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Abstract
Advanced parental age has been associated with adverse health effects in the offspring including childhood (0–14 years)

acute lymphoblastic leukemia (ALL), as reported in our meta-analysis of published studies. We aimed to further explore

the association using primary data from 16 studies participating in the Childhood Leukemia International Consortium. Data

were contributed by 11 case–control (CC) studies (7919 cases and 12,942 controls recruited via interviews) and five nested

case–control (NCC) studies (8801 cases and 29,690 controls identified through record linkage of population-based health

registries) with variable enrollment periods (1968–2015). Five-year paternal and maternal age increments were introduced

in two meta-analyses by study design using adjusted odds ratios (OR) derived from each study. Increased paternal age was

associated with greater ALL risk in the offspring (ORCC 1.05, 95% CI 1.00–1.11; ORNCC 1.04, 95% CI 1.01–1.07). A

similar positive association with advanced maternal age was observed only in the NCC results (ORCC 0.99, 95% CI

0.91–1.07, heterogeneity I2 = 58%, p = 0.002; ORNCC 1.05, 95% CI 1.01–1.08). The positive association between parental

age and risk of ALL was most marked among children aged 1–5 years and remained unchanged following mutual

adjustment for the collinear effect of the paternal and maternal age variables; analyses of the relatively small numbers of

discordant paternal-maternal age pairs were not fully enlightening. Our results strengthen the evidence that advanced

parental age is associated with increased childhood ALL risk; collinearity of maternal with paternal age complicates causal

interpretation. Employing datasets with cytogenetic information may further elucidate involvement of each parental

component and clarify underlying mechanisms.
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Introduction

Acute lymphoblastic leukemia (ALL) accounts for 25–30%

of all cancers in children [1]; yet, our understanding on the

etiology of the disease is rather limited [2]. Individual

studies and large consortia, such as the Childhood Leuke-

mia International Consortium (CLIC) [3], are exploring a

constellation of factors related to the perinatal origins of

the disease [4–6] including birth anthropometrics [7], early

immune stimulation [8], prenatal vitamin supplementation

[9], and pre-labor cesarean delivery [10, 11].

Sharply increasing trends of parents with advanced age

at first delivery, have attracted scientific interest due to the

Core Writing Group: Eleni Th. Petridou, Marios K. Georgakis,

Friederike Erdmann, Logan G. Spector, Eve Roman, Sameera Ezzat,

Ana Maria Mora, Nick Dessypris, Joachim Schüz, Claire Infante-
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reported consequences on offspring’s health [12–14].

Indeed, advanced maternal age has been linked to several

adverse pregnancy outcomes [15] including an increase in

the risk of chromosomal abnormalities in the offspring

[16]. Albeit less studied, advanced paternal age has also

been associated with single gene mutation birth defects,

chromosomal abnormalities and neurodevelopmental dis-

orders in offspring [17]. Genomic sequencing studies have

shown higher numbers of de novo mutations in the off-

spring of older parents [18, 19] and decreased DNA

methylation patterns [20], potentially increasing offspring

vulnerability to carcinogenesis [20, 21].

In the context of the current CLIC study, a meta-analysis

was undertaken [22] showing positive associations of

advanced age of both parents at birth of the index child

with ALL in the offspring irrespective of study design.

Subsequently, registry-based, record-linkage nested case–

control (NCC) studies from the US and Denmark also

reported an increased ALL risk with advanced maternal

age, whereas the positive associations with older paternal

age were marginally significant [23–26]. Incomplete con-

trol for confounding, variable treatment of the paternal and

maternal age variables collinearity between maternal and

paternal age and limited power preclude, however, firm

conclusion [27].

To this end, we used primary data from 16 CLIC studies

conducted in 12 countries around the world to explore the

association of parental age with childhood ALL. Given

indications of non- representative controls selection in CC

studies, resulting in potentially misleading effect estimates

regarding parental age [27], we compared data from 11 CC

studies with those derived from 5 population-based cancer

registries linked with birth and health registries following a

nested case–control design (NCC).

Methods

Study designs and availability of data

Primary data were contributed by 15 studies participating

in CLIC following data transfer agreements of individual

studies with the Nationwide Registry for Childhood

Hematological Malignancies and Solid Tumors (NAR-

ECHEM-ST) (Supplementary Table 1). Specifically, 11

were of CC design entailing subject contact, recruitment

and telephone or in-person interviews to obtain exposure

and disease related information from Brazil, Costa Rica,

Egypt, Germany, Greece, Italy, New Zealand, UK, US-

California, US- COG-E15 and US-Texas and the additional

four of NCC design with population-based linked cancer

and birth/health registry data from which controls were

drawn (Canada-Quebec, Denmark, Finland, Washington

State).

