontal pleiotropy SNPs) across all scenarios of 
our horizontal pleiotropy simulation (see Supplementary 
Figure 8).

We conducted sensitivity analyses using a less stringent P 
value threshold (p = 0.1), and as expected, statistical power 
is slightly higher across tests (Supplementary Figure 9).

Applied examples

Detecting selection bias for CRP GRS in UK Biobank

Table 1 shows the results of our CRP selection bias anal-
ysis in UK Biobank. We did not detect an association of 
the CRP GRS with the restricted covariate set (containing 
only age and sex) using any approach (e.g., p = 0.813 using 
the global randomization test). Using the liberal covariate 
set we detected an association with the CRP GRS using all 
approaches (e.g., p < 0.002 and p = 0.010 for the global ran-
domization test and test-r2-perm approaches, respectively). 
In contrast, we only detected an association with the CRP 
cis SNP using test-r2-perm (p = 0.004).

Detecting horizontally pleiotropic CRP SNPs in UK Biobank

Of the 58 CRP-associated genetic variants, 51 were found 
to be associated with our defined covariate set using the 
global randomization test (using a threshold of p < 0.05). 
This compares to 51 identified using the test-Bonf and 
test-indep approaches, and 46 identified using the  r2perm 
approach (see Supplementary Table 4). Using a GRS com-
posed of all 58 SNPs, higher genetically predicted CRP 
levels are associated with a lower risk of CAD (odds ratio 
[OR]: 0.956 [95% CI: 0.918, 0.996] per 1-unit higher log 
CRP levels). Using a GRS composed of only the 7 SNPs 
not identified as horizontally pleiotropic using the global 
randomization test, estimates attenuated slightly to the 
null (OR: 0.970 [95% CI: 0.900, 1.046] per 1-unit higher 
log CRP levels). Results of sensitivity analyses using the 
p < 0.001 threshold were similar to the main results (see 
Supplementary Figure 10).

Fig. 3  (continued)
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Discussion

In this study, we have adapted a recently proposed test of 
association for use in MR studies. The global randomiza-
tion approach tests the association of a set of covariates 
with a trait of interest jointly, accounting for the correlation 
between these covariates, rather than testing the association 
of the trait of interest with each covariate individually. The 
original study [15] proposed the global randomization test 
as a test for the independence assumption and assumed that 
the IV relevance assumption and exclusion restriction are 
valid. However, in an MR setting the exclusion restriction 
assumption (in addition to the independence assumption) 
may not be valid. We therefore focused on demonstrating 
ways in which the global randomization test can be used to 
identify violations of the exclusion restriction assumption, 
using violations due to selection bias and horizontal pleiot-
ropy as examples. We compared the statistical power of this 

test to that of individual tests of the IV with each covariate 
with correction for the multiple tests performed using (a) 
Bonferroni, and (b) effective number of independent tests 
(calculated using spectral decomposition). In contrast to 
these traditional tests of covariate imbalance, the global ran-
domization test uses a permutation-based approach to test 
the association of a set of covariates jointly with an IV. We 
also explored an alternative permutation-based approach, 
using the highest correlation between the covariates and IV 
as the test statistic.

We used simulations to investigate the statistical power of 
these approaches to detect selection bias and horizontal plei-
otropy under different scenarios. Our selection bias simula-
tions suggested that the global randomization test tends to 
have better power compared to the alternative approaches, 
when covariate correlations are lower. While we do not 
have enough information to suggest a cutoff in general, our 
simulations suggest the global randomization test (with MD 

Fig. 4  Results of horizontal pleiotropy simulations. SE: standard 
error. Confidence intervals are ± 1.96×MCSE (Monte Carlo standard 
error). Graphs show the statistical power as the number of covari-
ates affected / not-affected by the SNP (x-axis), and the correlation 
between covariates (shown in legend) is varied, for each approach 
to identifying covariate imbalance due to selection bias. Each graph 

shows the results for a different test approach (rows) and strength of 
SNP effect on covariates (columns). In all scenarios for a SNP effect 
on each covariate of  r2 = 0.01 power was at or near to 1. Results for 
the  r2 permutation testing approach were very similar to the inde-
pendent approach and not shown here (see Supplementary Figure  7 
for these)
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test statistic) could be used when covariate correlations are 
below 0.1. In our horizontal pleiotropy simulations, the 
global randomization test had either similar or better power 
compared to the alternative approaches across all except one 
of the simulated scenarios. We would therefore recommend 
use of the global randomization test to test for horizontal 
pleiotropy, but we note we have not assessed every different 
scenario in our simulations.

