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Abstract
Most work on extending (generalizing or transporting) inferences from a randomized trial to a target population has focused 
on estimating average treatment effects (i.e., averaged over the target population’s covariate distribution). Yet, in the presence 
of strong effect modification by baseline covariates, the average treatment effect in the target population may be less relevant 
for guiding treatment decisions. Instead, the conditional average treatment effect (CATE) as a function of key effect modifiers 
may be a more useful estimand. Recent work on estimating target population CATEs using baseline covariate, treatment, and 
outcome data from the trial and covariate data from the target population only allows for the examination of heterogeneity 
over distinct subgroups. We describe flexible pseudo-outcome regression modeling methods for estimating target popula-
tion CATEs conditional on discrete or continuous baseline covariates when the trial is embedded in a sample from the target 
population (i.e., in nested trial designs). We construct pointwise confidence intervals for the CATE at a specific value of 
the effect modifiers and uniform confidence bands for the CATE function. Last, we illustrate the methods using data from 
the Coronary Artery Surgery Study (CASS) to estimate CATEs given history of myocardial infarction and baseline ejection 
fraction value in the target population of all trial-eligible patients with stable ischemic heart disease.

Keywords Heterogeneity of treatment effect · Transportability · Generalizability · Conditional average treatment effect · 
Epidemiologic methods

Abbreviations
CASS  Coronary Artery Surgery Study
CATE  Conditional average treatment effect
MI  Myocardial infarction

Introduction

When treatment effect modifiers have a different distribution 
among participants in a randomized trial compared to the tar-
get population of substantive interest, the average treatment 
effect estimate from the trial is not directly applicable to the 
target population. A growing literature describes methods for 
extending — transporting or generalizing [1, 2] — inferences 
for the average treatment effect from the trial to the target 
population [3–7]. These methods critically depend on adjust-
ing for a large number of covariates to ensure that the trial and 
target population are conditionally exchangeable, allowing 
estimation of the target population average treatment effect.

Yet, the target population average treatment effect may 
not be sufficient for guiding treatment or policy decisions 
in the presence of strong effect modification [8], especially 
when a small set of strong effect modifiers can be identi-
fied on the basis of background knowledge. In such cases, 
the target population conditional average treatment effect 
(CATE) as a function of these strong effect modifiers may be 
a more useful estimand [9]. For example, investigators may 
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be able to identify a few “causal” effect modifiers of primary 
interest and choose to estimate the target population CATE 
given these causal effect modifiers to guide clinical or policy 
decisions, while also recognizing that they need to adjust 
for many additional candidate effect modifiers, including 
“surrogate” ones, to render the trial and target populations 
exchangeable [10, 11].

Recent work [12, 13] has described methods for esti-
mating target population CATEs over distinct subgroups 
formed by a few key discrete (or discretized) covariates 
(i.e., “subgroup-specific average treatment effects”), when 
extending inferences from the trial to the target population. 
For example, a g-formula approach (outcome model-based) 
involves estimating an outcome model for each treatment 
group in the trial, conditional on the large number of covari-
ates needed for exchangeability, obtaining predictions under 
each model for the individuals in the target population, and 
averaging the difference between the predictions under each 
model within levels of the subgroup variable to estimate 
CATEs in the target population (see [13] for details). This 
g-formula approach and related weighting and augmented 
(doubly robust) weighting methods [13], however, cannot be 
used to estimate the target population CATE over continuous 
covariates or multiple discrete covariates, because the num-
ber of observations at each covariate level is not adequate 
for estimation, even in large data sets [11, 14].

In this paper, we describe methods for estimating the 
target population CATE given a small set of continuous or 
discrete effect modifiers. Specifically, we build on recent 
advances in estimating CATEs in observational studies 
[15–21] and efficient and robust methods for generalizabil-
ity and transportability analyses [6, 7], to propose a flex-
ible two-step regression procedure for estimating the target 
population CATEs when a trial is embedded in a sample 
from the target population (i.e., in nested trial designs 
[22]). In the first step of the procedure, a pseudo-outcome 
is formed using models for the conditional probability of 
trial participation and the conditional expectation of the out-
come in the trial. In the second step, the pseudo-outcome 
is regressed on the key effect modifiers. The procedure can 
support valid inference about the CATE when using data-
adaptive (e.g., machine learning) approaches to estimate the 
probability of trial participation and the expectation of the 
outcome (in the first step), and allows flexible modeling of 
the treatment effect as a function of the effect modifiers (in 
the second step). Thus, the procedure facilitates the exami-
nation of heterogeneity over a low-dimensional set of key 
effect modifiers, while allowing adjustment for a potentially 
high-dimensional set of covariates that is sufficient to render 
the trial and target population exchangeable (i.e., adjust for 
selective participation). We show how to construct pointwise 
confidence intervals for the CATE at a specific value of the 
key effect modifiers and uniform confidence bands for the 

CATE function. We illustrate the proposed methods using 
data from the Coronary Artery Surgery Study (CASS) to 
estimate CATEs given history of myocardial infarction and 
baseline ejection fraction value in the target population of 
trial-eligible patients with stable ischemic heart disease.

