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Abstract
Chronological age alone is not a sufficient measure of the true physiological state of the body. The aims of the present study 
were to: (1) quantify biological age based on a physiological biomarker composite model; (2) and evaluate its association with 
death and age-related disease onset in the setting of an elderly population. Using structural equation modeling we computed 
biological age for 1699 individuals recruited from the first and second waves of the Rotterdam study. The algorithm included 
nine physiological parameters (c-reactive protein, creatinine, albumin, total cholesterol, cytomegalovirus optical density, 
urea nitrogen, alkaline phosphatase, forced expiratory volume and systolic blood pressure). We assessed the association 
between biological age, all-cause mortality, all-cause morbidity and specific age-related diseases over a median follow-up 
of 11 years. Biological age, compared to chronological age or the traditional biomarkers of age-related diseases, showed a 
stronger association with all-cause mortality (HR 1.15 vs. 1.13 and 1.10), all-cause morbidity (HR 1.06 vs. 1.05 and 1.03), 
stroke (HR 1.17 vs. 1.08 and 1.04), cancer (HR 1.07 vs. 1.04 and 1.02) and diabetes mellitus (HR 1.12 vs. 1.01 and 0.98). 
Individuals who were biologically younger exhibited a healthier life-style as reflected in their lower BMI (P < 0.001) and 
lower incidence of stroke (P < 0.001), cancer (P < 0.01) and diabetes mellitus (P = 0.02). Collectively, our findings suggest 
that biological age based on the biomarker composite model of nine physiological parameters is a useful construct to assess 
individuals 65 years and older at increased risk for specific age-related diseases.
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Introduction

Aging is a complex gradual process that varies in its occur-
rence rate in humans [1]. Chronological age as a function 
of calendar years, does not reflect the underlying state of Electronic supplementary material The online version of this 

article (https ://doi.org/10.1007/s1065 4-019-00497 -3) contains 
supplementary material, which is available to authorized users.
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physiological breakdown and body degradation [2]. A more 
precise estimate of aging entails incorporation of physiologi-
cal and other biological parameters to explain variations not 
captured by calendar years alone.

Over the past decades, aging research has focused on 
studying single diseases. This approach has been success-
ful in increasing life expectancy but left many individuals 
living longer with disabilities and functional dependence 
[3]. The increasing challenges related to aging populations 
globally, created a need to start addressing biological aging 
as a general health indicator of morbidity and mortality [4].

The concept of biological age as a biomarker composite 
was first introduced in 1969 [5]. Methods for calculating 
biological age evolved over time, and Klemera and Doubal 
(KDM), were the first to define the relationship between 
chronological age and biological age by modeling biological 
age as a function of chronological age [6].

Biological age as a predictor of mortality has been 
assessed in previous studies [7]. However, the relationship 
between biological age and morbidity onset in terms of spe-
cific age-related diseases and the differences between indi-
viduals based on their biological age, remains to be unclear. 
The availability of continuous follow-up in the Rotterdam 
Study provides an opportunity to validate and assess the 
role of biological age in predicting morbidity and mortality.

The aims of the present study were to: (1) quantify bio-
logical age based on a physiological biomarker composite 
model; and (2) evaluate its association with death and age-
related disease onset in the setting of an elderly population.

Methods

Study settings

The Rotterdam Study

This study included participants from the Rotterdam Study, a 
prospective population-based cohort study [8]. In 1990, resi-
dents aged 55 years and older residing in Ommoord, a dis-
trict of Rotterdam, the Netherlands, were invited to partici-
pate in the study. Of 10,215 invited inhabitants, 7983 agreed 
to participate in the baseline examinations. In 2000, 3011 
participants (of 4472 invitees) who had reached 55 years 
of age or moved into the study district since the start of the 
study were added to the cohort. In 2006, a further exten-
sion of the cohort was started in which 3932 participants, 
of 6057 invited, aged at least 45 years living in Ommoord 
were included. Follow-up examinations take place every 
3–4 years. For the purpose of this study, 2000 individuals 
were randomly selected from Rotterdam Study-I and Rot-
terdam Study-II. The criteria for inclusion included the 
availability of informed consent and valid serum samples 

that were both available in the fourth visit in the Rotterdam 
Study (Fig. 1).