Lastly, the Californian State NCC contributed only

maximally adjusted summary estimates for the meta-anal-

yses, and not primary data, due to regulatory constraints of

the California Cancer Registry, making a total of 16 studies

for analyses. Cases and controls were aged \ 15 years at

diagnosis/recruitment. Down syndrome (* 1.3% of cases),

a well-established risk factor of childhood ALL strongly

associated with maternal age at birth, were and excluded

from the analysis, was an exclusion criterion for selection

of controls in CC studies and were excluded in the analyses

[28]. Parents are usually the legal guardians whose age is

reported but not necessarily the biological parents; it is

rather unlikely, however, that the negligible proportion of

non-biological parents, could impact on the results of the

parental age association with childhood ALL [23]; indeed,

available information in the nationwide Danish study

shows that only 0.6% of children are adopted. Data col-

lection and harmonization is detailed in a Supplementary

Materials file.

Statistical analysis

To examine the relationship between paternal and maternal

age and risk of childhood ALL, fractional polynomials

were used to ascertain the best-fitting curves across the

pooled dataset; additionally (Fig. 1), restricted cubic spline

models were applied using meta-analysis-derived effect

estimates [29]. Since linear relationships could not be

improved upon (p[ 0.10) for either maternal or paternal

age when examined separately or concurrently (data not

shown), we primarily included paternal and maternal age

variables in 5-year increments. To address collinearity

between the two main variables of interest, paternal and

maternal age were included in alternative models one by

one and simultaneously. In addition, concordant and dis-

cordant pairs of three by three parental age categories

(\ 25 [reference], 25–34, C 35 years) were created; out of

these nine cells, due to small numbers two of the discordant

cells had to be collapsed in order to run meta-analyses of

multiple logistic regression derived estimates of individual

studies, as appropriate.

Two separate meta-analyses were undertaken by study

design (CC, NCC) employing random-effects models;

heterogeneity across studies was evaluated with the

Cochran Q and I2 statistics (statistical significance set at

p value \ 0.10, derived from the Cochran Q test). The

individual risk estimates were calculated in multiple

logistic regression maximally adjusted models (variables

with[ 20% missing values in individual studies were

excluded from the study-specific multivariate models).

Conditional or unconditional analyses depended in
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individual study design, whereas maternal and paternal age

variables were initially concurrently included in the models

for these analyses. Furthermore, sensitivity analyses were

undertaken by excluding one study per analysis to assess

the effect of on maternal and paternal age.

Pooled multivariate logistic regression analyses using

primary data of the 15 studies along with meta- analyses by

parental sex were also employed. Based on the availability

of covariates across individual studies, a partially (child’s

age, sex, ethnicity, time period at diagnosis/recruitment,

birth weight and maternal education) adjusted and a max-

imally (additionally controlling for maternal smoking

during pregnancy, pre-term birth, birth order and multiple

pregnancy) adjusted model were constructed with further

analyses by study site. Breastfeeding was not included in

the main models, as it was 100% missing in Denmark and

Finland and 75% missing in Washington State, thus mak-

ing the analysis of the NCC studies not meaningful; in an

additional sensitivity analysis, we further included breast-

feeding including only studies, in which this variable was

available.

Subgroup meta-analyses by child’s age group (\ 1, 1–5,

6–14 years), sex, time period of diagnosis/recruitment and

child’s ethnicity to assess specific impacts of these vari-

ables on the reported effect were conducted only among the

NCC studies unlikely to be subject to selection bias.

Likewise, to assess the effect of potentially unmeasured

confounding, the E-value was estimated [30], based on

maximally adjusted effect estimates for categories of

maternal and paternal age on the risk for childhood ALL.

E-values indicate the size of the effect estimate that

potentially unmeasured or uncontrolled confounding would

require to totally attenuate the observed associations. Sta-

tistical analyses were conducted with SAS 9.4 version and

STATA 14.1 version.

