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Clinical researchers generate and analyze health data for 
three classes of tasks: description, prediction, and counter-
factual prediction [1]. Description uses data to provide a 
quantitative summary of certain features of the world. Pre-
diction uses data to map some features of the world (the 
inputs) to other features of the world (the outputs). Coun-
terfactual prediction uses data to predict certain features of 
the world if the world had been different.

Causal inference is a common goal of counterfactual  
prediction. Indeed, causal inference can be viewed as the  
prediction of the distribution of an outcome under two (or  
more) hypothetical interventions followed by a comparison  
of those outcome distributions. This contrast of outcome dis- 
tributions may be the basis of subsequent decision-making:  
we often choose to implement the hypothetical intervention  
that, according to our analyses, leads to the most favorable  
outcome.

But counterfactual prediction can also be used to predict 
the outcome distribution under a single hypothetical inter- 
vention. Then the primary goal is not to make decisions  
between different interventions, but simply to map the inputs  
to the outputs in hypothetical (counter to the fact) scenarios  
that differ from the observed world. Like Schulam and Saria  
[2] and other authors [3] before, van Geloven and colleagues  
[4] in this issue of European Journal of Epidemiology high- 
light the difference between (factual) prediction and coun- 
terfactual prediction in clinical research.

As an example, suppose we are interested in predicting 
the 5-year risk of death among individuals recently diag-
nosed with heart failure. To do so, we develop a prediction 

algorithm that maps the inputs (baseline variables measured 
at the time of diagnosis) into the output (death). We know 
that individuals with severe disease at the time of diagnosis 
are more likely to receive a heart transplant (a post-baseline 
treatment), and a heart transplant reduces the risk of death. 
If we develop our prediction algorithm in a setting in which 
most individuals have access to a heart transplant, our algo-
rithm will determine that having severe disease is associated 
with a lower risk of death. However, when we deploy our 
prediction algorithm in a new setting in which few individu-
als have access to a heart transplant, our algorithm will fail 
miserably because, in that setting, having severe disease is 
associated with a higher risk of death.

For an algorithm developed in one setting to yield pre-
dictions transportable to other settings with different treat-
ment patterns, we would need to make accurate predictions 
about what would happen if, somehow, we could intervene 
on the availability of heart transplants. That is, our algorithm 
would need to be designed for counterfactual prediction. van 
Geloven et al. discuss several estimands for prediction and 
counterfactual prediction, a distinction that they make sharp 
in their paper even if their chosen umbrella term (“predicti-
mand”) tends to obscure it.

All estimands for counterfactual prediction are based 
on hypothetical interventions or treatment policies, and 
can therefore be defined in terms of a (hypothetical) target 
trial with a single arm [5]. For example: Given the base-
line predictors, what would be the 5-year risk of death 
if all individuals had access to a heart transplant? If no 
individuals had access to a heart transplant? If a random 
50% of individuals had access to a heart transplant? Any 
estimand whose definition includes a “what if” question 
is a counterfactual estimand for counterfactual predic-
tion. Analogously, any estimand whose definition does not 
include a “what if” question (say, the 5-year risk of death 
among individuals receiving the same treatment pattern as 
those in this population) is a factual estimand for factual 
prediction. In other words, the estimand for a prediction 
task is defined in terms of observed variables, whereas the 
definition of the estimand for a counterfactual prediction 

 * Barbra A. Dickerman 
 bad788@mail.harvard.edu

1 Department of Epidemiology, Harvard T.H. Chan School 
of Public Health, Boston, MA, USA

2 Department of Biostatistics, Harvard T.H. Chan School 
of Public Health, Boston, MA, USA

3 Harvard-MIT Division of Health Sciences and Technology, 
Boston, MA, USA

http://crossmark.crossref.org/dialog/?doi=10.1007/s10654-020-00659-8&domain=pdf


616 B. A. Dickerman, M. A. Hernán 

1 3

task necessarily involves counterfactual (or potential) out-
comes. This simple classification is not always clear in the 
addendum to the ICH E9 guideline Statistical Principles 
for Clinical Trials, which van Geloven et al. use to organ-
ize their estimands [6, 7].

Counterfactual prediction may be needed when effective 
treatments exist and differ across settings, particularly when 
treatment is allocated to individuals based on a risk factor 
for the outcome, as is often the case in clinical practice. 
This variation in treatment patterns may substantially 
weaken and possibly reverse associations between these 
factors and the outcome. For example, Caruana et al. found 
that policies that admitted individuals who presented to 
the hospital with pneumonia and had a history of asthma 
directly to the intensive care unit resulted in an unexpected 
inverse association between asthma and death [8]. This 
may be problematic not only for time-fixed treatments, 
when treatment is allocated at baseline based on baseline 
prognostic factors, but also for time-varying treatments, 
when treatment is allocated over follow-up based on 
prognostic factors that evolve over time.

There is also a role for counterfactual prediction when 
we anticipate that treatment policies will change over time. 
When a useful prediction model is deployed in clinical 
practice, it will help clinicians identify high-risk individuals, 
which often prompts action to reduce that risk, thereby 
disrupting predictor-outcome associations and degrading 
model performance (prediction models become “victims of 
their own success”) [9, 10]. A model for counterfactual risks 
provides a natural solution, as its performance may be robust 
over time even when model deployment influences behaviors 
that affect risk.

By contrast, factual prediction is only relevant when 
treatment patterns are effectively constant across settings, 
either because treatments are similarly distributed or because 
they are only weakly effective or only a small proportion 
of individuals is treated, as the resulting impact on model 
performance might not be clinically meaningful [11]. 
The question is then, why not always do counterfactual 
prediction? Because it is riskier than factual prediction.

Valid counterfactual prediction requires the same data, 
methods, and assumptions as those required for causal 
inference. Estimating counterfactual risks requires high-
quality data on the eligibility criteria, baseline predictors 
(the inputs), outcome of interest (the output), treatment, and 
confounders throughout the entire follow-up period. Inverse-
probability weighting or the g-formula can be applied to 
the data to generate predictions had everyone received a 
certain treatment policy, but the validity of the estimates 
will depend on unverifiable assumptions such as sequential 
exchangeability of the treated and the untreated given the 
measured confounders. By contrast, estimating factual risks 
only requires high-quality data on the eligibility criteria, 

baseline predictors, and outcome(s) over follow-up, and no 
unverifiable assumptions.

A consequence of the above is another important 
difference between prediction and counterfactual prediction: 
When doing prediction, the data can be used to evaluate 
the accuracy of the predictions (for example, by splitting 
the dataset into training and validation samples). When 
doing counterfactual prediction, one cannot use the data to 
evaluate the accuracy of the predictions, precisely because 
they depend on unverifiable assumptions. Counterfactual 
prediction allows us to deploy predictive algorithms across 
settings with different treatment patterns but only if we 
are willing to make assumptions whose validity cannot be 
verified.

In summary, we agree with the authors’ emphasis on 
unambiguously specifying the estimand of interest for 
counterfactual prediction. To do so, we will typically have 
to describe the hypothetical intervention in terms of the one-
arm target trial of interest. Then we will need to use causal 
inference methods to obtain an estimate whose validity 
relies on unverifiable conditions. The alternative is pursuing 
regular (factual) prediction and relying on the potentially 
unrealistic assumptions required for transportability from 
one setting to another.
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