NHANES

The reference population included participants from the 
third National Health and Nutrition Examination Survey 
(NHANES III), a nationally representative, cross-sectional 
study conducted by the National Center for Health Statis-
tics conducted between 1988 and 1994. Data collection was 
done through at-home interviews and examinations. Further 
details on study population and design are available through 
the Centers for Disease Control and Prevention [9].

Calculation of biological age

Selection of biomarkers

Nine biomarkers were selected based on their independent 
correlation with chronological age, use in previous studies 
and their availability in the Rotterdam Study data. The bio-
markers represent six systems as follows: total cholesterol 
(metabolic function); systolic blood pressure (cardiac func-
tion); forced expiratory volume (lung function); serum cre-
atinine and serum urea nitrogen (kidney function); serum 
alkaline phosphatase and serum albumin (liver function) and 
C-reactive protein, cytomegalovirus optical density (immune 
function and inflammation). Biomarkers were measured 
using serum.

Application of Klemera and Doubal method (KDM) 
through structural equation modeling

A key characteristic of KDM is the use of chronological 
age as a standard biomarker. Biological age is a latent inter-
mediate between chronological age and the biomarkers, as 
opposed to the traditional approach of including chronologi-
cal age as a dependent variable. Biomarkers are responses 
to biological age. KDM uses only regression functions of 
individual biomarkers that can be interpreted as functions 
of biological age as well as functions of chronological age. 
Biological age was calculated as the weighted mean of the 
nine physiological parameters. Two separate models were 
used for men and women (Supplementary Fig. 1).

Validation and calibration

Given biomarkers of whole blood samples (as HBA1c) were 
not available in our data, we compared the nine versus ten 
biomarkers algorithm in NHANES and the results showed 
similar results of hazard ratios and model performance based 
on Akaike Information Criterion (AIC) (Supplementary 
Table 1). Further, biological age calculations using weights 
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of the Rotterdam study showed better model performance 
compared to NHANES, based on AIC and strength of asso-
ciation with the end-points (Supplementary Table 2).

Statistical analysis

Statistical analysis was done in two stages. First, the asso-
ciation between biological age and time from baseline to 
death, all-cause morbidity and specific age-related diseases, 
was assessed using Cox proportional hazard models. In this 
first stage, a model to be selected needed to meet two cri-
teria: (1) a statistically significant association with the end-
point at alpha = 0.05; (2) a better model performance based 
on Akaike’s information criterion (AIC). All models were 
adjusted for gender. For each incident morbidity outcome, 
the corresponding number of individuals with prevalent dis-
ease were excluded from the model for this endpoint (e.g. 
prevalent stroke excluded from time to stroke analysis). 
Given the variation in follow-up in specific diseases, follow-
up was truncated on January 1st 2012 in the Cox-models of 
all-cause morbidity and cause-specific morbidities to allow 
comparable follow-up duration for the different outcomes.

Receiver operating characteristic curve analysis

Area under the receiver operating characteristic curve 
(AUC) analysis was conducted to assess the sensitivity (true 
positive rate) and specificity (true false rate) of biological 
age, chronological age and selected traditional biomarkers of 
age-related disease (systolic blood pressure and total choles-
terol) as predictors of death and disease. All AUC analyses 
were adjusted for gender. Further, systolic blood pressure 
and total cholesterol observations were adjusted for blood 
pressure and lipid lowering medication use, using censored 
regression.

Results

Population characteristics

Our final sample included 1699 individuals, excluding 
individuals with missing data on biomarkers due to failed 
patches (Fig. 1). Median age was 70 years (IQR = 65–76), 
with the majority being females (57%), past smokers 
(56%) and free of morbidity at baseline (64%). The median 

Fig. 1  Study flowchart. *RS-I and RS-II refer to the first and second waves of the Rotterdam Study; ERGO IV refers to the fourth visit from 
which the samples were taken
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follow-up duration was 11 years, during which the follow-
ing events occurred: 586 (35%) deaths, 389 (23%) all-cause 
morbidity, 97 (5%) strokes, 138 (8%) diabetes mellitus, 176 
(10%) dementia, 120 (7%) Alzheimer, 303 (18%) cancers, 
112 (7%) coronary heart disease (Table 1).

Individual biomarkers and delta biological age

All the individual biomarkers were age-dependent. Fur-
ther all biomarkers showed a positive correlation with age 
except forced expiratory volume and total cholesterol that 
were negatively correlated with chronological age (Supple-
mentary Fig. 2).