Results

Baseline characteristics

The 11 CC studies contributed data for 7919 cases and

12,942 controls, whereas the 5 NCC studies for 8801 cases

and 29,690 controls. The enrollment periods at diagnosis of

cases or recruitment of controls ranged within almost

50 years (1968–2015) and widely within and across stud-

ies. The distribution of study variables by case–control

status and study design is presented in Table 1. The

majority of subjects were of Caucasian origin, notably

* 80% in the CC studies and * 60% in the NCC studies,

among which the Californian investigation weighted more

heavily. The distribution of maternal and paternal age at

birth of the controls was highly variable across studies as

shown in the Supplementary Fig. 2.

Meta-analysis by study design (CC = 11
and NCC = 5)

Figure 1, shows results from random effects meta-analyses

on the association of parental age (5-year increments) with

childhood ALL derived from separate models of CC and

NCC studies. Regarding the paternal age association,

similar results were observed regardless of study design

(ORCC 1.05, 95% CI 1.00–1.11, I2 29%, p = 0.17 and

ORNCC 1.04, 95% CI 1.01–1.07; I2: 0%, p = 0.86). The

heterogeneous results for the maternal age association

derived from CC studies (ORCC 0.99, 95% CI 0.91–1.07;

heterogeneity I2: 64%, p = 0.002) were differed than

expected and those actually derived from NCC studies

(ORNCC 1.05, 95% CI 1.01–1.08; I2: 0%, p = 0.64).

The categorical meta-analyses (Supplementary Fig. 3)

demonstrated similar results. These meta-analysis-derived

associations also followed linear patterns, as indicated by

the spline models (Fig. 2), with higher effect estimates

when parental ages[ 35 years were compared to those

\ 25 years. Similar results were also obtained when

analyses were repeated introducing only the ‘‘maternal’’ or

only the ‘‘paternal’’ age variable into the models (data not

shown).

After excluding one study at a time, the incremental

effect of both paternal and maternal age on the risk for

childhood ALL remained essentially the same in all anal-

yses among the NCC studies but did not reach statistical

significance after excluding the large Californian NCC

study (OR for maternal age: 1.04, 95% CI 0.98–1.10; OR

for paternal age: 1.05, 95% CI 0.99–1.10; Supplementary

Fig. 4).

bFig. 1 Forest plots from the meta-analyses of case control (CC,

interview-based) and nested case–control (NCC, registry-based,

record-linkage) studies on the association of (A) paternal and

(B) maternal age (5-year increments) with childhood (0–14 years)

acute lymphoblastic leukemia. Random-effect meta-analysis of

maximally adjusted odds ratios from individual studies for any of

the following variables that were available (\ 20% missing values in

the total dataset): index child’s age (categorical;\ 1, 1–4 [reference],

5–9, 10–14 years), sex, ethnicity (Caucasian vs. non-Caucasian), birth

weight (continuous; 500 gr increment), maternal education (categor-

ical; low, intermediate [reference], high) pre-term birth (yes vs. no),

maternal smoking during pregnancy (yes vs. no), multiple pregnancy

(yes vs. no) and birth order (continuous; 1, 2, C 3). Studies are

presented in ascending order according to the mean maternal and

paternal age. Maternal and paternal age are simultaneously introduced

in all models
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Table 1 Distributions of cases with acute lymphoblastic leukemia (ALL) and controls by study variables and study design

Study design Case–control

Interview-based (n = 11)

Nested case-control

Registry-based (n = 5)

Variables ALL Cases (N = 7989) Controls (N = 13,482) ALL Cases (N = 8801) Controls (N = 29,690)

N % N % N % N %

Index child’s age at diagnosis/recruitment (years)a

\ 1 328 4.1 1018 7.5 283 3.2 1210 4.1

1–4 4257 53.8 6404 47.5 4788 54.4 15,756 53.0

5–9 2236 28.2 3795 28.2 2527 28.7 8306 28.0

10–14 1098 13.9 2265 16.8 1203 13.7 4418 14.9

Index child’s sex

Male 4422 55.8 7417 55.0 4924 55.9 16,433 55.3

Female 3497 44.2 6055 45.0 3877 44.1 13,257 44.7

Time period of diagnosis/recruitment

1968–1993 2952 37.3 5298 39.3 2627 29.8 8221 27.7

1994–2003 2958 37.3 5849 43.4 3560 40.5 12,025 40.5

2004–2015 2009 25.4 2335 17.3 2614 29.7 9444 31.8

Index child’s ethnicity

Caucasian 6166 78.0 10,890 80.9 5349 60.9 17,705 59.8

Non-Caucasian 1741 22.0 2578 19.1 3435 39.1 11,920 40.2

Missing 0.2 0.1 0.2 0.2

Birth weight (g)