Study design, data, and causal estimands

Study design 

We consider a nested trial design [22], where the trial is 
embedded within a cohort sampled from the target popula-
tion of substantive interest. The nesting can be achieved by 
designing a prospective cohort study of individuals from the 
target population and inviting some of the cohort members 
to participate in the trial, while collecting information on 
baseline covariates on all cohort members, including those 
who are not invited or do not agree to participate in the 
trial. Nesting can also be achieved by retrospectively linking 
records from a completed trial with records from a cohort 
that is sampled from the target population. Regardless of 
how nesting is achieved, we assume that the cohort in which 
the trial is nested can be viewed as a simple random sample 
from the target population [23]. Nested trial designs can be 
used for generalizability analyses, when the target popu-
lation represented by the cohort meets the trial eligibility 
criteria, as well as for transportability analyses, when the 
target population represented by the cohort is broader than 
the population defined by the trial’s eligibility criteria (see 
[1, 2] for details regarding the definitions of the terms gen-
eralizability and transportability that we use in this paper; 
these terms are not used consistently in the literature, e.g., 
reference [4] suggests different definitions).

Data 

In the nested trial design, data on a vector of baseline covari-
ates, X, are available from all individuals in the cohort, 
regardless of participation in the trial. Data on the assigned 
treatment, A, and the outcome, Y, need only be available 
among trial participants. We use S as the indicator for trial 
participation ( S = 1 for randomized individuals; S = 0 for 
non-randomized individuals). Thus, the observed data 
are realizations of independent random draws of the tuple 
Oi = (Xi, Si, SiAi, SiYi) , for i = 1,… , n , where n is the total 
number of individuals in the cohort (both randomized and 
non-randomized). For simplicity, we assume throughout that 
the treatment is binary; extensions to address multi-valued 
treatments are similar to the binary case but require a slightly 
different set of identification conditions and modifications 
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to the estimation methods (e.g., to use a “generalized” pro-
pensity score approach [15] to estimate the probability of 
treatment; see [21] for related results using multi-valued 
treatments in observational studies). We also assume that 
the outcome is measured at the end of the study (binary, 
continuous, or count; we do not consider failure-time out-
comes in this paper). Throughout, italic upper-case letters 
denote random variables and corresponding lower-case let-
ters denote realizations. We use f (⋅) to generically denote 
densities.

Causal estimands

 Let Ya denote the potential (counterfactual) outcome under 
each treatment a ∈ {0, 1} , that is, the outcome that would be 
observed under intervention to set treatment to a [24–26]. 
Furthermore, let X̃ denote a vector that contains a small sub-
set of the covariates in X that, on the basis of mechanistic 
understanding and prior empirical evidence, are a priori 
considered as the “key” effect modifiers under considera-
tion. We are interested in the target population CATE given 
X̃ = x̃,

The CATE at some specific value of the key effect modifier, 
x̃ , is sometimes referred to as the “group-average treatment 
effect” [17].

In generalizability and transportability analyses, the 
covariate vector X may be high-dimensional because 
investigators collect information on multiple covariates in 
the hope of rendering the trial and the target population 
exchangeable (in the sense formalized in the next section). 
In contrast, the vector of key effect modifiers X̃ is typically 
low-dimensional, containing only the small subset of base-
line covariates that are deemed to be key effect modifiers of 
interest. For instance, in our illustrative example, the CASS 
investigators identified history of myocardial infarction and 
abnormal left ventricular function (defined as ejection frac-
tion <50%) as key effect modifiers and examined them in 
subgroup analyses using data from trial participants [27, 28]. 
Thus, we may want to examine the association between the 
treatment effect in the target population and history of myo-
cardial infarction and ejection fraction. Such examination, 
however, is likely to first require conditioning on many addi-
tional covariates to render the trial participants exchangeable 
with the target population.

E
[
Y1 − Y0||X̃ = x̃

]
= E

[
Y1||X̃ = x̃

]
− E

[
Y0||X̃ = x̃

]
.

Identification

Identifiability conditions

 The following conditions, which are sufficient for identify-
ing the average treatment effect in the target population [6, 
29], are also sufficient for identifying the CATE in the target 
population:

(1) Consistency of potential outcomes: if Ai = a , then 
Yi = Ya

i
 , for each a ∈ {0, 1} and for every individual i 

in the target population.
(2) Mean exchangeability over A in the trial: 

for each a ∈ {0, 1} and every x  with posi-
t i ve  dens i ty  in  t he  t r i a l  f (x, S = 1) ≠ 0  , 
E[Ya|X = x, S = 1,A = a] = E[Ya|X = x, S = 1].