Chronological age showed a similar distribution 
(P = 0.92) between those who were biologically younger 
versus older based on delta biological age. Delta biologi-
cal age was calculated as the difference between biologi-
cal age and chronological age at baseline (Supplementary 
Fig. 3). Based on the difference between biological age and 

chronological age at baseline, individuals who were biologi-
cally younger exhibited a healthier life-style as reflected in 
their lower BMI and less smoking compared to those were 
biologically older. Further, biologically older individuals 
had significantly higher incidences of stroke (P < 0.001), 
cancer (P < 0.01) and diabetes mellitus (P = 0.02).

Association of biological age with death and disease

Compared to chronological age alone or combined with the 
individual biomarkers, in adjusted Cox proportional hazard 
models, biological age showed a stronger association with 
the following end-points (in order of strength of association 
and magnitude): diabetes mellitus (aHR = 1.12 vs. 1.01), 
stroke (aHR = 1.17 vs. 1.08), cancer (aHR = 1.07 vs. 1.04) 
and mortality (aHR = 1.15 vs. 1.13). In contrast, chronologi-
cal age was a better predictor for dementia (1.13 vs. 1.00) 
and Alzheimer’s disease (1.15 vs. 0.99). Biological age and 

Table 1  Descriptive 
characteristics of the study 
population and stratified by 
gender

a Any morbidity includes prevalent stroke 68 (4%), dementia 8 (1%), cancer 266 (16%), coronary heart dis-
ease 178 (10%), Alzheimer 5 (0.3%), cancer 266 (16%), diabetes mellitus 211 (12%) and chronic obstruc-
tive pulmonary disease 135 (8%)
b Individual biomarkers values rounded to first decimal place

Characteristic Overall n = 1699 Gender

Males n = 732 (43%) Females n = 967 (57%)

Chronological age, median (IQR) 70 (65–76) 70 (65–76) 70 (65–77)
BMI, mean (SD) 27 (4) 27 (3) 27 (4)
BMI (%)
  ≤ 25 464 (27) 177 (24) 287 (30)
 25–30 806 (48) 383 (52) 432 (44)

  > 30 421 (25) 169 (23) 252 (26)
Smoking
 Never (%) 236 (14) 104 (14) 132 (14)
 Past (%) 945 (56) 520 (71) 425 (44)
 Current (%) 492 (29) 100 (14) 392 (40)
 Missing (%) 26 (2) 8 (1) 18 (2)

APOE 4 (%) 430 (25) 199 (28) 231 (26)
Presence of any morbidity (%)a 615 (36) 303 (41) 312 (32)
Died (%) 586 (34) 287 (39) 299 (31)
Age at death, median (IQR) 84 (78–89) 82 (78–87) 85 (78–90)
Individual  biomarkersb

 C-reactive protein (mg/dL) 0.3 (0.1–15) 0.2 (0.1–15) 0.2 (0.1–6)
 Creatinine (mg/dL) 0.9 (0.5–4) 1.1 (0.6–4) 0.8 (0.5–1)
 Albumin (g/dL) 4 (3–5) 4.6 (3–5) 4.5 (3–5)
 Total cholesterol (mg/dL) 217 (86–360) 205.0 (86–344) 226 (109–360)
 Cytomegalovirus optical density 87 (5–180) 79 (5–180) 90 (5–180)
 Urea nitrogen (mg/dL) 15 (4–66) 17 (6–66) 15 (5–37)
 Alkaline phosphatase SI (U/L) 78 (22–437) 75 (26–437) 80 (22–198)
 Forced expiratory volume (mL) 2 (0.2–7.2) 3 (0.5–7) 2 (0.2–7)
 Systolic blood pressure 146 (92–225) 143 (97–224) 148 (92–225)
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chronological age showed similar sensitivity in prediction 
of coronary heart disease and all-cause morbidity (Table 2).

Biological age as a predictor of death and disease

Diseases that showed association with biological age in the 
Cox proportional hazards model were included for predic-
tion assessment, this included: mortality, all-cause mor-
bidity, stroke, cancer, diabetes mellitus and coronary heart 
disease.