\ 2500 423 5.5 847 6.4 399 4.7 1551 5.4

2500–2999 1130 14.8 2140 16.3 1094 12.9 3992 14.0

3000–3499 2814 36.8 4883 37.2 2999 35.4 10,277 36.0

3500–3999 2321 30.4 3867 29.5 2699 31.9 8920 31.3

C 4000 960 12.5 1388 10.6 1273 15.1 3787 13.3

Missing 3.4 2.7 3.8 3.9

Maternal education

Low 2013 25.6 3241 24.3 922 13.9 3435 15.7

Intermediate 4060 51.7 7044 52.9 3872 58.3 12,638 57.8

High 1786 22.7 3037 22.8 1844 27.8 5797 26.5

Missing 0.8 1.2 24.6 26.3

Maternal smoking during pregnancy

No 6201 78.9 10,515 78.5 5735 89.7 19,288 91.4

Yes 1655 21.1 2889 21.5 658 10.3 1815 8.6

Missing 0.8 0.6 27.4 28.9

Pre-term birthb

No 6174 92.4 10,676 92.5 7150 91.3 24,004 91.5

Yes 507 7.6 866 7.5 682 8.7 2243 8.5

Missing 15.6 14.4 11.0 11.6

Multiple pregnancy

No 6917 97.6 12,045 98.0 7740 97.5 25,716 97.4

Yes 171 2.4 251 2.0 198 2.5 693 2.6

Missing 10.5 8.8 9.8 11.1

Birth order

1 3455 45.7 5833 45.1 3585 41.5 11,925 40.9

2 2531 33.4 4446 34.3 2885 33.4 9575 32.9

C 3 1580 20.9 2667 20.6 2166 25.1 7620 26.2

Missing 4.5 4.0 1.9 1.9
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Table 1 (continued)

Study design Case–control

Interview-based (n = 11)

Nested case-control

Registry-based (n = 5)

Variables ALL Cases (N = 7989) Controls (N = 13,482) ALL Cases (N = 8801) Controls (N = 29,690)

N % N % N % N %

Maternal age at birth (years)

\ 20 537 6.9 824 6.2 597 6.8 2340 7.9

20–24 1864 23.8 3074 23.1 1939 22.0 6977 23.5

25–29 2588 33.1 4570 34.4 2804 31.9 9250 31.2

30–34 1953 25.0 3330 25.1 2216 25.2 7184 24.2

C 35 878 11.2 1498 11.3 1241 14.1 3927 13.2

Missing 1.3 1.4 0.05 0.04

Mean ± SD 27.65 ± 5.55 27.78 ± 5.46 28.10 ± 5.77 27.74 ± 5.83

Paternal age at birth (years)

\ 25 1154 15.4 1858 14.7 1478 16.9 5641 19.3

25–29 2075 27.8 3736 29.7 2565 29.4 8493 29.0

30–34 2226 29.8 3809 30.2 2480 28.4 8128 27.7

35–39 1273 17.1 2066 16.4 1411 16.2 4597 15.7

C 40 739 9.9 1137 9.0 796 9.1 2445 8.3

Missing 5.7 6.5 0.8 1.3

Mean ± SD 31.10 ± 6.57 30.94 ± 6.38 30.72 ± 6.54 30.35 ± 6.57

Numbers in italic correspond to percentages of missing values
aInfants comprised 36% of the Brazilian study; the Italian study included children aged 0–10 years
bGestational age:\ 37 weeks

Fig. 2 Curves depicting the association of (A) paternal and (B) ma-

ternal age with childhood (0–14 years) acute lymphoblastic leukemia,

as derived from meta-analysis restricted cubic spline models encom-

passing the five registry-based case–control studies (Canada-Quebec;

Denmark; Finland; US, California State, CCLRP; US, Washington

State). The solid line depicts the effect estimate (Odds Ratio),

whereas dash-lines correspond to 95% confidence intervals
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Pooled analyses and meta-analyses of 15 studies
contributing primary data

Pooled analyses were also contacted for the 15 studies with

primary data (Supplementary Table 3), notably all apart

from the Californian NCC which contributed only effect

estimates for the meta-analyses. Regarding paternal age, the

linearly increasing risk of ALL was evident (5-year incre-

ment; maximally adjusted OR 1.08, 95% CI 1.04–1.11) and

maximized (17%) for paternal age C 35 years (OR 1.17,

95% CI 1.04–1.32). Similar patterns were found in the cat-

egorical maximally adjusted analyses as well as the partially

adjusted models with higher numbers of cases and controls.