(3) Positivity of the treatment probability in the trial: 
Pr[A = a|X = x, S = 1] > 0 for each a ∈ {0, 1} and 
every x with positive density in the trial f (x, S = 1) ≠ 0.

(4) Exchangeability in ef fect measure over S: 
E[Y1 − Y0|X = x, S = 1] = E[Y1 − Y0|X = x] , for every 
x with positive density in the target population f (x) ≠ 0

.
(5) Positivity of trial participation: Pr[S = 1|X = x] > 0, 

for every x with positive density in the target population 
f (x) ≠ 0.

The consistency condition over all individuals in the tar-
get population implicitly requires the absence of “hidden” 
versions of treatment [30–32], trial engagement effects [2, 
29], and interference [30, 33]. These conditions are largely 
untestable and need to be considered on the basis of sub-
stantive knowledge. The conditions of mean exchangeabil-
ity and positivity of the treatment probability are expected 
to hold in (marginally or conditionally) randomized trials 
comparing well-defined interventions [11]. The condition of 
“exchangeability in effect measure over S” reflects an untest-
able assumption of lack of effect measure modification by 
trial participation, conditional on baseline covariates, and 
needs to be examined in light of substantive knowledge and 
subjected to sensitivity analyses [34]. Stronger assumptions 
of exchangeability in expectation or in distribution between 
the trial and target population allow identification of other 
estimands that are not identifiable under exchangeability in 
measure (e.g., potential outcome means) [3, 6, 35]. Last, 
positivity of trial participation is in principle testable, but its 
assessment can be challenging when X is high-dimensional 
[36].

To focus on issues related to extending inferences from 
trials, we assume that there are no missing data, no losses 
to follow-up, and complete adherence to treatment. The 
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methods we describe can be extended to address these com-
plications, under additional assumptions [29] and provided 
additional data are collected [37]. Furthermore, our results 
also apply to generalizing or transporting inferences from an 
observational study nested in a broader cohort, provided we 
are willing to assume that conditions (2) and (3) hold in the 
observational study (i.e., no unmeasured baseline confound-
ing and positivity of treatment within levels of the measured 
confounders) [38].

Identification of CATEs

In Web Appendix 1, we show that, under conditions (1) 
through (5), the target population CATE given X̃ = x̃ , that 
is, E

[
Y1 − Y0||X̃ = x̃

]
 , is identified by

where the pseudo-outcome �(O) is defined as

with

p(X) = Pr[S = 1|X] is the conditional probability of trial 
participation given covariates; ea(X) = Pr[A = a|X, S = 1] 
is the conditional probability of treatment a in the trial given 
covariates; and ga(X) = E[Y|X, S = 1,A = a] is the condi-
tional expectation of the outcome in the trial given covari-
ates, among individuals assigned to treatment a ∈ {0, 1} . 
We refer to the functions p(X), ea(X) , and ga(X) as “nuisance 
functions” because they are useful in identifying and esti-
mating CATEs, but, in our setup, are not of scientific interest 
per se. We refer to �(O) generically as a “pseudo-outcome” 
because it is a constructed variable (using the models for the 
probability of participation, the probability of treatment, and 
the expectation of the outcome) that is used as a “response” 
(i.e., “left-hand-side” variable) in the regression of equation 
(1). Because �(O) involves the observed data O and nui-
sance functions that are identifiable from the observed data 
under the nested trial design [22], we conclude that CATEs 
given X̃ are identifiable. Of note, �(O) is the (uncentered) 
influence function [39] of the functional that identifies the 
target population average treatment effect under a nonpara-
metric model for the observed data that obeys conditions (1) 
through (5); see reference [6] for details.

An inverse probability weighted pseudo-outcome is 
formed by setting the g1(X) and g0(X) terms to zero in the 
expression for �(O) (see Web Appendix 1 and Web Appen-
dix 2 for details). For the remainder of this paper, we do not 

(1)�( x̃ ) ≡ E
[
�(O)||X̃ = x̃

]
;

�(O) = �1(O) − �0(O),

�a(O) =
SI(A = a)

p(X)ea(X)

{
Y − ga(X)

}
+ ga(X), for a = 0, 1;

consider this simpler pseudo-outcome because it does not 
allow for valid inference when using machine learning to 
estimate the nuisance functions [40].

Estimation & inference

Two‑step estimation procedure

To extend causal inferences about CATEs given key effect 
modifiers from the trial to the target population, we propose 
a two-step procedure, similar to approaches for estimating 
CATEs in observational analyses with baseline confounding 
by measured variables [19, 20]. In the first step, we create 
the pseudo-outcome using models for the probability of trial 
participation, the expectation of the outcome, and (option-
ally) the probability of treatment in the trial, to account for 
differences between the trial and the target population by 
conditioning on a large set of effect modifiers. In the second 
step, we regress the pseudo-outcome on the key effect modi-
fiers to estimate the CATE function.

