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Abstract
Diseases diagnosed in adulthood may have antecedents throughout (including prenatal) life. Gaining a better understanding 
of how exposures at different stages in the lifecourse influence health outcomes is key to elucidating the potential benefits 
of disease prevention strategies. Mendelian randomisation (MR) is increasingly used to estimate causal effects of exposures 
across the lifecourse on later life outcomes. This systematic literature review explores MR methods used to perform lifecourse 
investigations and reviews previous work that has utilised MR to elucidate the effects of factors acting at different stages 
of the lifecourse. We conducted searches in PubMed, Embase, Medline and MedRXiv databases. Thirteen methodological 
studies were identified. Four studies focused on the impact of time-varying exposures in the interpretation of “standard” MR 
techniques, five presented methods for repeat measures of the same exposure, and four described methodological approaches 
to handling multigenerational exposures. A further 127 studies presented the results of an applied research question. Over 
half of these estimated effects in a single generation and were largely confined to the exploration of questions regarding 
body composition. The remaining mostly estimated maternal effects. There is a growing body of research focused on the 
development and application of MR methods to address lifecourse research questions. The underlying assumptions require 
careful consideration and the interpretation of results rely on select conditions. Whilst we do not advocate for a particular 
strategy, we encourage practitioners to make informed decisions on how to approach a research question in this field with a 
solid understanding of the limitations present and how these may be affected by the research question, modelling approach, 
instrument selection, and data availability.
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Introduction

Diseases diagnosed in adulthood often have antecedents 
throughout (including prenatal) life [1]. Gaining a better 
understanding of how exposures at different stages in the 
lifecourse influence health outcomes is key to elucidating the 
potential benefits of specific disease prevention strategies.

A lifecourse approach recognises the contribution of 
long-term biological, behavioural, and psychosocial pro-
cesses that operate across an individual’s lifecourse, or 
across generations [2, 3]. Kuh et al. previously defined life-
course epidemiology as the study of physical or social expo-
sures during gestation, childhood, adolescence, earlier adult-
hood and later adult life on later health or disease risk [2]. In 
practice, operationalising this can be complex; by definition, 
exposures should precede outcomes, and so almost any study 
of an exposure in relation to an adult health outcome could 
arguably be considered a lifecourse study. Here, our focus 
is on methodological issues pertinent to the application of 
Mendelian randomisation (MR) to lifecourse studies; these 
issues are relevant where there is a large time gap between 
exposures and outcomes. Therefore, we consider the follow-
ing types of study as falling within lifecourse epidemiology: 
(1) the effects of pre-gestation, gestation, early life, child-
hood, or adolescent exposures on adult outcomes; (2) the 
effects of adult exposures on adult outcomes when the adult 
exposure is related to a particular stage/phase of adulthood, 
such as menopause (e.g. the effects of age at menopause on 
cardiovascular disease), (3) the effects of repeated measures 
of a time-varying exposure on a later outcome.

Whilst a lifecourse approach provides a persuasive frame-
work for conducting epidemiological research, mediation 
(and the effect of this on the interpretation of total effects), 
time-varying confounding (when confounders have values 
that change over time) and intermediate confounding (a con-
founder of the mediator-outcome relationship) are highly 
likely in studies with earlier life and time-varying exposures 
and later life health outcomes [4, 5]. Intergenerational and 
family level factors may also contribute to further distinc-
tive sources of confounding in multigenerational studies. 
Approaches to interrogate causality by minimising con-
founding are therefore of importance to strengthen causal 
inference in a lifecourse setting [6, 7].

MR exploits the random assortment of genetic variants, 
independent of other traits, to enable analyses that largely 
mitigate against distortions resulting from confounding and 
reverse causality [8]. This is a key motivation behind using 
a MR approach, which estimates the causal effect of modifi-
able risk factors under three assumptions; the instrumental 
variables used must (1) be associated with the exposure of 
interest (‘relevance’), (2) not share common causes with the 
outcome (‘independence’ or ‘exchangeability’) and (3) not 

affect the outcome other than through the exposure (‘exclu-
sion’). Several statistical methods have been proposed for 
MR with individual-level as well as summarised data. In a 
one-sample setting with individual-level data, a causal effect 
estimate is often obtained using the two-stage least-squares 
(2SLS) method [9]. It is more common for two-sample 
investigations to use summarised data. In addition, at the 
introduction of MR, it was recognised that the association 
of genetic variants with exposures could change with age, 
which needed to be considered in interpretation [10, 11].