We demonstrated how the global randomization test can 
be used in practice with two applied examples. The first 
sought to investigate whether MR analyses of CRP may be 
biased due to non-random selection in UK Biobank. We used 
a restricted and liberal covariate set, the former containing 
just age and sex, while the latter contained 5 additional 
variables that are unlikely to be downstream determinants 
of CRP genetic variants. We found evidence using all test 
approaches (including the global randomization test) sug-
gesting that non-random selection may bias MR estimates 
of CRP. The second applied example sought to identify hori-
zontally pleiotropic CRP-associated SNPs, when estimating 
the effect of CRP on coronary artery disease. The global 
randomization test identified 51 of the SNPs as potentially 
horizontally pleiotropic and estimates attenuated to the null 
after excluding these SNPs, although confidence intervals 
were wide.

Our results suggest that the global randomization test may 
be a useful falsification test in MR. However, one potential 
challenge in applying this test in this setting is the choice of 
covariate set. In an MR setting, most phenotypes can theoret-
ically be downstream of a genetic variant (age and sex being 
two key exceptions), such that it may be difficult to identify 
candidate covariates to include in the global randomization 
test, where we believe with confidence that these covariates 
are not on the causal pathway between the IV and exposure, 
or between the exposure and outcome. In short, to use the 
test the researcher needs to assume that, if the IV associates 
with the candidate covariate set, this is more likely to be due 
to an invalid IV assumption rather than because these covari-
ates are on the vertically pleiotropic pathway. Box 1 sum-
marises the approach researchers can take to use the global 
randomization test to explore violations of the exclusion 
restriction assumption due to selection bias or horizontal 
pleiotropy. Where covariates may associate with the IV due 
to both selection bias and horizontal pleiotropy, it may be 
useful to first conduct a combined test for these using a com-
bined covariate set. The value of this compared to testing for 
selection bias and horizontal pleiotropy separately could be 
investigated in future work.

In addition to the approaches using a covariate set that 
we focus on in this study, there are other falsification tests 

Table 1  Results of CRP selection bias applied example

* P values calculated as min(1,  pvaluemin x numTests), where  pvaluemin is the lowest p-value of the covariates and numTests is the number of 
covariates for Bonferroni, and calculated with spectral decomposition for the independent version. The P values of individual traits are calcu-
lated with linear regression (IV as independent variable, covariate as dependent variable). The number of tests shown in brackets indicates the 
effective number of independent phenotypes in the covariate sets, i.e., the effective number of tests to use in the correction for multiple tests

P values

CRP GRS CRP cis SNP rs2794520

Restricted covariate set Liberal covariate set Restricted covariate set Liberal covariate set

Global randomization 
test

0.813  < 0.002 0.937 0.072

r2 permutation test 
(test-r2perm)

0.784 0.010 0.925 0.004

Bonferroni corrected 
(test-Bonf)*

1.000 (2 tests) 8.88 ×  10–9 (7 tests) 1.000 (2 tests) 0.110 (7 tests)

Independent (test-
indep)*

1.000 (2 tests) 8.88 ×  10–9 (7 tests) 1.000 (2 tests) 0.110 (7 tests)

Covariates Age 0.840 0.840 0.923 0.923
Sex 0.537 0.537 0.732 0.732
Height  <0.001 0.912
Home location—north-

ing
 <0.001 0.285

Home location—east-
ing

0.944 0.016

Age completed full 
time education

0.587 0.222

Townsend deprivation 
index

0.966 0.553
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for exclusion restriction assumption [33, 34]. For example, 
heterogeneity of IV effect estimates across SNPs can be 
tested for, as if exclusion restriction assumption holds (in 
addition to the relevance and independence assumptions, 
and the homogeneity fourth IV assumption) the estimated 
effect should be consistent across IVs. Tests for this include 
the Hansen test, or by splitting the SNPs into distinct sets 
and comparing the estimated effects of the exposure using 
these sets [35]. While these tests are useful for looking for 
evidence of horizontal pleiotropy without needing to specify 
the set of covariates for the particular SNP, through which 
this pleiotropy may act, they may have low statistical power 
because they are comparing estimates of effect on the out-
come across instruments. Steiger filtering is an approach that 
removes SNPs from a GRS where they explain more varia-
tion in the outcome than the exposure, such that their effect 
on the exposure may be more likely to be via the outcome 
rather than vice-versa [36]. As we have shown, the global 

randomization test can be used in a complementary way, to 
identify SNPs that may be invalid because they correlate 
with factors that we do not believe could be on the causal 
pathway (i.e., between IV and exposure or between exposure 
and outcome), and hence can be removed from a GRS. This 
‘randomization filtering’ can be used as a sensitivity analysis 
in MR studies.

