
Vol.:(0123456789)1 3

European Journal of Epidemiology (2022) 37:461–476 
https://doi.org/10.1007/s10654-022-00844-x

METHODS

Generalizability and effect measure modification in sibling 
comparison studies

Arvid Sjölander1  · Sara Öberg1 · Thomas Frisell2

Received: 27 August 2021 / Accepted: 16 January 2022 / Published online: 21 March 2022 
© The Author(s) 2022

Abstract
Sibling comparison studies have the attractive feature of being able to control for unmeasured confounding by factors that 
are shared within families. However, there is sometimes a concern that these studies may have poor generalizability (external 
validity) due to the implicit restriction to families that are covariate-discordant, i.e., those families where at least two siblings 
have different levels of at least one of the covariates (exposure or confounders) under investigation. Even if this selection 
mechanism has been noted by many authors, previous accounts of the problem tend to be brief. The purpose of this paper 
is to provide a formal discussion of the implicit restriction to covariate-discordant families in sibling comparison studies. 
We discuss when and how this restriction may impair the generalizability of the study, and we show that a similar general-
izability problem may in fact arise even when all families are covariate-discordant, e.g. even if the exposure is continuous 
so that all siblings have different exposure levels. We show how this problem can be solved by using a so-called marginal 
between-within model for estimation of marginal exposure effects. Finally, we illustrate the theoretical conclusions with a 
simulation study.
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Introduction

Unmeasured confounding is a serious threat to the valid-
ity of observational studies. While measured confounders 
can be accounted for using an array of statistical techniques, 
the sibling comparison design is capable of also reducing 
confounding bias from unmeasured and even unknown con-
founding factors. By comparing differentially exposed sib-
lings within families, rather than between unrelated subjects, 
the study implicitly controls for all measured and unmeas-
ured factors that siblings from the same family have in com-
mon [1, 2]. These factors may, for instance, include early 
childhood environment and upbringing, and stable parental 
characteristics such as socioeconomic status and education. 

A prominent special case is the co-twin control study, which, 
if restricted to monozygotic twins, completely controls for 
all heritable genetic factors.

Despite the strong appeal of sibling comparison studies, 
there is sometimes a concern that these studies may have 
poor generalizability (external validity) due to various selec-
tion mechanisms. One obvious such selection mechanism is 
the explicit restriction to twins in a co-twin control study; 
if twins are different from ordinary siblings in important 
aspects, the exposure effect estimated in twins may not gen-
eralize well. Another selection mechanism applies to all sib-
ling comparison studies, through the implicit restriction to 
families with more than one child. As the aim is to compare 
siblings within families, only families with more than one 
child can contribute with information to the study.

A more subtle selection mechanism, which also applies 
to all sibling comparison studies, is an implicit restric-
tion to families that are covariate-discordant. Here, we 
use the term ‘covariate’ for both the exposure of interest 
and for other measured variables (e.g. confounders) that 
the researcher controls for in the analysis. That a family 
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is ‘covariate-discordant’ means that there are at least two 
siblings in the family with different levels on at least one 
of the covariates; this is a necessary condition for the fam-
ily to be informative about covariate-outcome associations 
within (conditional on) the family. Conversely, a family is 
covariate-concordant, and thus non-informative, if all sib-
lings in the family have equal levels on all covariates. When 
there are no other covariates in the study than the exposure 
of interest, only exposure-discordant families are informa-
tive about the exposure-outcome association within the fam-
ily. With more covariates in the study the situation is more 
complex, since a family that is exposure-concordant may be 
indirectly informative about the within-family exposure-out-
come association, to some extent. This happens if the family 
is discordant on, and thus informative about, at least one of 
these other covariates, since the within-family associations 
of all covariates are entangled with each other (technically, 
they are not likelihood orthogonal). For studies analyzed 
with conditional logistic regression only families that are 
‘doubly discordant’ (at least two siblings in the family with 
different covariate and outcome levels) are informative [3].

Even if the aforementioned selection mechanisms have 
been noted by many authors several issues remain unclear, 
in particular related to the restriction to covariate-discord-
ant families. First, previous accounts of the problem tend 
to be brief and rarely go beyond stating the obvious (i.e., 
that selection may reduce generalizability), without com-
menting on how or to what extent this would influence the 
particular situation [1, 5–6, 23]. Second, it has been claimed 
that the problem is moot when the exposure of interest is 
continuous; for instance, Hutcheon and Harper [7] write that 
a continuous exposure helps to ‘maintain the generalizability 
of our findings’. On a superficial level this claim may seem 
reasonable, since essentially all families with more than one 
child are exposure/covariate-discordant and thus contribute 
with information to the study, if the exposure is truly con-
tinuous and measured with high accuracy. However, some 
siblings may still have very similar exposure levels, and are 
thus close to concordant. One could imagine a gradient in 
the amount of information provided, where ‘less discordant’ 
siblings provide less information and the dichotomization 
into ‘discordant’ and ‘concordant’ are just extreme ends of 
a continuous spectrum. To our knowledge this has not been 
investigated and it is unclear if and how such an ‘informa-
tion gradient’ would affect the generalizability of the study.

The purpose of this paper is to provide a formal discus-
sion of the implicit restriction to covariate-discordant fami-
lies in sibling comparison studies. We focus on this type 
of selection mechanism since it is arguably the most subtle 
and least understood among those mentioned above. The 
paper is organized as follows: We first establish the nota-
tion, definition and assumptions that we will use throughout 
the paper. We next discuss when and how the restriction to 

covariate-discordant families may impair the generalizabil-
ity of the study, and we show that a similar problem may 
indeed arise even when the exposure is continuous and all 
families are covariate-discordant. After that we show how 
this problem can be solved by using a marginal between-
within model for estimation of marginal exposure effects, 
and we illustrate the theoretical results with a simulation 
study. Finally, we discuss how the presence and magnitude 
of non-generalizability can be assessed in practice.

Notation, definitions and assumptions

Let Xij and Yij be the exposure and outcome of interest, 
respectively, for sibling j in family i, for j = 1,… , ni and 
i = 1,… , n . Let Ui be the full set of confounders, measured 
or unmeasured, that are shared (i.e., constant) in family i. 
The purpose of sibling comparison studies is to implicitly 
control for Ui by comparing differentially exposed siblings 
within the same family. Let Cij be the set of measured non-
shared confounders for sibling j in family i. To keep notation 
simple we treat Cij as a scalar but in practice it may often be 
a vector of variables. Finally, let Si be the indicator of family 
i being selected into (e.g. being informative for) the study; 
Si = 1 for ‘selected’ (informative) and Si = 0 for ‘not 
selected’ (non-informative). For any variable Vij we define 
the vector  �i = (Vi1,… ,Vini

) ,  the  family mean 
Vi =

∑ni
j=1

Vij∕ni  a n d  t h e  f a m i l y  v a r i a n c e 
Vi =

∑ni
j=1

(Vij − Vi)
2∕ni.