The application of MR to lifecourse research questions 
has two key challenges. Firstly, we are interested in isolating 
the causal effects of age-specific exposures. MR studies typi-
cally use a single measurement of an exposure to estimate 
its effects on an outcome (henceforth termed “standard” 
MR) and genes are invariable across the lifecourse. As such, 
results obtained are often interpreted as the average lifetime 
effect of the genetically predicted exposure, or genetic liabil-
ity for an exposure if that exposure is binary [12]. Whilst 
this approach is sufficient for some exposures, it requires 
extension to address lifecourse questions. This extension 
is possible in cases where inherited genetic variants have 
different effects at different time points in the lifecourse 
(within a population), allowing us to separate time-varying 
effects of certain exposures [13–15]. Secondly, some life-
course research questions involve the exploration of paren-
tal exposures. The inclusion of multiple generations brings 
additional analytical and methodological challenges due to 
common confounding and genetic relatedness.

This systematic literature review has two core aims. 
Firstly, to identify MR methods that have been developed 
to evaluate or conduct lifecourse epidemiological investiga-
tions and secondly, to systematically review previous work 
that has utilised MR to elucidate the impacts of risk factors 
from different stages of the lifecourse on later life outcomes. 
These studies fulfil the criteria outlined in the STROBE-MR 
guidelines, and specifically to the criterion of whether effect 
estimates previously derived would generalise to other expo-
sure periods [16, 17].

Methods

Search strategy and eligibility criteria

The protocol for this systematic literature review was regis-
tered in the International Prospective Register of Systematic 
Reviews (PROSPERO) as CRD42022314287 and was con-
ducted in line with the 2020 Preferred Reporting Items for 
Systematic Reviews and Meta-Analyses (PRISMA) guide-
lines [18]. We searched for lifecourse epidemiology studies, 
defined as: (1) the effects of pre-gestation, gestation, early 
life, childhood, or adolescent exposures on adult outcomes; 



503Methodological approaches, challenges, and opportunities in the application of Mendelian…

1 3

(2) the effects of adult exposures on adult outcomes when 
the adult exposure is related to a particular stage/phase of 
adulthood, such as menopause (e.g. the effects of age at 
menopause on cardiovascular disease), (3) the effects of 
repeated measures of a time-varying exposure on a later 
outcome. (See Supplementary file 1) [19]. Studies were eli-
gible from any geographical location, with individuals from 
any age group and which included a MR study design (i.e., 
a study using genetic variants to determine whether there is 
a causal relationship between a modifiable risk factor and 
an outcome). We include as an “MR study” any study that 
uses genetic variants related to an exposure of interest to 
understand the causal nature of the relationship between that 
exposure and an outcome of interest. This includes studies 
where the genetic variants are used as an instrumental vari-
able, and those where the association between the genetic 
variants and the outcome under study is analysed outside 
of an instrumental variable framework. Searches included 
any papers published prior to 12 June 2023 in MEDLINE 
(PubMed), Embase (Ovid), Medline (Ovid) and MedRXiv. 
The search and full-text review were restricted to articles 
published in English. Outcome measures were any measure 
of health status or disease from a life stage after the exposure 
was measured. Study designs that do not use MR methods 
were not appraised. Treatment guidelines documents were 
excluded (Supplementary file 2).

Data extraction and analysis

Within the final list of papers, we separated methodologi-
cal manuscripts that presented or tested an approach to 
lifecourse MR from applied papers that only presented the 
results of a specific lifecourse analysis. For methodologi-
cal manuscripts that presented or tested an approach to 
lifecourse MR we recorded: author, baseline year of data 
collection, aim, methodological approach, challenges in 
methodological application, simulation scenarios, sam-
ple size, and assumptions. When an applied element was 
included in the manuscript, we also recorded: exposure, 
exposure age(s) in years, outcome and outcome age(s) in 
years. We extracted the following from applied studies 
that presented the results of a specific lifecourse analysis: 
author, baseline year of data collection, aim, exposure, 
exposure age(s) in years, outcome and outcome age(s) 
in years. Title and abstract and then full-text screening 
was conducted in duplicate by two investigators (G.M.P 
and P.P.) and extraction in duplicate by two investigators 
(G.M.P and C.P.). Discrepancies were resolved by consen-
sus. A narrative synthesis was performed. The evaluation 
of study quality by conducting a bias assessment was not 
considered relevant here, since we were not collating evi-
dence to answer one applied question [20, 21].

Results

Our search generated 407 records. Three additional records 
were identified through conversations with experts in the 
field. After screening titles and abstracts, 181 manuscripts 
were assessed for eligibility. Of these, 140 articles were 
deemed eligible for inclusion in this systematic review 
(Fig. 1). Thirteen studies presented or tested an approach 
to lifecourse MR [12–15, 22–30] and 127 presented the 
results of a specific lifecourse analysis without an empha-
sis on exploring or explaining a methodological approach 
[31–157]. If a study fit the criteria for the former section, 
it was not included in the latter.