Step 1: Estimation of the nuisance functions to form the 
pseudo-outcome: Forming the pseudo-outcome for each 
observation i = 1,… , n in the data follows the identifica-
tion results for �(O) by using estimators for the nuisance 
functions (denoted by “hats”):

with

Of note, the average of �̂(Oi) over the n observations in the 
sample, that is, n−1

∑n

i=1
�̂(Oi) gives a “doubly robust” or 

“augmented inverse probability weighted” [41] estimator of 
the average treatment effect in the target population (to see 
this, compare �̂a(Oi) with the summand in equation (5) of 
reference [6]).

When calculating the pseudo-outcomes, there are sev-
eral options for estimating the nuisance functions for the 
probability of participation, expectation of the outcome, and 
the probability of treatment, that is, p(X), ga(X) , and ea(X) , 
respectively. The probability of treatment in the trial, ea(X) , 
is typically known by design so its estimation is straightfor-
ward using simple parametric models (e.g., logistic regres-
sion) [42, 43]. Alternatively, the known probability of treat-
ment can be used. In contrast, the functions p(X) and ga(X) 
are unknown, involve conditioning on the high-dimensional 
baseline covariates that are necessary for exchangeability to 
hold between the trial and the target population, and may be 

(2)�̂(Oi) = �̂1(Oi) − �̂0(Oi),

�̂a(Oi) =
SiI(Ai = a)

p̂(Xi )̂ea(Xi)

{
Yi − ĝa(Xi)

}
+ ĝa(Xi), for a = 0, 1.



127Regression‑based estimation of heterogeneous treatment effects when extending inferences…

1 3

complex, perhaps including nonlinearities and interactions. 
In practice, parametric models are commonly used to esti-
mate the probability of participation, p(X), or the expectation 
of the outcome, ga(X) . When parametric models are used, 
the procedure is “model doubly robust” [41], in the sense 
that the CATE function can be consistently estimated when 
at least one of the parametric models for participation or 
the outcome is correctly specified. Nevertheless, parametric 
models may poorly approximate both p(X) and ga(X) . At the 
same time, the high-dimension of X precludes fully nonpara-
metric estimation of these models [14] (e.g., non-smooth 
nonparametric (frequency) estimation of the expectation of 
Y given X is infeasible if X is high-dimensional or has con-
tinuous components [44]). To make progress, investigators 
can instead use machine learning (data-adaptive) methods 
to reduce model misspecification and allow more flexible 
modeling of the nuisance functions.

The cost of using data-adaptive approaches is that they 
converge to the true underlying nuisance function at a slower 
rate than parametric models. Informally, for valid infer-
ence, a fast enough rate of convergence of the data-adaptive 
approaches to the underlying true function is important 
to ensure that the bias of the estimated CATE function is 
“small” relative to its standard error [45]. Without a fast 
enough rate of convergence for the nuisance functions, 
bias remains, resulting in an inconsistent estimator without 
optimal coverage. To avoid bias when using data-adaptive 
approaches, by combining models for the probability of 
participation and the expectation of the outcome in the con-
struction of the pseudo-outcome, we can rely on estimators 
of the nuisance functions that converge at a “fast enough,” 
even if slower than parametric, combined rate (i.e., the esti-
mator of the pseudo-outcome in equation (2) has a “rate-
robustness property” [46]). Several data-adaptive methods 
can have rates that are fast enough (e.g., the highly adaptive 
least absolute shrinkage and selection operator (HAL) [47] 
and generalized additive models (GAMs) [48, 49]). When 
using data-adaptive approaches to estimate the nuisance 
functions for the probability of participation and the expec-
tation of the outcome, we assume that the chosen approaches 
are consistent for the true underlying functions.

Background knowledge about aspects of the data-gener-
ating process can be used to select approaches that produce 
good approximations of the nuisance functions. For exam-
ple, if we expect the relationship between trial participation 
and covariates, or the outcome and covariates, to be highly 
nonlinear or involve statistical interactions among covari-
ates, random forest methods [50] may be a good choice to 
estimate the nuisance functions. If we expect sparsity, the 
least absolute shrinkage and selection operator [51] or other 
sparsity-appropriate modeling approaches may be preferred.

Regardless of the estimation approach (i.e., whether 
using parametric or data-adaptive approaches), the estimated 

functions are used to calculate the pseudo-outcomes in equa-
tion (2). Importantly, the participation and outcome models 
should include the high-dimensional set of variables needed 
to satisfy condition (4) to make the trial and target popula-
tion conditionally exchangeable.