The causal diagram [8] in Fig. 1 illustrates the assumed 
relations between Ui , �i , �i , �i and Si , for a family with 
two siblings, with obvious generalization to larger families. 
The dashed double-headed arrows between Ui and (Ci1,Ci2) 
indicate that Ui may affect (Ci1,Ci2) , but also the other way 
around. The square box around Si = 1 indicates the implicit 
conditioning by selection into the study. The arrows from 

Fig. 1  Causal diagram illustrating a sibling comparison study, with 
restriction to covariate-discordant families
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(Xi1,Xi2) and (Ci1,Ci2) to Si represent the restriction to covar-
iate-discordance; a family with size ni is only selected into 
(informative for) the study if (Xi1,… ,Xini

) are not all equal 
or (Ci1,… ,Cini

) are not all equal. As noted in the Introduc-
tion we will focus on this restriction and ignore other possi-
ble selection mechanisms. For instance, we ignore the possi-
bility that the restriction to families with more than one child 
may introduce a direct effect of Ui on Si , since the factors that 
determine whether the parents strive to have more than one 
child (e.g. socio-economic status) may also confound the 
exposure and the outcome. We also noted in the Introduc-
tion that, in the special case when the outcome is binary and 
analyzed with conditional logistic regression, only doubly 
discordant families contribute to the analysis. Hence, in this 
special case Si is also directly affected by Yi1,… , Yini.

The causal diagram in Fig. 1 encodes two important 
assumptions; no unmeasured non-shared confounding and 
no carryover effects, i.e., no effect of the exposure and/or 
outcome of a sibling on the exposure and/or outcome of 
other siblings. In practice, both assumptions may often be 
violated to some extent. However, to keep the discussion 
focused on selection mechanisms and generalizability issues 
we assume that both assumptions hold and refer to Frisell 
et al. [9] and Sjölander et al. [10] for further discussions of 
unmeasured non-shared confounding and carryover effects, 
respectively.

When analyzing sibling data it is common to assume a 
fixed effects model on the form

where E(Yij|Ui,Xij,Cij) is the conditional mean of the out-
come, given (Ui,Xij,Cij) and g is an appropriate link func-
tion, typically the identity link, the log link or the logit link. 
Using the logit link leads to what is often referred to as 
‘conditional logistic regression’. The term ‘fixed’ refers to 
the intercept �0i , which is a categorical parameter with a 
fixed level per family. This intercept is intended to absorb, 
and thereby control for, the shared confounders Ui . The 
parameter �X measures the conditional association between 
Xij and Yij , given Ui and Cij . In the absence of unmeasured 
non-shared confounders, �X has a causal interpretation as 
the conditional causal effect of Xij on Yij , given (Ui,Cij) . This 
parameter is usually estimated with conditional maximum 
likelihood; we refer to the Appendix for details.

Covariate‑discordance and effect measure 
modification by shared confounders

To see intuitively how the restriction to covariate-discord-
ant families may cause generalizability problems, note that 
the shared confounders are statistically associated with the 

(1)g{E(Yij|Ui,Xij,Cij)} = �0i + �XXij + �CCij,

selection into the study since Ui has an indirect effect on Si 
in Fig. 1 mediated through (Xi1,… ,Xini

) , and possibly also 
through (Ci1,… ,Cini

) . As a result, those families that are 
selected into the study will generally have a different distri-
bution of the shared confounders than those not selected into 
the study. If the shared confounders also modify the effect 
of the exposure on the outcome, then the observed effect 
among the covariate-discordant families will not generally 
be the same as the effect among the covariate-concordant 
families, and will thus not generalize to the whole popula-
tion of both covariate-discordant and covariate-concordant 
families.

To quantify the problem, and to show that a similar prob-
lem may arise even for continuous exposures, we consider 
the fixed effects model (1). For pedagogical purposes we 
temporarily ignore the measured non-shared confounders 
Cij , so that covariate-discordance/concordance is equivalent 
with exposure-discordance/concordance, and the assumed 
model is given by

It is easy to show (see the Appendix) that the fixed effects 
model estimate �̂X  only draws information from the expo-
sure-discordant families, as expected by intuition. However, 
it is important to note that this is a feature of the estimation 
process, not of the model per se, which makes no reference 
to exposure-discordance/concordance. The model conditions 
on Ui , not on exposure-discordance, and the within-family 
effect �X is assumed to be constant across all levels of Ui , i.e., 
it is assumed that there is no effect measure modification by 
the shared confounders. Hence, if the model is correct the 
restriction to exposure-discordant families in the estimation 
process does not cause any generalizability problems.

To see how generalizability problems may nevertheless 
arise, suppose that model (2) is not correct, since there is in 
fact effect measure modification by the shared confounders. 
Thus, the true model is given by

where the parameter �X is a function of Ui . Suppose further 
that g is the identity link. It can then be shown (see the 
Appendix) that, regardless of whether Xij is binary or contin-
uous, the estimate �̂X under the incorrectly assumed model 
(2) converges to a weighted average of the Ui-specific effects:

The weights are directly proportional to the conditional vari-
ance of Xij , given Ui:

(2)g{E(Yij|Ui,Xij)} = �0i + �XXij.

(3)g{E(Yij|Ui,Xij)} = �0i + �X(Ui)Xij,

(4)�̂X → E{w(Ui)�X(Ui)}.

w(Ui) =
(ni − 1)Var(Xij|Ui)

E{(ni − 1)Var(Xij|Ui)}
.
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The expression in (4) shows that all families do not contrib-
ute equally to the estimate of �X ; the families that have levels 
of Ui associated with a high variability in Xij tend to be more 
informative. Hence, in the presence of effect measure modi-
fication by Ui , �̂X does not converge to the marginal (average) 
exposure-outcome effect E{�X(Ui)} across all families, and 
does not estimate a parameter that is generally representative 
of the whole population.

An important special case is when the terms 
(ni − 1)Var(Xij|Ui) and �X(Ui) are independent. This hap-
pens, for instance, when ni and Var(Xij|Ui) are independent 
of Ui , e.g. the shared confounders have no influence on fam-
ily size or the variability in the exposure. In this special case, 
it follows from (4) that �̂X converges to E{w(Ui)}E{�X(Ui)} , 
which is equal to E{�X(Ui)} since E{w(Ui)} = 1 . Wooldridge 
[11] (Section 11.7.3) provided a similar results, but without 
providing the analytic expression for the large sample limit 
of �̂X in (4).

The problem of non-generalizability is most accentuated 
when some families are exposure-concordant, since the esti-
mate �̂X gives 0 weight to these families (or, more precisely, 
it gives 0 weight to the exposure effect �X(Ui) at values of 
Ui for which Var(Xij|Ui) = 0 ). However, as suggested in the 
Introduction, this is just an extreme end of a continuous 
spectrum; a similar problem may arise even if the exposure 
is continuous and all families are exposure-discordant, as the 
following example illustrates.

Suppose that Ui is a single variable having a standard 
(mean 0, standard deviation 1) normal distribution, and 
that �X(Ui) = Ui . For positive values of Ui we have that 
𝛽X(Ui) > 0 , whereas for negative values of Ui we have that 
𝛽X(Ui) < 0 . Since Ui is distributed symmetrically around 
0 these deviations from 0 cancel out, so that the marginal 
exposure effect is 0. However, if ni is independent of Ui we 
have from (4) that

which is not generally equal to 0. For instance, suppose that 
Var(Xij|Ui) increases from 0.2 to 1.2 as Ui goes from −∞ 
to ∞ ; specifically, suppose that Var(Xij|Ui) = Φ(Ui) + 0.2 , 
where Φ(⋅) is the standard normal CDF. Then, it can be 
shown numerically that �̂X does not converge to 0, but to 
0.4. We return to this example in the ‘Simulation’ section.