Studies presenting or testing an approach 
to lifecourse MR

Of the 13 studies presenting and/or testing approaches to 
lifecourse MR, four focused on the impact of time-varying 
exposures on the interpretations of “standard” MR tech-
niques [12, 23, 26, 27]. These additionally outline methods 
to assess and/or lessen potential bias. Five presented meth-
ods for analysing repeat measures of the same exposure. 
These comprised functional principal component (FPC) 
analysis through conditional expectation (PACE) fol-
lowed by a two-stage functional residual inclusion (2SFRI) 
inverse variance weighted multivariable MR (IVW-MVMR), 
g-estimation of structural nested cumulative failure models 
(SNCFTMs) and g-estimation of structural mean models 
(SMM) [13, 15, 22, 25, 28]. Our definition of lifecourse 
studies, which includes the effects of repeated measures of 
the same time-varying exposure on a later outcome, con-
nects lifecourse MR to g-estimation, which has been applied 
in several studies to adjust for time-varying confounding in 
traditional epidemiological settings [158, 159]. In addition, 
four studies described novel methods that have been devel-
oped for intergenerational studies investigating a parental 
or grandparental exposure whilst the outcome of interest is 
assessed in offspring. These have used structural equation 
models (SEM) or the statistically equivalent weighted lin-
ear model (WLM), as well as one-sample GRS analysis and 
gene-by-environment (G × E) MR [14, 24, 29, 30].

Implications of time‑varying exposures 
for the interpretation of “standard” MR

There are potential limitations regarding the use of “stand-
ard” MR techniques to interpret relationships between an 
outcome and an exposure that change over the lifecourses. 
D’Urso et al. highlight issues when using MR to assess the 
validity of hypotheses relating to the Developmental Ori-
gins of Health and Disease (DOHaD), such as the Barker 
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hypothesis, which proposes that the origins of chronic dis-
eases of adult life lie in foetal responses to the intrauterine 
environment [26]. “Standard” MR methods do not take into 
account the relationship between maternal and offspring 
genotypes and, as a result, may produce inflated type 1 error 
rates. Standard errors may be too small in the presence of 
cryptic relatedness due to there being less genetic variation 
in the sample. A conditional analysis framework is recom-
mended using an unweighted or weighted maternal allele 
score corrected for offspring genotypes [26].

Results from “standard” MR techniques are often inter-
preted as average lifetime effects of the exposure, i.e., the 
cumulative effect of the exposure level from conception 
and through the lifecourse. Labrecque et al. propose an 
alternative interpretation for exposures that vary over 
time. They suggest the effect should be interpreted using 
a counterfactual framework approach, shifting the entire 
exposure trajectory by one unit of time k (a time point of 
observation, where k = 0 at conception) [23]. Labrecque 
et al. argue that different effects would be estimated at 
different exposure time points if the relationship between 
the genetic variants and the exposure changes over time. 
Thus, a “standard” MR approach may produce biased 
results. They initially provided an empirical example to 
estimate the lifetime effect of body mass index (BMI) on 
systolic blood pressure using the rs9939609 variant. They 
then simulated a longitudinal relationship to estimate 

BMI as an exposure at age 30 and 50 years and concluded 
that when the genetic variable-exposure relationship was 
constant over time, estimates were unbiased with respect 
to the lifetime effect at both ages. In all other scenarios, 
however, they show the estimate differed, and this bias 
was sensitive to the strength of relationship between the 
genetic variant and exposure as well as the timing of meas-
urement of both exposure window and outcome.

Previous studies have explored whether age modifies 
the relationship between the genetic variants and exposure 
[10], however, investigations are limited. Most studies that 
have addressed this have investigated body composition, 
BMI or other measures of body size. To assess how time-
varying genetic effects may impact MR effect estimates, 
Labrecque et al. and others suggest looking at a statistical 
interaction between the genetic variant and age in relation 
to the exposure [13, 106, 107, 112, 115, 160]. Follow-
ing this, Labracque et al. propose plotting the relationship 
between the genetic instrument and the exposure stratified 
by age in samples with sufficient variation in age. They 
additionally show that patterns in age-varying genetic rela-
tionships may be exposure specific [27]. This has been 
shown in applied studies [10, 13, 106, 107, 112, 115, 160].