Our study has a number of strengths and limitations. 
Strengths include the fact that we explored the value of the 
global randomization test using both simulations and applied 
examples. We tried to simulate realistic scenarios by basing 
aspects such as the recruitment rate on real data (in this case 
UK Biobank). However, we were only able to simulate a lim-
ited number of scenarios, such that we cannot infer how the 
statistical power of the global randomization test compares 
to the alternative approaches beyond these. We generalized 
the Mahalanobis distance used in [15] to allow continuous 
and ordinal instruments as well as binary. Our approach 

Box 1  Overview of process to use the global randomization test

Testing for evidence of selection bias Testing for evidence of horizontal pleiotropy

1. Choose 
covari-
ates for 
inclusion 
in covariate 
set

Covariates should be selected that are thought to be 
unaffected by the genetic instrument (and hence also 
not affected by the exposure phenotype), but that are 
potential determinants (either directly or indirectly) 
of selection. Included covariates cannot be perfectly 
correlated with selection (i.e. deterministically affect 
selection) as this would result in perfect balance.

Covariates should be selected that are not on the causal path between 
genetic instrument and exposure phenotype and are also not down-
stream effects of the exposure.

2. Choose 
test of 
association 
between 
genetic 
instrument 
and covari-
ate set

If mean  r2 between covariates <0.1:
- Use global randomization test.
Otherwise:
- Use individual tests of each covariate with correction 

for the effective number of tests performed (test-
indep).

Use global randomization test.

3. Choose 
follow-up 
analysis

Option 1: If confident that covariates are not con-
sequences of the genetic instrument, conduct MR 
analysis conditioning on them, as this will block the 
pathways through which selection bias occurs hence 
remove the selection bias. However, this may be 
infeasible in cohort such as UK Biobank with complex 
selection mechanisms.

Option 2: Conduct simulations to explore the magnitude 
of the selection bias that would be needed to give the 
observed (or null) effect, assuming no (or positive or 
negative effect) true effect.

Option 3: Use inverse probability weighting to address 
selection bias, by inversely weighting the sample by 
the probability of selection into the sample [40], where 
data are available to correctly model the weights.

Include SNPs not identified as associated with the covariate set in 
genetic IV, and re-estimate causal effect.

Compare estimate and confidence interval with estimate using all 
SNPs.

4. Triangula-
tion

Test association of covariate set in a second cohort with 
weaker or different selection mechanism. For example, 
if this second cohort has less selection and the associa-
tion between the IV and covariate set weakens then 
this strengthens the evidence for selection bias in the 
original cohort.

Test association of covariate set in a second cohort with weaker or 
different selection mechanism. For example, if this second cohort 
has less selection and the association between the IV and covariate 
set weakens then this suggests that this association is at least in part 
driven by selection bias rather than (solely by) horizontal pleiotropy.



854 L. A. C. Millard et al.

assumes a linear relationship between the IV (including 
GRS and SNP dosages) and each of the covariates, such 
that non-linear associations may have been missed. As with 
any approach assuming linearity, researchers can examine 
this assumption (e.g. by plotting the observed data), then, if 
this suggests a non-linear relationship may exist, they could 
adapt the approach to test for this. We used the global ran-
domization test to test the association of a single genetic 
variant or independent SNPs combined into a GRS, with a 
covariate set. It may be possible to extend this to incorporate 
multiple correlated SNPs, for example, those used in cis-
MR studies [37]. We did not adjust for any covariates (e.g., 
genetic principal components) in our examples, but in future 
work using this approach the genetic instrument and covari-
ates could be regressed on potential confounders and then 
the residuals from those regressions can be used in the test 
process. In simulations we used a P value threshold of 0.05 to 
calculate the rejection percentage, but in practice research-
ers should avoid using P value thresholds to determine ‘sta-
tistical significance’ (or ‘hits’) where possible. Where it is 
necessary to use a threshold, researchers may choose to use 
a different threshold to 0.05. For example, when identifying 
SNPs to exclude in a sensitivity analysis because they may 
be horizontally pleiotropic, a less stringent threshold may 
be preferred to exclude SNPs where there is even a small 
amount of evidence that they are horizontally pleiotropic. 
While our scenarios use a single time-fixed exposure with no 
exposure-confounder feedback, where exposures are time-
varying or have exposure-confounder feedback the implica-
tions of our study are the same assuming effect estimates are 
interpreted as an effect of underlying exposure liability (see 
DAGs in Supplementary Figures 12 and 13) [38].

In summary, the global randomization test can be used as 
a first step for identifying potential violations of Mendelian 
randomization assumptions. Where an association is identi-
fied that suggests horizontal pleiotropy, a researcher can then 
investigate this further, for example, by using instruments for 
variables in the covariate set to test for an effect of these on 
the outcome of interest [39]. The choice of covariate set used 
with the global randomization test needs careful considera-
tion in the context of the specific exposure and outcome 
being examined. While we have focused on falsification 
tests for the exclusion restriction assumption, this approach 
may also be useful as a falsification test for the independ-
ence assumption, for example, testing for confounding via 
dynastic effects. In practice it may be difficult to determine 
which of these assumptions is violated when an association 
is identified between an IV and covariate set.
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