The asymptotic limit of �̂X is most straight forward and 
intuitive for the simple scenario above, where the fixed 
effects model has an identity link and includes no meas-
ured non-shared confounders. In the Appendix we derive 
the asymptotic limit of �̂X for three other scenarios: the fixed 
effects model has an identity link and includes one measured 
non-shared confounder, and the fixed effects model has a 
log link or a logit link and includes no measured non-shared 

�̂X →

E{Var(Xij|Ui)Ui}

E{Var(Xij|Ui)}
,

confounders; for the latter two scenarios we also assume that 
Xij is binary and ni = 2 . We show that the asymptotic limit 
of �̂X is a weighted average of the Ui-specific effects for all 
these scenarios. Although the weights have more complex 
expressions than for the simple scenario above, a common 
feature is that the weights increase with Var(Xij|Ui) (all other 
factors constant), and are equal to 0 for values of Ui such that 
Var(Xij|Ui) = 0.

Estimation of marginal effects with marginal 
between‑within models

The generalizability problem discussed in the previous sec-
tion arises because we use a fixed effects model that assumes 
no effect measure modification by the shared confounders, 
when in fact such effect measure modification is present. 
Although effect measure modification can in principle be 
modeled by including an interaction (product) term between 
the exposure and the shared confounders, such interaction is 
not estimable with conditional maximum likelihood [12]. If 
the shared confounders were measured, then one could solve 
the problem by stratifying on the confounders and estimat-
ing the conditional effect at each level of these. In practice 
though, this is typically not possible since the shared con-
founders are unmeasured to a large extent; indeed, this is the 
motivation for pursuing a sibling comparison study.

A more feasible way to avoid bias due to effect meas-
ure modification is to use a so-called between-within (BW) 
model. This model comes in two versions; as a marginal [13, 
14] or a conditional model [15–17]. Like the fixed effects 
model, the conditional BW model conditions on the shared 
confounders, and assumes no effect measure modification 
by these. In contrast, the marginal BW model marginalizes 
over the shared confounders, and is thus ignorant about the 
presence or absence of effect measure modification.

The central idea in (both marginal and conditional) BW 
models is to assume that the shared confounders Ui can be 
represented by a measurable ‘proxy variable’ Di , which is 
a function of the vectors (�i,�i) . Technically, �i and �i are 
assumed to be conditionally independent of Ui , given Di:

we refer to assumption (5) as the ‘BW assumption’. The 
proxy variable Di is often taken to be the vector of means 
(Xi,Ci) ; however, to make the BW assumption more realis-
tic we may also include, for instance, the variances (Xi,Ci) 
[17]. In some studies the family size ni is likely related to 
the shared confounders Ui . This may for instance be the 
case in developing countries, where the number of chil-
dren is often strongly related to familial socio-economic 
status. In such situations one may include ni in Di to make 

(5)Ui⊥(�i,�i)|Di;
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the BW assumption more realistic. In some special cases 
the BW assumption is guaranteed to hold. In particular, in 
the absence of measured non-shared confounders the BW 
assumption holds with Di = (Xi,Xi, ni) when Xij has a normal 
distribution, and with Di = (Xi, ni) when Xij has a Bernoulli 
distribution (e.g. when Xij is binary), regardless of how Ui is 
distributed (see the Appendix).

Under the BW assumption we can estimate the marginal 
effect of taking the exposure from, say, x = 0 to x = 1 in the 
target population with a marginal BW model, using a five-
step procedure. We give a brief explanation of the procedure 
here, and refer to Sjölander [14] for a more rigorous descrip-
tion. In the first step we fit a marginal BW model on the form

where h is a regression function and � is a vector of model 
parameters. A standard linear BW model assumes that 
Di = (Xi,Ci) and

In this model, the coefficients for Xi and Xij are referred to as 
the ‘between-’ and ‘within-effect’ of the exposure, respec-
tively; thus the term ‘BW model’. In the second step we 
manipulate the observed data by replacing each subject’s 
factual exposure level with the fixed level 0, but without 
changing the factual levels of Cij and Di . In the third step we 
use the fitted model to predict the outcome for each subject 
in the manipulated data, i.e., for each observed level of Cij 
and Di . For a given subject, this prediction is an estimate 
of the counterfactual outcome, had the exposure been set 
to 0 for that subject while holding the values of Cij and Di 
constant. In the fourth step we average these predictions to 
obtain an estimate of the mean outcome, had the exposure 
been set to 0 for all subjects. Finally, in the fifth step we 
repeat the procedure for x = 1 , and contrast the estimated 
counterfactual means for x = 0 and x = 1 to obtain an esti-
mate of the marginal exposure effect. This estimation pro-
cedure is a form of regression standardization [18], and can 
easily be carried out with, for instance, the package stdReg 
in R [19, 20]. Asymptotic confidence interval and p-values 
for the estimates can be computed with standard theory for 
estimating equations as described by Sjölander [14], and can 
also be obtained from the stdReg package.

We emphasize three important points regarding the model 
and estimation procedure outlined above. First, although the 
marginal BW model does not explicitly include (condition 
on) the shared confounders, it implicitly controls for these 
through the proxy variable Di . Second, in contrast to the 
fixed effects model (1), the marginal BW model (6) makes 
no assumption about the presence or absence of effect meas-
ure modification by the shared confounders. Thus, the esti-
mated marginal exposure effect is (asymptotically) unbiased 

(6)E(Yij|Di,Xij,Cij) = h(Di,Xij,Cij;�),

E(Yij|Di,Xij,Cij) = �0 + �XXij + �
X
Xi + �CCij + �

C
Ci.

also when such effect measure modification is present, pro-
vided that the marginal BW model (6) is correctly specified 
and the BW assumption (5) holds. Third, standard regression 
models are often kept simple to make the results transpar-
ent and interpretable. However, this is not necessary for the 
marginal BW model, since the fitting of this model is just the 
first step in the five-step estimation procedure, and the end 
product of the procedure (the counterfactual mean outcome) 
will be no less interpretable if the underlying model is com-
plex than if the model is simple. Hence, to ensure that the 
model is realistic one may use a relatively complex model 
specification, including, for instance, splines and interaction 
terms. We illustrate these points in the next section with a 
simulation.

Simulation

In this section we present the results from a simulation study, 
demonstrating the conclusions and methods from previous 
sections. We simulated samples of families with 1, 2, 3 or 
4 siblings using probabilities 0.2, 0.5, 0.2, and 0.1 to match 
the distribution of siblings in Sweden [21]. We ignored non-
shared confounders Cij and generated the shared confound-
ers, the exposure and the outcome from the model

We generated both a continuous outcome from a normal 
distribution with unit variance, for which g was the iden-
tity link, and a binary outcome, for which g was the logit 
link. The parameter �X(Ui) determines the degree of effect 
measure modification by Ui . We considered three scenarios; 
�X(Ui) = 0 (no effect measure modification), �X(Ui) = Ui 
(positive effect measure modification) and �X(Ui) = −Ui 
(negative effect measure modification). In the first scenario 
the exposure effect is 0, both conditionally and marginally 
over Ui . In the other two scenarios the conditional exposure 
effect depends on Ui , but the marginal exposure effect is still 
0 since positive and negative conditional effects cancel out.

It can be shown (see the Appendix) that under the con-
ditional (on Ui ) model in (7) the BW assumption (5) holds 
with Di = (Xi,Xi) . However, the true regression function 
h(Di,Xij;�) in (6) is rather non-standard and unintuitive. We 
emphasize that this complexity is a consequence of using 
a simple conditional model. Alternatively, we could have 
started by formulating a simple marginal model, which 
would typically correspond to a complex conditional model. 
In real scenarios there is no a priori reason why either model 
would be more plausible than the other.