Morris et al. clarify the causal estimates that are esti-
mated by MR when applied to a single measure of a 
time-varying exposure with time-varying genetic effects 
[12]. They consider a situation where there is one genetic 
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Fig. 1  PRISMA flow chart illustrating selection of studies. PRISMA, Preferred Reporting Items for Systematic Reviews and Meta-Analyses
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instrument, a time-varying continuous exposure assessed 
on two occasions, and a single measure of an outcome. 
They also note the genetic instrument cannot affect the 
exposure measured at different occasions in isolation. 
Instead, they argue that the instrument underlies all pos-
sible exposure measurements across the lifecourse through 
a genetic liability, so a change in genotype changes both 
measures of the exposure. Simulations demonstrate that 
the Wald Ratio MR estimator recovers the correct causal 
effect in all scenarios assessed, even where time-varying 
genetic associations were present. Morris et al. showed 
that MR estimates differ between measurements of time-
varying exposures because MR is estimating the total 
effect of the exposure trajectory on the outcome rather 
than the effect of the exposure at a specific point in time. 
Further details of each of these approaches can be found 
in Supplementary file 3.

Methodological approaches to analysing repeat measures 
of the same exposure over the lifecourse in an MR 
framework

MR methods proposed to estimate the effects of repeat meas-
ures of the same exposure across the lifecourse have been 
developed in response to the concern that a single measure-
ment of a time-varying exposure may not be adequate in 
capturing all time-varying information: a single measure of 
a time-varying exposure could underestimate the relation-
ship between the exposure variable and the outcome variable 
due to the failure to capture long-term change [161]. Impor-
tantly, in this context, later stages of lifecourse exposures 
often depend on the earlier stages of the same exposure, 
whilst the reverse is not true.

Cao et al. developed two methods to combine functional 
data analysis (to describe the trajectory of the exposure) 
with MR, to test the causal effect of a time-varying expo-
sure on a binary outcome [22]. They use functional principal 
component (FPC) analysis through conditional expectation 
(PACE) to model the exposure trajectories, and then test 
whether a summary measure of the trajectory is related to 
the outcome using the two-stage residual inclusion (2SRI) 
approach. Their methods examine the evidence against the 
null hypothesis of no causal effect, but do not estimate the 
causal effect. The first method (PACE + 2SRI) assumes that 
the time-varying exposure variable has a cumulative effect 
on the risk of disease, and that the genetic effects on the 
exposure do not vary over time. The cumulative value of the 
exposure between two time points can be obtained by inte-
gration. The first stage obtains the residuals from regressing 
this cumulative exposure on the instrument (and any non-
time-varying covariates). The second stage then relates these 
residuals to the outcome via a logistic regression model. 

For the second method (PACE + 2SFRI), they allow a time-
varying genetic effect on the exposure variable but assume 
that the effect of the exposure and the fitted residual on the 
outcome are constant over time. In this case, the first stage is 
a functional linear model for the time-varying exposure, and 
the second stage relates the outcome to the fitted residuals 
and to the detrended exposure (functional residual inclu-
sion). The authors showed that this method outperformed 
“standard” MR analysis with a single measurement at one 
time point, with higher statistical power in simulation stud-
ies using the functional data analysis-based methods, even 
when the disease outcome was simulated to depend not on 
the cumulative exposure, but on the first three functional 
principal component scores from PACE.

Another method employed to assess repeat measures of 
the same exposure over the lifecourse is inverse variance 
weighted multivariable MR (IVW-MVMR) [13, 15]. IVW-
MVMR can be used to estimate the independent direct 
effects of several highly correlated exposures on an out-
come, conditional on all the other exposures included in the 
model. It is useful in the context of mediation analysis [162], 
to estimate the effects of several repeated measures of the 
same exposure, or to isolate the effects of related pheno-
types. Sanderson et al. explore the use of IVW-MVMR to 
estimate the direct effect of a single exposure at different 
time points in an individual’s lifetime on an outcome (Fig. 2) 
[15]. For multiple measurements to be included in a IVW-
MVMR the genetic variants must have different effects on 
each exposure included in the model and these effects must 
not be a linear function of the others. The interpretation of 
the estimate is the effect of having a liability associated with 
a unit higher level of exposure at one occasion while keep-
ing the liability for exposure at a separate occasion constant. 
Richardson et al. applied this approach to evaluate whether 
body size in early life has an independent effect on risk of 
disease in later life, or whether the effect seen is a result 

Fig. 2  Latent exposure model with two periods of exposure (adapted 
from Sanderson et al. [163]). G1 is a set of genetic variants associated 
with  the earlier exposure (X1) G2  is a set of genetic variants associ-
ated with the later exposure (X2), G12 is a set of genetic variants asso-
ciated with both X1 and X2
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of body size in childhood being mediated by body size in 
adulthood [13]. They use univariable MR to estimate total 
effects of early body size, and IVW-MVMR to estimate 
direct effects of early and adult body size. This approach 
suggests univariable analyses cannot identify critical or 
sensitive periods of exposure but can detect an effect of a 
difference in the cumulative lifetime exposure, which is a 
notion critiqued by Labrecque et al., highlighted earlier in 
this review [23, 27]. If measures of the exposure at different 
time periods are available, and genetic instruments capable 
of reliably separating time-varying effects exist, it is pos-
sible to identify whether the exposure effects are stable over 
time or whether sensitive/critical periods exist in the life-
course using IVW-MVMR. In theory the more time periods 
we have should allow more granular inference into critical 
windows. However, whilst this method can narrow down or 
exclude periods, it cannot strictly identify important periods 
if the genetic effects on the periods included are correlated 
with genetic effects on excluded periods.