Biological age predictive ability exceeded that of chrono-
logical age and traditional biomarkers with varying degrees, 
in strength and magnitude of association as follows: stroke 
(AUC biological age vs. chronological age: 0.67 vs. 0.63), 
mortality (0.81 vs. 0.79), cancer (0.56 vs. 0.54) and morbid-
ity (0.63 vs. 0.62). This however was not the case for diabe-
tes mellitus, where systolic blood pressure was the strongest 
predictor compared to biological age, chronological age and 
total cholesterol (Supplementary Table 3).

Discussion

Identification of individuals at higher risk of morbidity and 
mortality before they enter a disease state is key to extend 
health span in the light of the escalating burden of aging 
populations worldwide [3]. Over a median follow-up of 
11 years, biological age, calculated at baseline was able 
to predict, better than chronological age alone and tradi-
tional biomarkers, mortality, morbidity and onset of specific 
diseases such as stroke and cancer. In contrast, traditional 
biomarkers of age-related diseases such as systolic blood 
pressure remained a better predictor of diabetes mellitus 

compared to biological age and chronological age. These 
observations suggest that the biological age construct could 
be a useful measure to identify individuals at higher risk of 
specific diseases that are dependent on aging as reflected by 
physiological deterioration with increasing age.

A key barrier in biological age investigations is its repro-
ducibility. We used validated common criteria of biologi-
cal age to allow comparisons with other settings [10]. The 
nine biomarkers we used in the biological age calculations 
are known to be correlated with age and have been tested 
in other settings [7, 11, 12]. A key difference in our study 
compared to previous studies that adopted the same bio-
logical age composite biomarker model, is age distribution. 
As the mean age in our population is 71 years compared to 
the young population of the Dunedin Study [11] and mixed 
age in NHANES [7]. This variation might explain differ-
ences in the relationship between chronological age and the 
individual biomarkers, as total cholesterol, that is negatively 
correlated with chronological age in our sample (r = − 0.12) 
of elderly, also as documented in the literature [13].

Unlike studying single diseases, quantifying biologi-
cal aging requires methods that take into consideration the 
underlying age complexities as reflected by the different 
interrelated body functions. Therefore, we opted to use the 
Klemera and Doubal method that has been tested for its pre-
dictive sensitivity compared to traditional modeling methods 
[6, 14–22].

Several measures have been proposed to quantify bio-
logical age, such as telomere length, DNA-methylation data 
and composites of clinical biomarkers [23–26]. These meas-
ures vary in the number of assays required (single versus 
multiple), design (cross-sectional versus longitudinal) and 
the biological level of implementation (tissues versus body 

Table 2  Cox proportional hazard models of biological age with death, morbidity and specific diseases in the Rotterdam Study (2000–2016)

CA chronological age, BA biological age, Individual biomarkers include the 9 biomarkers used in the BA computation, All models were adjusted 
for gender
a The total N differ according to last date of follow-up; for the all-cause morbidity and incident morbidity variables, follow-up was truncated on 
January 1st 2012 to allow for comparable follow-up durations for all outcomes; For each incident morbidity outcome, the corresponding number 
of individuals with prevalent disease were excluded from the model for this endpoint (e.g. prevalent stroke excluded from time to stroke analysis)

Models Chronological age (CA) Biological age (BA)

End-point n/Na CA only CA, individual biomarkers BA only CA, BA

HR (95% CI) HR (95% CI) HR (95% CI) HRCA (95% CI) HRBA (95% CI)

Mortality 586/1699 1.13 (1.11–1.14) 1.10 (1.08, 1.12) 1.14 (1.12, 1.15) 0.99 (0.95, 1.03) 1.15 (1.11, 1.18)
Any morbidity 389/1091 1.05 (1.04–1.06) 1.03 (1.01, 1.04) 1.06 (1.05, 1.07) 1.00 (0.96, 1.03) 1.06 (1.03, 1.09)
Stroke 97/1629 1.08 (1.05–1.11) 1.04 (1.01, 1.07) 1.08 (1.05, 1.11) 0.92 (0.85, 0.99) 1.17 (1.02, 1.26)
Dementia 176/1682 1.13 (1.11–1.16) 1.12 (1.09, 1.15) 1.01 (1.01, 1.13) 1.14 (1.08, 1.21) 0.99 (0.94, 1.05)
Alzheimer’s disease 120/1682 1.15 (1.12–1.18) 1.13 (1.10, 1.17) 1.12 (1.09, 1.15) 1.17 (1.09, 1.26) 0.98 (0.91, 1.05)
Cancer 303/1433 1.04 (1.02–1.05) 1.02 (0.99, 1.04) 1.03 (1.02, 1.05) 0.97 (0.93, 1.02) 1.07 (1.02, 1.11)
CHD 112/1518 1.06 (1.04–1.09) 1.05 (1.02, 1.08) 1.06 (1.04, 1.09) 1.01 (0.95, 1.08) 1.05 (0.99, 1.12)
Diabetes mellitus 138/1425 1.01 (0.98–1.03) 0.98 (0.95, 1.01) 1.02 (0.99, 1.04) 0.90 (0.84, 0.96) 1.12 (1.05, 1.20)
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systems) [26]. However, the impression that these meth-
ods measure the same features of aging is questioned [26]. 
The biological age algorithm of clinical biomarkers has the 
advantage of being based on continuously measured physi-
ological parameters using standard quantitative techniques, 
thus less susceptible to variation related to the method of 
measurement [10].