Step 2: Pseudo-outcome regression: We fit a regression of 
the estimated pseudo-outcome on the key effect modifiers, 
X̃ , to estimate the target population CATE as a function of x̃,

We refer to this second step of the procedure as a “pseudo-
outcome regression.” To consistently estimate the target 
population CATE function, we need to correctly specify the 
regression model in the second step, and have consistent 
estimators of the nuisance functions in the first step. One 
approach is to use a parametric model (e.g., least squares 
regression) to model the relationship between the pseudo-
outcome and the key effect modifiers X̃ , but correct model 
specification may be challenging if X̃ contains continuous 
components that are not guaranteed to be linear and may 
have complex functional forms. To mitigate the risk of 
model misspecification, given that in our setup X̃ is low 
dimensional, it will often be possible to use nonparamet-
ric regression to flexibly model the relationship between 
the pseudo-outcome and the key effect modifiers, X̃ . For 
example, when X̃ contains discrete covariates, it is simple to 
split the data into subgroups defined by the different levels 
of the covariates and estimate the mean of the pseudo-out-
come within each subgroup – a non-smooth nonparametric 
“regression” approach [44]. When X̃ also contains continu-
ous components, we can use smoothing nonparametric tech-
niques such as series [19] or kernel (local linear) regression 
[20] methods. For example, if X̃ consists of a single continu-
ous covariate, we can use a series estimator in the second 
step by fitting an ordinary least squares regression of the 
pseudo-outcome on a flexible polynomial (alternatively, we 
can use splines or other basis functions) [19]. The goal is to 
approximate the CATE function with a flexible model that 
is easy to understand and graph.

Inference

We now discuss how to obtain both pointwise confidence 
intervals and uniform confidence bands. Pointwise confi-
dence intervals are appropriate for the estimated CATE at 
a specific value of the key effect modifiers. These intervals 
capture the uncertainty at a specific point (i.e., at a specific 
value of the covariates X̃ ) but are too narrow (will have 
significant undercoverage) if inferences are drawn over 
multiple points, as is the case when examining the entire 
domain of the CATE function. If investigators are interested 

(3)�̂( x̃ ) = Ê
[
�̂(O)||X̃ = x̃

]
.
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in examining heterogeneity across the entire domain of the 
CATE function, uniform confidence bands reflect uncer-
tainty over multiple points. The inference strategies we 
describe are appropriate when the CATE function in the sec-
ond step of the two-step estimation procedure is estimated 
using least squares, series, or kernel regression, provided 
appropriate technical requirements are met (e.g., regularity 
conditions, undersmoothing in the kernel regression, etc.; 
see [19] for details regarding ordinary least squares or series 
regression, and [20] for kernel regression). Statistical infer-
ence when using other approaches in the second step of the 
two-step estimation procedure would require case-by-case 
examination.

Pointwise inference: Pointwise confidence intervals for the 
CATE at a specific x̃  value can be obtained using stand-
ard approaches, under reasonable technical conditions [19]. 
Specifically, a (1 − �)% pointwise confidence interval at 
x̃  is given by (�̂( x̃ ) ± z1−�∕2 × �̂( x̃ )), where z1−�∕2 is the 
(1 − �∕2) quantile of the standard normal distribution and 
�̂( x̃ ) is the estimated standard error of the CATE at x̃ , which 
can be obtained using the nonparametric bootstrap [52]. 
Alternatively, when using ordinary least squares or series 
regression in the second step of the CATE estimation pro-
cedure, the robust variance estimator (i.e., the Huber-White 
sandwich estimator) [53, 54], which is readily available in 
standard software packages, can be used to obtain �̂( x̃ ) . 
When using the pseudo-outcomes defined in equation (2), it 
is not necessary to account for the uncertainty in the fitted 
nuisance models in the first step when estimating the robust 
variance; inference can be carried out as if the nuisance 
functions were known [, 19].

Uniform inference: Uniform confidence bands are needed 
to obtain valid coverage over the set of values of the key 
effect modifiers that we16 want to examine. Suppose, for 
concreteness, that we are using series regression in the sec-
ond step of the CATE estimation procedure. Series regres-
sion involves an estimator of the CATE as a function of x̃ 
with the form �̂( x̃ ) = m( x̃ )�̂  , where m( x̃ ) is a vector of 
series or sieve basis functions (e.g., polynomials, splines, 
or wavelets) of x̃ , and �̂  is the least squares estimator of the 
regression coefficients. We will evaluate �̂( x̃ ) over a set of 
grid points P , where P is a subset of the possible values of 
the effect modifiers X̃ . We work with the grid points in P 
instead of all possible values of X̃ to allow for the possibil-
ity that some components of X̃ are continuous. One option 
is to use as grid points all the unique values of x̃ observed 
in the data; another is to choose grid points that capture the 
“interesting” values of x̃ . To obtain uniform inference over 
the set P , following [19, 20], we use a weighted bootstrap 
procedure [55–57] (sometimes referred to as the wild or 
multiplier bootstrap). We describe the weighted bootstrap 

procedure in Web Appendix 3; additional considerations for 
data-adaptive approaches are discussed in Web Appendix 4.