Further attention has been bought to the importance of 
mitigating misspecification when running IVW-MVMR to 
estimate the effects of a single exposure during distinct time 
periods [164]. Tian and Burgess caution that this may other-
wise result in the model’s poor performance with estimates 
suffering from unpredictable bias in both magnitude and 
direction [164, 165]. Correctly specifying when the outcome 
is a discrete function of the exposure at the precise time 
points at which the exposure was measured is therefore key. 
To run IVW-MVMR to answer lifecourse questions, Tian 
and Burgess argue that it is essential the exposure periods 
estimated represent distinct periods in the lifecourse where 
effects on the outcome are limited to a particular time 
period. This underlines ongoing methodological debates in 
this field. Sanderson et al. argue that any effect through a 
time period excluded from the model will form part of the 
effect estimated, asserting that, that effect can still be inter-
preted as the causal effect. Whilst being able to separate the 

genetic instruments for each period is important, running 
analyses on genetically predicted effects in small age-bands 
will almost certainly result in weak instruments and yield 
biased results.

The application of g-estimation of structural nested 
cumulative failure models (SNCFTMs) and g-estimation 
of structural mean models (SMM) was proposed by Shi 
et al. for the estimation of MR models with a time-varying 
exposure (Fig. 3) [25, 28]. The interpretation of results from 
estimation for these models depends on the availability of 
data for the time-varying exposure. SNCFTMs can be used 
to estimate the causal effect of a time-varying treatment on 
a failure time outcome under the assumption that all time-
varying confounders have been measured and that failure 
is rare under all possible treatment values [166]. Shi et al. 
describe an adaptation of this use of SNCFTMs, incorpo-
rating IV-type assumptions [25]. Whilst confirmation of 
the validity of the method was achieved via simulations, 
analyses indicated that MR with time-varying treatments and 
failure time outcomes using SNCFTMs require large sam-
ple sizes (n = 10,000; n = 25,000 or n = 50,000). In addition, 
authors note that this method should only be used with rare 
outcomes. In the application of g-estimation of SMMs to 
MR analyses, Shi et al. consider three types of causal effects 
that can be targeted when the exposure is time-varying: the 
effect of exposure at a single time point on the outcome 
(point effect), the effect of exposure during a period on the 
outcome (period effect), and the effect of exposure through-
out the lifetime on the outcome (lifetime effect) [28]. This 
approach highlighted two key challenges in estimating and 
interpreting period effects from MR analyses. The first is 
defining the period of interest. The second is the choice of 
time scale (e.g., time since conception or time since enrol-
ment). In the context of additive causal effects for continu-
ous outcomes, the authors note that g-estimation of SMMs 
and two-stage least squares (2SLS) MR yield similar esti-
mates. SMMs can be naturally extended to many settings, 
including accommodating binary and failure-time outcomes 
and estimating effects on the multiplicative scale. SMMs 
are also semiparametric, and therefore avoid some of the 
parametric assumptions of 2SLS. Further details on these 
methodological approaches discussed along with their limi-
tations are presented in Supplementary file 3.

The methodological assumptions underlying the methods 
we present here vary greatly and require thorough consid-
eration prior to running analyses. On top of this, very care-
ful consideration is required for instrument selection when 
applying MR to lifecourse research questions. We therefore 
do not advocate for a particular strategy but encourage prac-
titioners to think through their research question, instrumen-
tal variables, and data availability in-depth before pursu-
ing a particular MR approach within a lifecourse setting. 
Table 1 comprises key considerations for analysts that are 

Fig. 3  Causal diagram for instrumental variable analyses represent-
ing a scenario with a time-varying exposure (adapted from Shi et al. 
2022 [28]). G indicates a set of genetic variants each associated with 
at least one of the exposures (Xm−p,…, Xm–1, Xm)
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1 3

thinking about conducting a lifecourse investigation using 
MR techniques.