(7)
Ui ∼ N(0, 1)

Xij�Ui ∼ N{Ui,Φ(Ui) + 0.2}

g{E(Yij�Ui,Xij} = Ui + �X(Ui)Xij

⎫⎪⎬⎪⎭
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We generated 1000 samples of n = 1000 families each 
from the model in (7). For each sample we estimated the 
conditional exposure effect �X in the fixed effects model (2), 
using the gee function in the drgee package in R. This 
model is correct when there is no effect measure modifica-
tion ( �X(Ui) = 0 ) but otherwise incorrect. We also estimated 
the marginal effect of increasing the exposure from x = 0 to 
x = 1 with two different marginal BW models, fitted with 
the stdGlm function in the stdReg package. For this 
marginal effect we used the same link function as in the 
fixed effects model, i.e. an identity link for the continuous 
outcome and a logit link for the binary outcome. The first 
BW model was the standard model

This model incorrectly assumes that the BW assumption (5) 
holds with Di = Xi , and that the relation between Yij and 
(Di,Xij) is linear, on the scale defined by the link function g. 
The second BW model was defined as

where s(Xi) and s(Xi) are natural cubic spline functions of 
Xi and Xi , with knots at the three quartiles in their sample 
distributions. This model correctly assumes that the BW 
assumption (5) holds with Di = (Xi,Xi) , but uses spline 
functions to approximate the correct regression function 
h(Di,Xij;�) . For the continuous outcome (i.e. when g was 
the identity link) we additionally fitted the correct marginal 

g{E(Yij|Di,Xij)} = �0 + �XXij + �
X
Xi.

(8)
E(Yij|Di,Xij) =�0 + �XXij + �

X
s(Xi) + �

X
s(Xi)

+ �
XX
Xijs(Xi) + �

XX
Xijs(Xi),

BW model, as derived in the Appendix. We did not attempt 
to fit this model for the binary outcome, since the logit link 
function makes the model very complex and computation-
ally demanding.

For each fitted model we computed the mean and standard 
deviation of the estimates over the 1000 samples, together 
with the mean standard error as obtained from the gee and 
stdGlm functions, and the empirical coverage probabil-
ity of the 95% confidence interval estimate±1.96×standard 
error. R code for the simulation is given in the Appendix.

Table 1 shows the result. In the absence of effect meas-
ure modification by Ui , all estimates are virtually unbiased 
(mean estimates equal to 0). However, in the presence of 
negative and positive effect measure modification by Ui , 
the mean estimates are equal to −0.4 and 0.4 for the lin-
ear fixed effects model, and −0.35 and 0.07 for the logistic 
fixed effects model, thus biased to various degree. The linear 
standard BW model has the same degree of bias as the linear 
fixed effects model for these scenarios, whereas the logistic 
standard BW model has considerably less bias (mean esti-
mates −0.07 and 0.02) than the logistic fixed effects model. 
The linear spline BW model is virtually unbiased (mean 
estimates 0.01 and −0.01 ), whereas there appears to be a 
slight bias in the logistic spline BW model (mean estimates 
−0.04 and −0.03 ). Finally, the correct linear BW model 
appears to be virtually unbiased (mean estimates 0.01 and 
−0.01 ). All mean standard errors agree well with the cor-
responding standard deviations of the estimates, even when 
the estimates are badly biased. This is expected, given that 
the gee and stdGlm functions provide robust ‘sandwich’ 
standard errors, which do not rely on the specified model 

Table 1  Simulation results. 
Mean and standard deviation 
(sd) of the estimated marginal 
exposure effect, and mean 
standard error (se) and 
coverage probability (cp) of 
corresponding 95% confidence 
interval, for the fixed effects 
model and marginal BW 
models. The true marginal effect 
is 0 for all scenarios

Linear model Logistic model

Mean sd se cp Mean sd se cp

No effect measure modification
Fixed effects model 0.00 0.04 0.03 0.94 0.00 0.08 0.08 0.95
Standard BW model 0.00 0.04 0.03 0.94 0.00 0.02 0.02 0.95
Spline BW model 0.00 0.04 0.05 0.96 0.00 0.02 0.02 0.95
Correct BW model 0.00 0.04 0.04 0.94 − − −
Negative effect measure modification
Fixed effects model −0.40 0.06 0.06 0.00 −0.35 0.07 0.08 0.00
Standard BW model −0.40 0.06 0.06 0.00 −0.07 0.01 0.01 0.00
Spline BW model 0.01 0.06 0.06 0.94 −0.04 0.02 0.02 0.46
Correct BW model 0.01 0.08 0.06 0.93 − − − −
Positive effect measure modification
Fixed effects model 0.40 0.06 0.06 0.00 0.07 0.08 0.08 0.83
Standard BW model 0.40 0.06 0.06 0.00 0.02 0.02 0.02 0.84
Spline BW model −0.01 0.06 0.06 0.95 −0.03 0.02 0.02 0.71
Correct BW model −0.01 0.06 0.05 0.94 − − − −
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being correct [22]. However, the 95% confidence intervals 
only have close to nominal 95% coverage for those scenarios 
where the estimate is almost unbiased. This is also not sur-
prising, since any asymptotic bias in the estimate, even if 
minuscule, forces the coverage probability of the confidence 
interval estimate±1.96×standard error to 0 as the sample size 
goes to infinity.

Notably, the standard deviation of the estimates from 
the linear spline BW model are no larger than the standard 
deviation of the corresponding estimates from the correct 
linear BW model. This indicates that no statistical efficiency 
was lost by approximating the correct model with splines. 
The standard deviation of the estimates from the logistic BW 
models are considerably smaller than the standard deviation 
of the corresponding estimates from the logistic fixed effects 
model. This indicates that, for the logistic link function, the 
BW model does not only facilitate estimation of marginal 
effects, but also gives higher statistical efficiency.

In practice, it is unlikely that the analyst would be able 
to correctly specify a non-standard and unintuitive model 
such as the true regression function h(Di,Xij;�) in our simu-
lation. In contrast, even though the spline model in (8) has 
a rather complex mathematical expression, it only contains 
standard spline functions that are available in all major sta-
tistical software. It is thus reassuring that the spline BW 
models gave close to unbiased estimates in our simulation, 
since it indicates that the analyst may not need to specify the 
true model correctly; using standard spline functions as an 
approximation may suffice.

Assessing the presence and magnitude 
of non‑generalizability

Even though the issue of generalizability in sibling com-
parison studies has received little formal attention, several 
authors have proposed informal methods to assess the mag-
nitude of the problem. D’Onofrio et al [23] and Class et al 
[24] used sibling comparison designs to study the effects 
of preterm birth and fetal growth restrictions on mortality 
and psychiatric morbidity. As a sensitivity analysis they 
estimated the exposure-outcome associations using ordi-
nary (i.e. not fixed effects) regression models, fitted sepa-
rately to families with two or more children (informative 
for their sibling comparisons) and to families with only one 
child (non-informative). They obtained similar estimates in 

the two groups, which they took as evidence for general-
izability of sibling comparison estimates from the former 
group to the latter. Gebremedhin et al [25] used a sibling 
comparison design to study the effect of interpregnancy 
interval on hypertensive disorder. As a sensitivity analysis 
they compared the distribution of measured covariates (e.g. 
maternal age at first birth, marital status, ethnicity) between 
families with three or more children (informative for their 
sibling comparisons) and families with one or two siblings 
(non-informative). Like D’Onofrio et al [23] and Class et al 
[24] they observed no major differences between the groups, 
which they took as evidence for generalizability.