Using a two-step approach to model conditional poten-
tial outcome means and other CATE measures: See Web 
Appendix 5 for how the two-step procedure can be modified 
to model conditional potential outcome means (e.g., condi-
tional counterfactual risks) and treatment effect measures 
other than the mean/risk difference.

Examining heterogeneity in cass

CASS design and data

The Coronary Artery Surgery Study (CASS) [27, 58] com-
pared coronary artery bypass grafting surgery plus medical 
therapy (hereafter, “surgery”) versus medical therapy alone 
in a randomized trial that was nested within a cohort of trial-
eligible patients with stable ischemic heart disease. Patients 
were enrolled from August 1975 to May 1979 and followed-
up for death up to December 1996. The cohort consisted of 
2099 trial-eligible patients of whom 780 participated in the 
trial. For the first 10 years of follow-up, there was no censor-
ing among trial participants.

The original CASS analysis prespecified variables that 
the investigators believed to be important effect modifiers 
and risk factors for the outcome of mortality [27]. These 
variables included history of myocardial infarction and 
abnormal left ventricular function (defined as ejection frac-
tion value less than 50%). One analysis of the trial partici-
pants in CASS at 10-years of follow-up [59] found no differ-
ence in survival probability between treatment groups in the 
overall trial sample, but found that patients with an ejection 
fraction less than 50% had significantly improved survival 
with surgery (surgery 79%, medical therapy 61%). No other 
subgroup-specific benefits were found in the trial [28, 59]. 
A re-analysis of both randomized and observational data 
from CASS found heterogeneity on the risk difference scale 
for mortality at 10-years of follow-up among subgroups 
defined by history of myocardial infarction and abnormal 
left ventricular function [60]. Furthermore, a meta-analysis 
of 7 early trials (including CASS) comparing surgery versus 
medical therapy found that abnormal left ventricular func-
tion was an important modifier for the effect of treatment 
on mean survival time and that patients with abnormal left 
ventricular function derived greater absolute benefit from 
surgery [61]. A more recent randomized trial reported that 
among patients with ischemic cardiomyopathy and low 
ejection fraction (<35%), surgery was more beneficial than 
medical therapy [62]. Thus, we decided to use the methods 
described above to explore whether history of myocardial 
infarction and ejection fraction (treated as a continuous 
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variable) were indeed effect modifiers in the target popula-
tion of all trial-eligible patients.

A total of 1686 patients had complete data on the baseline 
covariates we used in our analysis (731 randomized, 368 to 
surgery and 363 to medical therapy; 955 non-randomized, 
430 receiving surgery and 525 medical therapy). Table 1 
summarizes the basic descriptive statistics for the baseline 
covariates. In general, randomized and non-randomized 
patients had similar characteristics, but non-randomized 
patients were more likely to have taken a beta-blocker regu-
larly, have a higher left main coronary percent obstruction, 
and have a higher left ventricular wall score.

Statistical methods

We evaluated the target population CATEs (risk differences) 
for mortality at 10 years of follow-up, conditional on his-
tory of myocardial infarction and baseline ejection fraction 
value. We analyzed the 986 patients with a history of myo-
cardial infarction and the 700 patients without a history of 
myocardial infarction separately, when estimating the nui-
sance functions and when estimating the pseudo-outcome 
regression. We obtained pointwise confidence intervals and 
uniform confidence bands within the subgroups defined by 
history of myocardial infarction.

In the first step to estimate the nuisance functions for 
the outcome and participation, we used parametric mod-
els (logistic regression) and included the main effects of all 
baseline covariates listed in Table 1, except we modeled age 

Table 1  Baseline characteristics 
in CASS (August 1975 to 
December 1996). S = 1 
indicates the randomized 
group; S = 0 indicates the 
non-randomized group; A = 1 
indicates surgery; A = 0 
indicates medical therapy

LMCA = left main coronary artery; MI = myocardial infarction; PLMA = proximal left anterior artery
For continuous variables we report the mean (standard deviation); for binary variables we report
the number of patients (percentage)

S = 1,A = 1 S = 1,A = 0 S = 1 S = 0

Number of patients 368 363 731 955
Age 51.42 (7.24) 50.92 (7.41) 51.17 (7.32) 50.89 (7.73)
History of angina 285 (77.4) 282 (77.7) 567 (77.6) 760 (79.6)
Taken beta-blocker regularly 163 (44.3) 152 (41.9) 315 (43.1) 508 (53.2)
Taken diuretic regularly 63 (17.1) 50 (13.8) 113 (15.5) 145 (15.2)
Ejection fraction 60.86 (13.04) 59.83 (12.78) 60.35 (12.91) 60.16 (12.25)
Employed full-time 264 (71.7) 233 (64.2) 497 (68.0) 632 (66.2)
Type of job
 High physical labor job 151 (41.0) 142 (39.1) 293 (40.1) 340 (35.6)
 Low mental labor job 129 (35.1) 135 (37.2) 264 (36.1) 320 (33.5)