In our study, the difference in biological age at baseline 
was reflected in the risk and age of disease onset and death 
during follow-up. Such finding aligns with the fact that the 
biomarker algorithm mirrors age-related biological changes 
of multiple body systems [27]. Biological age predicted, 
more accurately than chronological age alone, risk of all-
cause morbidity and mortality. Biologically older individu-
als at baseline had higher incidence of stroke, diabetes mel-
litus, cancer, COPD and death. These observations suggest 
that the biological age algorithm could be a useful construct 
to predict death and disease onset in the setting of an elderly 
population.

We observed the strongest association with stroke, in par-
ticular. Biologically older individuals had almost three times 
higher risk of stroke compared to their biologically younger 
counterparts. Models with chronological age and single bio-
markers including stroke-related factors (i.e. total cholesterol 
and systolic blood pressure) were less sensitive to predict 
stroke. Such observation further supports the notion that the 
KDM method allows for capturing aging-related complexi-
ties better than chronological age alone [19, 20, 22].

On the other hand, the set of biomarkers we used were 
not able to predict Alzheimer’s or Dementia. This comes as 
no surprise given the absence of neurological biomarkers in 
our algorithm other than chronological age. In the Dunedin 
study, the investigators reported an association between pace 
of aging and outcomes as cognitive decline in a homogenous 
sample of young adults [11]. The lack of longitudinal data 
on biomarkers restricted our measurement of biological age 
to baseline, however biological age was shown to agree with 
pace of aging in prediction of disease [11]. Whether add-
ing other organ-specific biomarkers in our algorithm would 
translate to a better predictive ability for onset of specific 
disorders compared to chronological age alone, requires 
further investigation.

Those who were biologically older had higher BMI and 
were more often current smokers. This observation draws 
insights on possible explanations related to life style that 
could explain the variation in physiological deterioration 
between individuals.

Biological age as a baseline measurement could be useful 
to identify individuals at higher risk of disease and disability 
that are core elements to advance investigations on antiaging 
therapies [28–30]. This could be supported by the hypothesis 
that increasing age is closely linked to increased morbidity 
due to deterioration in multiple body systems [31, 32]. As 

such, studying the role of biological aging, as an indicator of 
disease, is key to unravel aging-related pathways of disease 
and disability.

Our study has several limitations. First, longitudinal bio-
markers data was not available. Thus, we did not calculate 
pace of aging that could further confirm the rate of change 
in biological age. Second, biomarkers of whole blood sam-
ples (as HBA1c) were not available; however, the results 
are comparable as we validated nine versus ten biomarkers 
in NHANES. Third, selection bias owing to the included 
sample is possible. However, the included participants were 
randomly selected and sample size was determined a priori 
for measurement of the specified biomarkers. Lastly, the 
inclusion of factor loadings from a latent variable as bio-
logical age in the context of standard Cox-regression analy-
ses may have influenced the overall predictive sensitivity of 
biological age.

Collectively, our results confirm the reproducibility of the 
Klemera and Doubal method and the value of the biological 
age algorithm in the elderly. This builds on the important 
observations of previous studies in samples of mixed-age 
and young individuals. Further work is needed to further 
develop the biological age construct and its application to 
identify and monitor individuals at higher risk of specific 
diseases at a later age, offering opportunities for primary 
prevention before onset of disease in healthy individuals.
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