Although such sensitivity analyses may be informative 
to some extent, they do not provide definitive evidence. It is 
possible that both the marginal (over the shared confound-
ers) exposure-outcome association and the distribution of 
measured covariates are similar between the informative and 
non-informative families, yet the conditional (on the shared 
confounders) exposure-association is different, and vice 
versa. Furthermore, such sensitivity analyses are only useful 
to the extent that there is a clear-cut between the informa-
tive and non-informative families. Families with only one 
child are clearly non-informative in these studies, as well 
as families with two children in the study by Gebremedhin 
et al. However, we have shown that for continuous exposures 
such as interpregnancy interval there is also a gradient in 
the information provided, where ‘less discordant’ siblings 
provide less information. This feature is not addressed in the 
sensitivity analyses by D’Onofrio et al [23], Class et al [24] 
and Gebremedhin et al [25] .

An alternative way of assessing the potential for non-gen-
eralizability is to consider the underlying mechanisms of the 
problem. We have shown that non-generalizability arises in 
sibling comparison studies because of effect measure modi-
fication by the shared familial confounders, and we have 
argued that the problem is compounded if the variability in 
the exposure depends on the shared confounders. In many 
studies, some of the shared confounders are measured, which 
makes it possible to partly assess these mechanisms. As a 
concrete example, Gebremedhin et al [25] provided data on 
interpregnancy interval categorized into 7 categories, for 
Caucasian and non-Caucasian mothers separately; we have 
reproduced these data in Table 2. A standard �2-test gives a 
p-value less than 2.2 × 10−16 for these data; thus, ethnicity is 
associated with interpregnancy interval. A common measure 
of variation for nominal variables is the HREL index [26], 

Table 2  Distribution of interpregnancy interval (months) for Caucasian and non-Caucasian mothers, from Gebremedhin et al [25]

0–5 6–11 12–17 18–23 24–59 60–119 ≥120

Caucasian 12299 37050 42262 31413 64944 17801 3304
non-Caucasian 4249 8026 8266 5939 13965 3979 640
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which is a scaled version of the Shannon entropy. Comput-
ing this measure for the data in Table 2 gives very similar 
figures, 0.88 and 0.90, for the Caucasian and non-Caucasian 
mothers. This indicates that, although ‘ethnicity’ may be an 
important shared confounder in the study by Gebremedhin 
et al [25], it is not plausibly a major source of non-gener-
alizability for their sibling comparisons. If no major differ-
ences are found in exposure-variation for any other measured 
non-shared confounders, then this may taken as evidence 
for generalizability of the sibling comparison estimates. A 
similar caveat as above applies here as well though; it is pos-
sible that the exposure has similar variation across levels of 
all measured confounders, but varies strongly across levels 
of one or several unmeasured confounders.

Yet another way to assess the magnitude of non-general-
izability is to fit both a fixed effects model and a marginal 
BW model, and compare the estimates. If these are similar, 
then this may be taken as evidence for generalizability of the 
fixed effects model estimate. The converse is more question-
able though since there could be several explanations for 
a difference between the estimates, including bias due to 
misspecification of the marginal BW model, violation of the 
BW assumption, or (e.g. for logistic models) non-collapsi-
bility of the chosen effect measure [27]. The fit of the mar-
ginal BW model can be assessed with standard diagnostic 
tools, and the model can be refined until a reasonable fit is 
achieved. If some of the shared confounders are measured, 
as in the study by Gebremedhin et al [25], one can verify 
that that BW assumption holds with respect to these, for the 
particular choice of Di . However, this does not guarantee 
that the assumption holds with respect to the unmeasured 
confounders.

In summary, even though the presence and magnitude 
of non-generalizability can be assessed empirically, such 
empirical tests can only provide limited evidence. Hence, 
when judging whether a particular study may suffer from 
substantial generalizability problems it is also important to 
use subject matter knowledge about the situation at hand. 
In some situations one may have a priori reason to believe 
that there is no substantial effect measure modification by 
the shared confounders, or that the variation in the exposure 
is fairly constant across the shared confounders, in which 
case one may conclude that the sibling comparison estimates 
are likely to generalize well. However, if such subject mat-
ter knowledge is lacking, and the empirical tests discussed 
above are either not applicable or deemed unreliable, then 
one should be rather cautious to generalize the results from 
the sibling comparison study to the whole population.

Discussion

The sibling comparison design is an important component 
in the epidemiologic toolbox. However, it has subtle features 
that are not present in simpler designs, which must be prop-
erly understood in order to interpret the results correctly. We 
have shown how the selection of covariate-discordant fami-
lies in sibling comparison studies may affect the generaliz-
ability of the results, and that a similar generalizability prob-
lem may arise even if all families are covariate-discordant 
(e.g. if the exposure is continuous) if there is effect measure 
modification by the shared familial confounders. We have 
demonstrated that the problem can be solved by using a mar-
ginal BW model to estimate the marginal exposure effect.

When the exposure effect varies across levels of con-
founders (or other covariates), stratum-specific effects are 
often of greater public health interest than the marginal 
effect, since they can be used to answer more detailed and 
relevant questions regarding specific subpopulations (e.g. 
patients with certain characteristics). However, as noted 
in Section ‘Estimation of marginal effects with marginal 
between-within models’ it is typically not possible to stratify 
on all the shared confounders in sibling comparison studies, 
since these are unmeasured to a large extent. Thus, it seems 
like the best one could hope for is an approximately unbiased 
estimate of an effect that is representative for the aggregated 
population, e.g. a marginal exposure effect.

In our simulation, we used a continuous exposure. Mar-
ginal BW models can be used with binary exposures as well 
since the underlying theory for the model, as described 
briefly in this paper and more thoroughly by Sjölander [14], 
makes no assumption about whether the exposure is binary 
or continuous. However, when the exposure is binary the 
marginal BW model tends to make strong extrapolation out-
side the observed data, and may thus be sensitive to the para-
metric model assumptions. Essentially, this is because when 
the exposure is binary the value of the proxy variable Di 
typically restricts the set of possible exposure values for each 
individual sibling in the family. For instance, suppose that 
Di is taken to be the exposure mean Xi , and observed to be 
equal to 1 in a particular family. Then, the individual expo-
sure value Xij must also be equal to 1 for all siblings in that 
family. Thus, when predicting the counterfactual outcome 
for an individual j in that family, had Xij been hypothetically 
set to 0, the model has to rely completely on information 
from other families with Xi ≠ 1 . We provide a more detailed 
discussion of marginal BW models for binary exposures in 
the Appendix.
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A Conditional maximum likelihood 
under the fixed effects model (1)

When using conditional maximum likelihood estimation of 
�X in model (1), the conditional conditional distribution of 
Yij , given (Ui,Xij) , is assumed to be on the form

where the canonical parameter �ij is equal to �0i + �XXij . It 
follows that

where the first equality follows from the fact that 
(Xi1, Yi1,Ci1),… , (Xini

, Yini ,Cini
) are conditionally independ-

ent, given Ui , under causal diagram in Fig. 1. Inference is 
conditioned on niYi , which is a sufficient statistic for �0i . 
The conditional maximum likelihood contribution for set i 
becomes equal to

For an exposure-concordant sibling set with Xi1 = …Xini
 , 

the conditional likelihood contribution for set i simplifies to

This does not depend on �X , hence the exposure-concordant 
sibling sets are non-informative.