   High mental labor job 88 (23.9) 86 (23.7) 174 (23.8) 295 (30.9)
Left ventricular wall score 7.44 (2.89) 7.30 (2.78) 7.37 (2.84) 7.07 (2.69)
Taken nitrates regularly 205 (55.7) 196 (54.0) 401 (54.9) 528 (55.3)
History of MI 209 (56.8) 228 (62.8) 437 (59.8) 549 (57.5)
Male 35 (9.5) 37 (10.2) 72 (9.8) 87 (9.1)
Smoking status
 Never smoked 62 (16.8) 54 (14.9) 116 (15.9) 157 (16.4)
 Former smoker 164 (44.6) 157 (43.3) 321 (43.9) 451 (47.2)
 Current smoker 142 (38.6) 152 (41.9) 294 (40.2) 347 (36.3)

High limitation of activities 165 (44.8) 173 (47.7) 338 (46.2) 441 (46.2)
High recreational activity 228 (62.0) 219 (60.3) 447 (61.1) 616 (64.5)
Confirmed hypertension 118 (32.1) 108 (29.8) 226 (30.9) 260 (27.2)
Diabetes status
 No diabetes 325 (88.3) 328 (90.4) 653 (89.3) 873 (91.4)
 Uncertain diabetes 13 (3.5) 7 (1.9) 20 (2.7) 23 (2.4)
 Confirmed diabetes 30 (8.2) 28 (7.7) 58 (7.9) 59 (6.2)

LMCA percent obstruction 4.27 (11.87) 2.78 (9.55) 3.53 (10.80) 5.76 (14.50)
PLMA percent obstruction 36.44 (38.04) 34.89 (36.95) 35.67 (37.49) 39.14 (38.73)
Any diseased proximal vessels 222 (60.3) 230 (63.4) 452 (61.8) 608 (63.7)
Systolic blood pressure 130.28 (17.40) 130.34 (18.72) 130.31 (18.06) 129.80 (18.23)
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and ejection fraction using B-splines (basis splines) of order 
3 (degree 2) with an interior knot placed at the median of 
age or ejection fraction. We modeled the outcome separately 
in each treatment group in the trial. Because the model for 
treatment in the trial cannot be misspecified, to estimate 
ea(X) , we used a simple logistic model that included the 
main effects of age, severity of angina, ejection fraction 
value, systolic blood pressure, proximal left anterior artery 
percent obstruction, and left ventricular wall score [6].

In the second step, we fit the regression of the pseudo-
outcome on ejection fraction. We used ordinary least squares 
regression with either a B-spline or polynomial of ejec-
tion fraction. We did not want to assume that the CATE 
function has a linear form, so we chose to use B-splines 
of order 3 with an interior knot placed at the median of 
ejection fraction. For the polynomial of ejection fraction, 
we set the degree to 3. These models are flexible enough 
to capture most reasonable nonlinearities in the treatment 
effect over ejection fraction. When forming the pointwise 
confidence intervals, we used the robust variance estimator. 
We obtained uniform confidence bands using the weighted 
bootstrap procedure with 200 replicates.

To evaluate the robustness of our results to model speci-
fication of the nuisance functions, we repeated our analyses 
using generalized additive models (GAMs) instead of para-
metric models in the first step of the procedure. For compari-
son, we also estimated trial-only CATEs, by modifying the 
procedure to only use the trial pseudo-outcome (which does 
not include the participation weight) and to fit the second 
step regression only among trial-participants [18].

Results

Figure 1 shows the estimated target population CATE func-
tion stratified by history of myocardial infarction over a set 
of ejection fraction values, from 40 to 80, when using para-
metric models in the first step and splines in the second step. 
The CATE functions for patients with and without a history 
of myocardial infarction show different patterns, but both 
look like they could be reasonably well-approximated by a 
linear fit. For patients with a history of myocardial infarc-
tion, the CATE function linearly increases from a risk dif-
ference of approximately -0.25 for patients with an ejection 
fraction of 40% up to a risk difference of approximately 0.15 
for patients with an ejection fraction of 80%. The uniform 
confidence band suggests that the data are incompatible 
with the hypothesis that the CATE function is constant at 0 
(no effect), over the set of ejection fraction values we con-
sidered. In other words, among patients with a history of 
myocardial infarction, the treatment effect appears to vary 
over ejection fraction, suggesting that surgery may be more 
beneficial (compared to medical therapy) for patients with 
lower ejection fraction, compared to those with higher ejec-
tion fraction.