Novel methodological approaches to handling parental 
exposures in relation to offspring outcomes

Novel methods have been developed for intergenerational 
studies investigating a parental or grandparental exposure 
whilst the outcome of interest is assessed in offspring. All of 
the studies we identified in this section relate maternal geno-
types to offspring outcomes and establish the causal effect of 
a maternal exposure, e.g., smoking during pregnancy, on off-
spring health. Yang et al. used a proxy gene-by-environment 
(G × E) MR approach to explore maternal effects on off-
spring phenotypes where maternal genetic information was 
unavailable [30]. They validated this approach by replicating 
a known effect of maternal smoking heaviness on offspring 
birthweight using the rs16969968 variant in CHRNA5. 
They then applied it to explore effects of maternal smok-
ing heaviness on offspring later life outcomes and on birth-
weight of participant’s children. Yang et al. demonstrated 
how G × E MR can be used to test transgenerational causal 
effects. Further studies included in this section emphasise 
the need to condition on offspring genotype to avoid includ-
ing its effect on the outcome of interest. Earlier non-MR 
human genetic association studies have estimated maternal 

genetic effects on offspring phenotypes through conditional 
genetic association analysis of genotyped mother–offspring 
pairs [167]. This separation of genetic effects into mater-
nal and offspring components is important as maternal and 
offspring genotypes are correlated. Consequently, any asso-
ciation between maternal genotype and offspring outcome 
may be mediated by offspring genotype (Fig. 4) [14, 29]. 
Thus, as described above, naïve two-sample MR approaches 
in unrelated sets of individuals without accounting for the 
correlation between maternal and offspring  genotype effects 
may result in erroneous conclusions regarding causality.

Two MR approaches, described by Warrington et al. 
and Evans et al. use structural equation modelling (SEM) 
[166] to account for the correlation between maternal and 
offspring genotypes [14, 29]. Evans et al. developed a sta-
tistical model that can be used to estimate the effect of 
maternal genotypes on offspring outcomes, conditional on 
offspring genotype using both individual-level and summary 
data. The authors demonstrate this approach using the fol-
lowing example: birthweight of the individual, birthweight 
of the individual offspring, and the mother’s own genotype 
(SNP). The genotypes of the individual’s mother (their off-
spring’s grandmother) and the genotype of the individual’s 
offspring are considered latent unobserved variables. The 
causal path between the individual’s own genotype and both 
their mother and offspring’s latent genotype is set to 0.5, 

Fig. 4  Four credible ways in which maternal genetic variants can 
be related to an offspring exposure (XO) and offspring outcome 
(YO). Gm is a set of maternal genetic variants GO is a set of offspring 
genetic variants. Blue crosses indicate the act of conditioning on 
maternal or offspring genotype, blocking the association between 

maternal and offspring variables. Dotted paths show paths in which 
the maternal genotype can be related to offspring phenotype that are 
not to do with the intrauterine environment (adapted from Evans et al. 
[29] Moen et al. [95] and Warrington et al. [14])
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according to quantitative genetics theory. The estimated 
maternal and offspring effects on the observed phenotype, 
which refer to maternal and offspring genetic effects on 
birthweight, are also estimated. The resulting maternal and 
offspring genetic effects can subsequently be combined with 
SNP-exposure estimates for the maternal exposures that the 
investigator is interested in, in a two-sample MR framework.

Warrington et al. ran GWAS of own offspring genetic 
variants in relation to birthweight, and maternal genetic 
variants in relation to their offspring’s birthweight. They 
then partitioned the lead SNPs, representing independ-
ent association signals, into categories based on maternal 
and/or offspring genetic contributions to birth weight. To 
achieve this, they use the same SEM [166] as described 
in Evans et al. [29] to account for the correlation between 
offspring and maternal genotypes to provide unbiased 
estimates of maternal and offspring genetic effects on 
birthweight. This method gives an indication as to which 
genetic associations are driven by the maternal and which 
by the offspring genomes. To extend the estimates of 
adjusted maternal and foetal effects genome wide, the 
authors developed a weighted linear model (WLM) which 
yields a good approximation of the SEM but is less com-
putationally intensive. They used WLM-adjusted estimates 
in downstream analyses to identify maternal and offspring 
specific mechanisms that regulate birthweight and to 
investigate genetic links between maternal traits and birth-
weight. The authors applied two-sample MR to estimate 
causal effects of intrauterine exposures on offspring birth-
weight. Authors selected SNPs associated with each expo-
sure and regressed the WLM-adjusted maternal effects on 
birthweight for those SNPs against the effect estimates 
for the maternal exposure, weighting by the inverse of the 
variance of the maternal exposure effect estimates. Simi-
larly, the authors used WLM-adjusted offspring effects to 
estimate the causal effect of the offspring’s genetic poten-
tial on their own birthweight and compare the results with 
the estimated maternal causal effects.