B Asymptotic limit of ̂̌
X

 under effect 
measure modification by Ui

If g is the identity link, then Yij is assumed to have a normal 
distribution with mean �ij = �0i + �XXij and constant vari-
ance �2 , given (Ui,Xij) , so that niYi has a normal distribution 
with mean ni�i and variance ni�2 , given (Ui,�i) . It follows 
that

p(Yij|Ui,Xij) = exp

{
Yij�ij − A(�ij)

�
+ c(Yij,�)

}
,

p(�i|Ui,�i) =

ni∏
j=1

p(Yij|Ui,Xij)

=

ni∏
j=1

exp

{
Yij�ij − A(�ij)

�
+ c(Yij,�)

}
,

p(�i�Ui,�i, niYi) =
p(�i�Ui,�i)∑

�i∼niYi
p(�i�Ui,�i)

=
exp{

∑ni
j=1

YijXij�X + c(Yij,�)}∑
�i∼niYi

exp{
∑ni

j=1
YijXij�X + c(Yij,�)}

.

exp{
∑ni

j=1
c(Yij,�)}∑

�i∼niYi
exp{

∑ni
j=1

c(Yij,�)}
.

Hence, the conditional maximum likelihood score contribu-
tion from set i is

If g is the log link, then Yij is assumed to have a Poisson 
distribution with mean �ij = exp(�0i + �XXij) , given (Ui,Xij) , 
so that niYi has a Poisson distribution with mean ni�i , given 
(Ui,�i) . It follows that

Hence, the conditional maximum likelihood score contribu-
tion from set i is

When ni = 2 and Xij is binary, this simplifies to

p(�i�Ui,�i, niYi)

=
p(�i�Ui,�i)∑

�i∼niYi
p(�i�Ui,�i)

=

∏ni
j=1

(2��2)−1∕2exp{−(Yij − �ij)
2∕(2�2)}

(2�ni�
2)−1∕2exp{−(niYi − ni�i)

2∕(2ni�
2)}

=
(2��2)−ni∕2exp{−

∑ni
j=1

(Yij − �ij)
2∕(2�2)}

(2�ni�
2)−1∕2exp{−(niYi − ni�i)

2∕(2ni�
2)}

=
(2��2)−ni∕2

(2�ni�
2)−1∕2

exp

⎡
⎢⎢⎣
−
∑ni

j=1
{(Yij − Yi) − (�ij − �i)}

2

2�2

⎤
⎥⎥⎦

=
(2��2)−ni∕2

(2�ni�
2)−1∕2

exp

⎡⎢⎢⎣
−
∑ni

j=1
{(Yij − Yi) − �X(Xij − Xi)}

2

2�2

⎤⎥⎥⎦
.

(9)Si(�X) =

ni∑
j=1

(Xij − Xi){(Yij − Yi) − �X(Xij − Xi)}.

p(�i�Ui,�i, niYi)

=
p(�i�Ui,�i)∑

�i∼niYi
p(�i�Ui,�i)

=

∏ni
j=1

(Yij!)
−1�

Yij

ij
exp(−�ij)

(niYi!)
−1(ni�i)

niYiexp(−ni�i)

=

∏ni
j=1

(Yij!)
−1

(niYi!)
−1

ni�
j=1

�
�ij

ni�i

�Yij

=

∏ni
j=1

(Yij!)
−1

(niYi!)
−1

ni�
j=1

�
exp(�XXij)∑ni
j=1

exp(�XXij)

�Yij

.

Si(�X) =

ni�
j=1

Yij

�
Xij −

∑ni
j=1

Xijexp(�XXij)∑ni
j=1

exp(�XXij)

�
.
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If g is the logit link, then Yij is assumed to have a Ber-
noulli distribution with mean �ij = expit(�0i + �XXij) , given 
(Ui,Xij) , so that

which is the usual conditional logistic regression likelihood. 
Hence, the conditional maximum likelihood score contribu-
tion from set i is

When ni = 2 and Xij is binary, this simplifies to

It follows from standard theory for estimating equations that 
�̂X converges to the solution to the equation

For the score contribution in (9) we have, under model (3), 
that

so that

(10)
Si(�X) =

2∑
j=1

Yij

{
Xij

1

1 + exp(�X)

+(1 − Xij)
exp(�X)

1 + exp(�X)

}
I(Xi1 ≠ Xi2).

p(�i�Ui,�i, niYi)

=
p(�i�Ui,�i)∑

�i∼niYi
p(�i�Ui,�i)

=

∏ni
j=1

�
Yij

ij
(1 − �ij)

1−Yij

∑
�i∼niYi

∏ni
j=1

�
Yij

ij
(1 − �ij)

1−Yij

=

∏ni
j=1

{�ij∕(1 − �ij)}
Yij (1 − �ij)∑

�i∼niYi

∏ni
j=1

{�ij∕(1 − �ij)}
Yij (1 − �ij)

=

∏ni
j=1

exp(�XXijYij)∑
�i∼niYi

∏ni
j=1

exp(�XXijYij)

=
exp(�X

∑ni
j=1

XijYij)∑
�i∼niYi

exp(�X
∑ni

j=1
XijYij)

,

Si(�X) =

ni�
j=1

XijYij

−

∑
�i∼niYi

∑ni
j=1

XijYijexp(�X
∑ni

j=1
XijYij)∑

�i∼niYi
exp(�X

∑ni
j=1

XijYij)
.

(11)Si(�X) =

{
I(Yi1 = Xi1, Yi2 = Xi2)

1 + exp(�X)
−

I(Yi1 = Xi2, Yi2 = Xi1)exp(�X)

1 + exp(�X)

}
I(Xi1 ≠ Xi2).

E{Si(�X)} = 0.

E{Si(�X)|Ui,�i} = {�X(Ui) − �X}(Xij − Xi)
2,

It follows that �̂X converges to the expression in (4). For the 
score contribution in (10) we have, under model (3), that

so that

It follows that

where

We have that w(Ui) increases with Var(Xij|Ui) , and that 
Var(Xij|Ui) = 0 ⇒ w(Ui) = 0.

For the score contribution in (11) we have, under model 
(3), that

E{Si(�X)|Ui} = {�X(Ui) − �X}(ni − 1)Var(Xij|Ui).

E{Si(�X)|Ui,�i} =
E(Yij|Ui,Xij = 0)

1 + exp(�X)
[exp{�X(Ui)}

− exp(�X)]I(Xi1 ≠ Xi2),

E{Si(�X)|Ui} =
E(Yij|Ui,Xij = 0)

1 + exp(�X)

[exp{�X(Ui)} − exp(�X)]Var(Xij|Ui).

exp(�̂X) → E[w(Ui)exp{�X(Ui)}].

w(Ui) =
E(Yij|Ui,Xij = 0)Var(Xij|Ui)

E{E(Yij|Ui,Xij = 0)Var(Xij|Ui)}
.

E{Si(�X)|Ui,�i}

=
p(Yij = 1|Ui,Xij = 0)p(Yij = 0|Ui,Xij = 1)

1 + exp(�X)

[exp{�X(Ui)} − exp(�X)]I(Xi1 ≠ Xi2)

so that

It follows that

where

E{Si(�X)|Ui}

=
p(Yij = 1|Ui,Xij = 0)p(Yij = 0|Ui,Xij = 1)

1 + exp(�X)

[exp{�X(Ui)} − exp(�X)]Var(Xij|Ui).

exp(�̂X) → E[w(Ui)exp{�X(Ui)}].
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Again, we have that w(Ui) increases with Var(Xij|Ui) , and 
that Var(Xij|Ui) = 0 ⇒ w(Ui) = 0.