For patients without a history of myocardial infarc-
tion, the CATE function decreases from a risk difference 
of approximately 0.15 for patients with an ejection fraction 
of 40% to slightly less than 0 for patients with an ejection 
fraction of 70%; then it increases up to approximately 0.20 
for patients with an ejection fraction of 80%. Because the 
uniform confidence band contains zero, across all levels 
of ejection fraction, the data are not incompatible with the 
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Fig. 1  Target population CATE function estimated using parametric 
models in the first step and spline regression in the second step CATE 
= conditional average treatment effect; MI = myocardial infarction. 
The black line indicates the estimated CATE function; dashed gray 
lines connect 95% pointwise upper and lower confidence limits; 

solid gray lines depict the uniform 95% confidence band. The set of 
grid points went up to ejection fraction values of 80%, over a grid 
of evenly spaced points in steps of 1%. In each panel, the confidence 
bands are uniform over ejection fraction (conditional on history of 
MI).
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hypothesis that the CATE function is constant over ejec-
tion fraction for patients without a history of myocardial 
infarction.

In Web Appendix 6, we provide additional results for 
the CASS analysis. Web Appendix Figure 1 shows that the 
second step regression using polynomials instead of splines 
yielded similar results. The estimated trial-only CATE func-
tions, provided in Web Appendix Figures 2 and 3,  were sim-
ilar to the corresponding estimated target population CATE 
functions. We also found that repeating the analysis with 
GAMs in the first step resulted in similar CATE functions; 
see Web Appendix Figures 4 through 7. We have provided a 
simulated dataset and � code [63] that implements the two-
step estimation procedure and produces graphs of the CATE 
function on GitHub (https:// github. com/ serob ertson/ Gener 
aliza bilit yCATE). We provide additional details about the 
code in Web Appendix 7.

Discussion

We described a two-step pseudo-outcome regression proce-
dure for estimating target population CATEs in nested trial 
designs used to extend inferences from a randomized trial to 
a target population. We also described how to obtain point-
wise confidence intervals for the CATE at specific effect 
modifier values and uniform confidence bands for the CATE 
function. This two-step procedure provides a regression-
based framework for examining CATEs given discrete as 
well as continuous covariates, whereas previously proposed 
methods only allow the estimation of CATEs within sub-
groups defined by discrete covariates [12, 13]. Even when all 
covariates of interest are discrete, working within a regres-
sion framework may be advantageous because it allows the 
representation of smoothness or homogeneity assumptions 
by omitting covariate-by-covariate product terms from the 
regression specification; such assumptions are not as easy to 
represent with previously proposed methods [12, 13].

We note the different roles of the baseline covariates in 
the two steps of the procedure: the first step “controls” for 
enough variables to address selective trial participation; the 
second step focuses on a much smaller set of key effect mod-
ifiers. This duality is analogous to the difference between the 
variables needed to address confounding and effect modifi-
ers in previous work on estimating CATEs in observational 
studies [15–21, 64]. In applications, examining heterogene-
ity over a lower dimensional set of covariates may be moti-
vated by scientific or policy considerations. For example, 
key effect modifiers may be identified on the basis of previ-
ous investigations, and the methods described here can be 
used in confirmatory assessments of heterogeneity. Or, it 
may be desirable to base treatment decisions on only a sub-
set of potential effect modifiers while ignoring unacceptable 

ones (e.g., even if insurance status were a strong effect modi-
fier, we might prefer to not use it to make treatment deci-
sions; instead, we might choose to examine heterogeneity 
only over lab measurements or past medical history).

Our methods are motivated by applications in which a 
few key effect modifiers of interest can be identified by the 
investigators (e.g., on the basis of prior studies). When the 
effect modifiers of interest are more numerous it may be 
possible to summarize them into a score (e.g., using an out-
come or treatment effect model obtained from external data) 
and use that score in the second step of our procedure. It is 
also possible to extend our methods to settings where X̃ is 
of moderate to high dimensionality, or even substituting X 
for X̃ , as is often the case in discovery-oriented investiga-
tions [18, 65–67] (we briefly touch on these approaches in 
Web Appendix 1 and Web Appendix 5). In such investiga-
tions, the study goal is to predict individualized responses 
for members of the target population and the second step 
of the procedure typically is modified to use data-adaptive 
approaches appropriate for high-dimensional covariates 
[18]. The development of methods for valid inference in this 
context is an area of active research. Broadly speaking, when 
examining heterogeneity over high-dimensional covariates, 
there exists a trade-off between the flexibility of the model 
specification and the strength of the technical assumptions 
needed for valid estimation and inference [68].

In summary, we proposed a two-step estimation proce-
dure for estimating the target population CATE as a function 
of key effect modifiers in nested trial designs. This procedure 
is useful for examining the dependence of the CATE on a 
small set of key effect modifiers, while adjusting for a large 
set of covariates needed to ensure the exchangeability of the 
trial and the target population.
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