Moen et al. investigate whether a genetic risk score 
(GRS) of maternal SNPs associated with offspring birth-
weight is also associated with offspring cardiometabolic 
risk factors, after controlling for offspring GRS using a 
one-sample GRS analysis approach. They use a large data-
set and perform primary analyses testing the relationship 
between maternal GRS and each of the offspring risk fac-
tors, whilst conditioning on the offspring GRS. They also 
explore father-offspring pairs to investigate whether there 
is evidence for a postnatal environmental effect (genetic 
nurture or dynastic effects) rather than an intrauterine 
environmental effect. In executing these analyses, the 
authors employ a LMM which accounts for the non-inde-
pendence between siblings. They modelled the maternal 
(paternal) GRS, offspring GRS, age, sex and measurement 

occasion. The non-independence between siblings and 
relatedness between parents and offspring was modelled 
using a genetic relatedness matrix in the random effects 
part of the model [24]. Importantly, a one-sample GRS 
analysis can also be used in single generational setting. 
Further detail on applied results, assumptions and limita-
tions for these methods are provided in Supplementary file 
3. It may be helpful to consider some of the key aspects 
and requirements for running a multigenerational life-
course MR analysis, presented in Table 1.

Applied MR studies presenting results of a lifecourse 
analysis

Of the 127 studies applying lifecourse MR methods, 
included in this review, 51% (65/127) estimated effects in 
just one generation, 42% (53/127) looked at intergenera-
tional effects and 7% (9/127) estimating both. Of the one 
(and one and two) generational studies employed in this 
review, 51% (38/74) estimated the effect of exposures at 
birth, birth to/and childhood, birth to/and adolescence or 
birth to/and adulthood, 35% (26/74) at childhood, childhood 
to/and adolescence or childhood to/and adulthood, and 14% 
(10/74) at adolescence or adulthood. Within those focused 
on single generational effects, 42% (27/65) looked at birth 
weight, 38% (25/65) comprised other body composition 
measures, including adiposity traits, BMI, body size, obe-
sity, waist-to-hip ratio, and body fat percent. Single genera-
tion studies additionally included estimating the genetically 
predicted effects of age at menarche, pubertal age (timing), 
first sexual intercourse, sleep duration, offspring fasting glu-
cose and type 2 diabetes, genetic liability to juvenile idio-
pathic arthritis, disordered eating pattern, alcohol consump-
tion and DNA methylation at the HLA locus. Amongst the 
studies that estimated intergenerational effects, 28% (15/53) 
examined body composition as exposure measures. These 
included maternal and paternal BMI as well as maternal 
adiposity, central obesity, and height. Other exposures exam-
ined in an intergenerational setting are included in Supple-
mentary file 4. All of the two-generational studies estimated 
effects of maternal exposures, with two studies also examin-
ing paternal exposures [64, 73]. Outcomes addressed in the 
studies incorporated in this review are varied and can be 
found in Supplementary file 4.

Discussion

In this systematic literature review, we extracted and sum-
marised findings from studies presenting and/or testing 
approaches to lifecourse MR as well as those presenting 
results of a specific lifecourse analysis. Among the former, 
we focused on papers addressing time-varying or lifecourse 



513Methodological approaches, challenges, and opportunities in the application of Mendelian…

1 3

processes through interpretations of results from “standard” 
MR techniques. “Standard” MR techniques have focused on 
estimating lifetime effects of an exposure, i.e., the cumula-
tive effect of the exposure level from conception and through 
the lifecourse. Labrecque et al. propose that MR estimates of 
the same exposure assessed at different ages vary in the pres-
ence of time-varying genotype-exposure associations, and 
this represents bias in estimates of a lifetime causal effect. In 
response, Morris et al. proposed that “standard” MR is not 
estimating the causal effect of an exposure as it manifests at 
a given time period, but the causal effect of the underlying 
exposure liability. Thus, a hypothetical change in genotype 
would affect all manifestations of the exposure.

In addition, we summarised papers employing a meth-
odological approach for repeat measures of the same 
exposure over the lifecourse. The methods described here 
enhance capability for causal inference of lifecourse effects, 
however, there are clear limitations. One method comprised 
the FPC analysis through PACE, with the limitation that 
this method was developed for hypothesis testing, not for 
estimation of causal effects [22]. Another technique was 
IVW-MVMR, which can separate influences across the life-
course under some but not all causal scenarios. Estimates 
used are based solely on body size and BMI data from the 
UK Biobank [168, 169]. These findings should be evalu-
ated in more cohorts when sample sizes make this possi-
ble. This is particularly important as it has been shown that 
UK Biobank participants are highly selected, which can be 
problematic for instrumental variable analyses [168, 168]. In 
addition, a g-estimation of SNCFTMs was explored. If the 
rare failure assumption does not hold, however, estimates 
from this approach may be invalid. Informative MR analyses 
will additionally require sample sizes much larger than those 
presented. A g-estimation of SMM was also described. Due 
to wide variations in age at first visit and short duration of 
follow-up in the data used, authors were limited to using 
time since enrolment in the study as the time scale, which 
implies the added assumption that the period effect is homo-
geneous across age. The plausibility of this assumption is 
not only specific to the exposure–outcome relationship of 
interest, but also depends on the variability in age.