Consider now the situation where Yij is assumed to have a 
normal distribution with mean �ij = �0i + �XXij + �CCij and 
constant variance �2 , given (Ui,Xij,Cij) , for a scalar covariate 
Cij . Arguing as above, the conditional maximum likelihood 
score contribution from set i is

Suppose  now that  the  t r ue  mean of  Yij  i s 
�ij = �0i + �X(Ui)Xij + �∗

C
Cij . It follows that

so that

It follows, after some algebra, that

where

As before we have that we have that w(Ui) increases with 
Var(Xij|Ui) . Furthermore, it follows from the Cauchy-
S c h w a r z  i n e q u a l i t y  t h a t 
Cov(Xij,Cij|Ui) ≤

√
Var(Xij|Ui)Var(Cij|Ui)  ,  s o  t h a t 

Var(Xij|Ui) = 0 ⇒ Cov(Xij,Cij|Ui) = 0 ⇒ w(Ui) = 0.

C Special cases when the BW assumption 
is guaranteed to hold

In the absence of measured non-shared confounders we have 
that

w(Ui) =
Var(Xij|Ui)p(Yij = 1|Ui,Xij = 0)p(Yij = 0|Ui,Xij = 1)

E{Var(Xij|Ui)p(Yij = 1|Ui,Xij = 0)p(Yij = 0|Ui,Xij = 1)}
.

Si(�X , �C) =

ni∑
j=1

{
(Xij − Xi)

(Cij − Ci)

}
{(Yij − Yi) − �X(Xij − Xi)

− �C(Cij − Ci)}.

E{Si(�X , �C)|Ui,�i,�i}

=

ni∑
j=1

{
(Xij − Xi)

(Cij − Ci)

}

[{�X(Ui) − �X}(Xij − Xi) − (�∗
C
− �C)(Cij − Ci)]

E{Si(�X , �C)|Ui} = (ni − 1)[
{�X(Ui) − �X}Var(Xij|Ui) + (�∗

C
− �C)Cov(Xij,Cij|Ui)

{�X(Ui) − �X}Cov(Xij,Cij|Ui) + (�∗
C
− �C)Var(Cij|Ui)

]
.

(12)�̂X → E{w(Ui)�X(Ui)}.

w(Ui) =
(ni − 1)[Var(Xij|Ui)E{Var(Cij|Ui)} − Cov(Xij,Cij|Ui)E{Cov(Xij,Cij|Ui)}]

E((ni − 1)[Var(Xij|Ui)E{Var(Cij|Ui)} − Cov(Xij,Cij|Ui)E{Cov(Xij,Cij|Ui)}])
.

Thus, p(Ui|�i) only depends on �i through the term ∏ni
j=1

p(Xij�Ui) . If Xij|Ui ∼ N{�(Ui), �
2(Ui)} we have that

If Xij|Ui ∼ Ber{p(Ui)} we have that

D Correct marginal BW model implied 
by the conditional model (7)
Under model (7) we have that

p(Ui��i) =
p(�i�Ui)p(Ui)

∫ p(�i�Ui = u)p(Ui = u)du

=

∏ni
j=1

p(Xij�Ui)p(Ui)

∫
∏ni

j=1
p(Xij�Ui = u)p(Ui = u)du

.

ni�
j=1

p(Xij�Ui)

=

ni�
j=1

1√
2��2(Ui)

exp

�
−
{Xij − �(Ui)}

2

2�2(Ui)

�

=
1

[2��2(Ui)]
ni∕2

exp

⎛
⎜⎜⎜⎜⎝

−ni

�
Xi + {Xi − �(Ui)}

2

�

2�2(Ui)

⎞
⎟⎟⎟⎟⎠
.

ni∏
j=1

p(Xij|Ui) =

ni∏
j=1

{p(Ui)}
Xij{1 − p(Ui)}

1−Xij

={p(Ui)}
niXi{1 − p(Ui)}

ni(1−Xi).

E(Yij|�i) =E{�0i + �X(Ui)Xij|�i}

=

{
E(Ui|�i) if �X(Ui) = 0

E(Ui|�i)(1 + Xij) if �X(Ui) = Ui

where

with Di = (Xi,Xi),

E(Ui��i)

=
�

up(Ui = u��i)du

=
∫ up(�i�Ui = u)p(Ui = u)du

∫ p(�i�Ui = u)p(Ui = u)du

=
∫ u

∏ni
j=1

p(Xij�Ui = u)p(Ui = u)du

∫
∏ni

j=1
p(Xij�Ui = u)p(Ui = u)du

=
∫ uq(u,Di)du

∫ q(u,Di)du
,
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and �(u;�, �2) being the normal density function with mean 
� and variance �2 . Since Ui only depends on �i through Di , 
it follows that Di satisfies the BW assumption (5); see Sjö-
lander [14], equation 2.2.

E Marginal BW models for binary exposures

In this section we provide further discussion of the marginal 
BW model with a binary exposure. As a motivating example, 
suppose that ni = 2 for all i, Xij ∈ {0, 1} , Cij = � and Di = Xi . 
Define �

x,Xi
= E(Yij|Xij = x,Xi) and �̃

x,Xi
= E{Yij(x)|Xi} , 

where Yij(x) is the potential outcome [8] for sibling j in family 
i, if the exposure were set to level x. The observed data distri-
bution defines the four parameters (�0,0,�0,0.5,�1,0.5,�1,1) . 
However, the two parameters (�0,1,�1,0) are not well defined 
since Xi = 1 is logically incompatible with Xij = 0 , and Xi = 0 
is logically incompatible with Xij = 1 . This is analogous to 
violations of the positivity assumption in the context of 
inverse probability weighting [28].

For this example, the BW assumption (5) trivially holds, 
since �i is a constant (up to the arbitrary ordering of Xi1 and 
Xi2 ) conditional on Di = Xi , thus conditionally independent 
of Ui , given Di . We further have that �̃

x,Xi
 and �

x,Xi
 are related 

through

It follows from results by Sjölander [14] (Supplementary 
material, Section 3) that, in order for regression standardiza-
tion to give consistent estimates of marginal causal effects, 
the regression function h(Xi,Xij;�) in (6) must be a correct 
model for �̃

x,Xi
 when the observed exposure level Xij is 

replaced in the regression function by the fixed constant x. 
Notably, this requirement must be met even when the 
observed Xi is logically incompatible with an observed 
value Xij = x . This makes clear that regression standardiza-
tion makes a strong extrapolation when estimating 
(�̃0,1, �̃1,0) , since these are not determined by the observed 
data distribution. For instance, suppose that we consider two 
different parametric models h(Xi,Xij;�) , say M1 and M2 . Sup-
pose that neither M1 nor M2 imply any restrictions on 
(�0,0,�0,0.5,�1,0.5,�1,1) . Then, both M1 and M2 fit the 

q(u,Di) =
1

[2�{Φ(u) + 0.2}]ni∕2

exp

⎡
⎢⎢⎢⎢⎣

−ni

�
Xi + (Xi − u)2

�

2{Φ(u) + 0.2}

⎤
⎥⎥⎥⎥⎦
�(u;0, 1)

(13)

�̃0,0 = �0,0

�̃0,0.5 = �0,0.5

�̃1,0.5 = �1,0.5

�̃1,1 = �1,1

⎫⎪⎬⎪⎭

observed data equally well, so that the observed data cannot 
be used to distinguish between the models. Furthermore, the 
(ML) estimates of (�0,0,�0,0.5,�1,0.5,�1,1) are equal to the 
corresponding sample means for both M1 and M2 , so that M1 
and M2 give the same estimates of (�̃0,0, �̃0,0.5, �̃1,0.5, �̃1,1) 
through the relations in (13). However, M1 and M2 may still 
give different estimates of (�̃0,1, �̃1,0) , when h(Xi, x;�) is 
interpreted as a model for �̃

x,Xi
.

As a concrete example, suppose that we wish to estimate 
the marginal mean difference

and consider the following two models:

and

It is easy to see that neither of these models imply any 
restrictions on (�0,0,�0,0.5,�1,0.5,�1,1) . However, by interpret-
ing h(Xi, x;�) as a model for �̃

x,Xi
 we have, for M1 , that

and

which is the mean difference among the exposure-discordant 
pairs. In contrast, for M2 we have that

and

Thus, the obtained estimate of � depends heavily on whether 
we use model M1 or model M2.

(14)

� =E{Yij(1)} − E{Yij(0)}

=
∑

Xi∈(0,0.5,1)

(�̃
1,Xi

− �̃
0,Xi

)p(Xi),

(15)
M1 ∶h(Xi,Xij;�) = �0 + �1Xij

+ �2I(Xi = 0.5) + �3I(Xi = 1)

(16)M2 ∶ h(Xi,Xij;�) = �0 + �XXij + �
Xi
Xi + �

XX
xXi.

�̃0,1 =�0 + �3 = �1,1 − �1,0.5 + �0,0.5

�̃1,0 =�0 + �1 = �0,0 + �1,0.5 − �0,0.5

� = �1,0.5 − �0,0.5,

�̃0,1 =�0 + �
X
= 2�0,0.5 − �0,0

�̃1,0 =�0 + �X = 2�1,0.5 − �1,1.

� =(�1,0.5 − �0,0.5) + {p(Xi = 1) − p(Xi = 0)}

(�1,1 − �1,0.5 − �0,0.5 + �0,0).
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rm(list=ls())
library(drgee)
library(stdReg)
library(data.table)
library(splines)

set.seed(1)

#function to compute var(X_ij|U_i)
varfun <- function(U){

pnorm(U)+0.2
}

#function to compute variance of X with n instead of n-1 in denominator
varn <- function(X){

sum((X-mean(X))^2)/length(X)
}

#function to compute E(U_i|\mathbf{X}_i)
EUfun <- function(X){

Xmean <- mean(X)
Xvar <- varn(X)
ni <- length(X)
q <- function(u)

(2*pi*varfun(u))^(-ni/2)*exp(-ni*(Xvar+(Xmean-u)^2)/(2*varfun(u)))*
dnorm(u)

qu <- function(u) q(u)*u
integrate(f=qu, lower=-Inf, upper=Inf)$value/

integrate(f=q, lower=-Inf, upper=Inf)$value
}

#function to generate data
datafun <- function(n, bX, bUX, family){

ni <- sample(1:4, n, replace=TRUE, prob=c(0.2, 0.5, 0.2, 0.1))
N <- sum(ni)
id <- rep(1:n, ni)
U <- rep(rnorm(n), ni)
X <- rnorm(N, mean=U, sd=sqrt(varfun(U)))
Xmean <- rep((data.table(id, X)[,mean(X),by=id])$V1, ni)
Xvar <- rep((data.table(id, X)[,varn(X),by=id])$V1, ni)
if(family=="gaussian"){

EU <- rep((data.table(id, X)[,EUfun(X),by=id])$V1, ni)
Y <- rnorm(N, mean=U+bX*X+bUX*U*X)

}
if(family=="binomial"){

EU <- 0
Y <- rbinom(N, 1, plogis(U+bX*X+bUX*U*X))

}
ni <- rep(ni, ni)
data.frame(id, X, Y, Xmean, Xvar, EU, ni)

}

#function to compute asymptotic limit of linear fixed effects model estimate
limfun <- function(bX, bUX){

q <- function(u)
varfun(u)*dnorm(u)

qu <- function(u) q(u)*u
bX+bUX*integrate(f=qu, lower=-Inf, upper=Inf)$value/

integrate(f=q, lower=-Inf, upper=Inf)$value
}

#function to compute estimates and coverage of confidence intervals
estfun <- function(data, family){

F Code for simulation
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if(family=="gaussian")
link <- "identity"

if(family=="binomial")
link <- "logit"

#fixed effects model
fit <- gee(formula=Y~X, cond=TRUE, clusterid="id", data=data, link=link)

est.fe <- fit$coef["X"]
se.fe <- summary(fit)$coef["X", "Std. Error"]
cover.fe <- 0>confint(fit)[1] & 0<confint(fit)[2]

#correct BW model
if(family=="gaussian"){

fit <- glm(formula=Y~X*EU, data=data)
fit.std <- stdGlm(fit=fit, data=data, X="X", x=c(0, 1), clusterid="id")
ss <- summary(fit.std, contrast="difference", reference=0)
est.bw.correct <- ss$est.table["1", "Estimate"]
se.bw.correct <- ss$est.table["1", "Std. Error"]
cover.bw.correct <- 0>ss$est.table["1", "lower 0.95"] &

0<ss$est.table["1", "upper 0.95"]
}
if(family=="binomial"){

est.bw.correct <- NA
se.bw.correct <- NA
cover.bw.correct <- NA

}

#standard bw model
fit <- glm(formula=Y~X+Xmean, data=data, family=family)
fit.std <- stdGlm(fit=fit, data=data, X="X", x=c(0, 1), clusterid="id")
ss <- summary(fit.std, contrast="difference", reference=0)
est.bw.standard <- ss$est.table["1", "Estimate"]
se.bw.standard <- ss$est.table["1", "Std. Error"]
cover.bw.standard <- 0>ss$est.table["1", "lower 0.95"] &

0<ss$est.table["1", "upper 0.95"]

#spline bw model
#fit <- glm(formula=Y~X*(Xmean+Xvar+ni), data=data)
qXmean <- quantile(data$Xmean, probs=c(0, 0.25, 0.5, 0.75, 1))
qXvar <- quantile(data$Xvar, probs=c(0, 0.25, 0.5, 0.75, 1))
fit <-

glm(formula=Y~X*ns(Xmean, knots=qXmean[2:4], Boundary.knots=qXmean[c(1,5)])+
X*ns(Xvar, knots=qXvar[2:4], Boundary.knots=qXvar[c(1,5)]), data=data)

fit.std <- stdGlm(fit=fit, data=data, X="X", x=c(0, 1), clusterid="id")
ss <- summary(fit.std, contrast="difference", reference=0)
est.bw.spline <- ss$est.table["1", "Estimate"]
se.bw.spline <- ss$est.table["1", "Std. Error"]
cover.bw.spline <- 0>ss$est.table["1", "lower 0.95"] &

0<ss$est.table["1", "upper 0.95"]

#output results
list(est=c(est.fe, est.bw.standard, est.bw.spline, est.bw.correct),

se=c(se.fe, se.bw.standard, se.bw.spline, se.bw.correct),
cover=c(cover.fe, cover.bw.standard, cover.bw.spline, cover.bw.correct))

}

#simulate
n <- 1000
bX <- 0
bUX <- 0 #0 for no effect modification, 1 for effect modification
K <- 1000
family <- "gaussian"
#family <- "binomial"
est <- matrix(nrow=4, ncol=K)
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