Papers comprising methodological approaches for inter-
generational effects or pregnancy/birth exposures empha-
sised the importance of a statistical model that can estimate 
the effect of maternal genotypes on offspring outcomes, 
conditional on offspring genotype. On a related note, carry-
ing out MR of own birthweight using only genetic variants 
of the individual is likely to result in inaccuracies. This is 
because foetal growth and subsequently birthweight may be 
influenced by both foetal and correlated maternal genotypes 
[72].

As a further test of model assumptions, negative con-
trols may be employed when applying MR to lifecourse 

epidemiology. For example, in the investigation of repeat 
measures of the same exposure over the lifecourse, testing 
a negative control outcome by estimating the direct effect 
of an exposure in adulthood on an outcome at an earlier life 
stage will help to decipher whether results being generated 
are reliable [115].

Additional methodological studies have addressed the 
importance of gene–gene and gene-environment interactions 
in shaping the genetic architecture of certain phenotypes 
[170]. Whilst the current methods presented in our review 
are not suitable to address this research area, this provides 
an interesting area for future developments.

The aforementioned MR methods rely on genome-wide 
association studies (GWASs). Several GWASs are usu-
ally meta-analysed to increase power using a fixed-effect 
approach, which assumes a common true genetic effect 
across studies. Random-effects models are also employed, 
though have limited power in comparison. It has been 
observed that if the genetic effects change with age both 
fixed-effect or random-effects meta-analysis produce biased 
estimates of the combined genetic effect [171]. Since the 
MR methods presented in our review assume that genetic 
effects may vary with age, one option is to run GWASs on 
specific age categories and, if possible, apply meta-analysis 
in each age category. This is an approach most frequently 
taken in the studies presenting results of specific lifecourse 
analyses highlighted in this review. Alternatively, meta-
regression may be used to relate between-study heterogene-
ity to age and estimate both main and age-varying genetic 
effects [171]. These data may then be applied within a MR 
framework.

Among the studies presenting results of specific life-
course analyses, data availability limitations were apparent. 
Studies focusing on one generational research are largely 
confined to the exploration of questions regarding body 
composition, since these have the strongest instrumental 
variables. In addition, these data are often more commonly 
available on a large scale in most longitudinal cohorts. 
This emphasises the need for pooling data across studies 
to maximise power, highlighting the value of a Lifecourse 
MR consortium, which will enable the testing of key epide-
miological hypotheses that have been advanced regarding 
critical period and cumulative effects on disease risk. For 
some phenotypes, however, lifecourse MR may not be able 
to usefully contribute. This could either be due to the lack 
of identified genetic variants allowing meaningful separa-
tion of measures at different life stages or because these do 
not exist. If the IV-exposure effects are relatively constant, 
“standard” MR may therefore be sufficient. Awareness of 
this may change over time as more data becomes available. 
The collection of these data is also likely to be useful to 
improve MR overall. For example, stratifying analyses by 
age could be of value for testing other MR assumptions. An 
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instrument that has very little effect on the earlier life expo-
sure whilst influencing a later-life exposure and associating 
with an early-life outcome may be indicative of violations 
of horizontal pleiotropy, correlated pleiotropy, as well as the 
gene-environment equivalence (‘consistency’) assumption. 
In addition, lifecourse data may be used for evidence of sub-
stantial in utero effects of variants on processes suggesting 
developmental trajectories.

Conclusions

There is a growing body of research focused on the develop-
ment of lifecourse MR techniques and methods which are 
increasingly being applied to address lifecourse research 
questions. The possibility that genetic effects have different 
levels of importance in the development of an exposure at 
different time points should be more commonly considered 
for application when conducting MR investigations. The 
underlying assumptions for each of the methods presented in 
this review require careful consideration and interpretations 
following these analyses rely on specific condition’s which 
are dependent on the question being addressed, the model 
chosen, instruments selected and data available. We do not 
promote a particular strategy for conducting MR analyses 
in a lifecourse setting, however, we encourage practitioners 
to use this review to make informed decisions on how to 
approach a research question in this field with a solid under-
standing of the limitations present and how these may be 
affected by the aforementioned research conditions. Despite 
these challenges, the methodological developments and 
applied research being conducted using these approaches 
indicate the increase in opportunities becoming more avail-
able within this area.

Supplementary Information The online version contains supplemen-
tary material available at https:// doi. org/ 10. 1007/ s10654- 023- 01032-1.
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