Advancing maternal age (5-year increment) was asso-

ciated with a statistically significant decreased risk for

childhood ALL (maximally adjusted OR 0.92, 95% CI

0.89–0.96). Further adjustment for study site, as well as

alternative introduction of the maternal or paternal age

variables in the models, and further adjustment for

breastfeeding including only studies availing this variable,

did not essentially change the results (data not shown).

The meta-analysis for all studies with primary data, i.e.,

except the Californian NCC (Supplementary Table 3-right

panel and Supplementary Fig. 5) confirmed the increased

risk for childhood ALL with advancing paternal age

(OR5-year increment 1.05, 95% CI 1.02–1.09; no heterogene-

ity), but not with advancing maternal age (OR5-year increment

1.00, 95% CI 0.95–1.06; statistically significant

heterogeneity).

Combined maternal and paternal age effects

Due to the discrepant results for the maternal age derived from

CC, all further analyses were conducted only among the five

NCC studies. In Table 2, we further assessed the individual

and/or combined effects of maternal and paternal age at birth

of children within different maternal-paternal age combina-

tions, relative to children whose both parents aged

25–34 years at birth of the index child. The highest statisti-

cally significant OR was observed for children with both

parents aged C 35 years (OR 1.16, 95% CI 1.04–1.28) as

contrasted to those with both parents\ 25 years (OR 0.84,

95% CI 0.77–0.91), with comparison to the baseline group of

25–24 years in both instances. ORs for other age combina-

tions did not indicate notable changes in ALL risk. There is a

suggestion, however, that older paternal age across all

maternal age categories was associated with increased disease

risk in the offspring, whereas the same pattern is not clear for

advanced maternal age across the paternal age categories.

The maximally adjusted effect estimates for maternal

and paternal age C 35 years (ORs 1.16 and 1.18, respec-

tively) in the registry-based studies meta-analyses,

corresponded to E-values of 1.59 and 1.64, respectively;

the respective E-values for the low 95% confidence inter-

vals were 1.28 and 1.24.

Subgroup analyses: age at diagnosis, sex,
ethnicity, and diagnosis time period

The associations of ALL with maternal and paternal ages

were most marked for children diagnosed at ages 1–5 years

(Table 3). Associations with maternal age were equally

present for male and female children, more marked among

non-Caucasian children. Associations with paternal age

were more marked among males and Caucasian children.

Associations with time period of diagnosis/recruitment

were all modestly increased; not all ORs were statistically

significantly, albeit any increased risk with maternal age

seemed to have proceeded that with paternal age timewise.

Discussion

We found a linearly increasing and statistically significant

risk for childhood ALL with advanced paternal age. The

same size association with advanced maternal age was

evident only in the NCC studies as opposed to a decreasing

risk estimate derived from both the CLIC CC and pooling

analyses. There are some indications that the effect is

mainly conferred by advanced paternal age possibly

through different parental gender related mechanisms as

implied in differential age, gender and ethnic group

associations.

Reasons for the contradictory results, confined only to

the maternal age association, may include selection bias

resulting in non-representative distribution of controls in

the CC studies as noted in the previously published Ger-

man study [27] and also evident in the distribution of

maternal age across several of the large size included CC

studies. Indeed, the maternal age distribution of the UK

study also suffered a deficit among control mothers of

younger age. The mean maternal age of controls in the

Californian CC study was * 2 years older compared to

that of the NCC study (29.3 vs. 27.4 years) in the same

State; no such difference (28.2 vs. 27.8 years) was noted,

though, among the CC cases, which comprised a fraction of

the NCC study cases, collected over a lengthier study

period.

Not all CLIC case–control studies are subject to the

same bias, however. For example, the Greek NAR-

ECHEM-ST maternal age distribution among controls

seemed to follow the nationwide estimates. Likewise, the

Italian SETIL study followed the population pattern and

seemed to yield results similar to those of the previously

published cohort study in the same area [31]. Unlike NCC
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Table 2 Meta-analysis derived

odds ratios (OR) and 95%

confidence intervals (95% CI)

from the five registry-based

case–control studies (Canada-

Quebec; Denmark; Finland; US,

California State, CCLRP; US,

Washington State) on the

association of the combined

effect of maternal and paternal

age at birth of the index child

with childhood (0–14 years)

acute lymphoblastic leukemia

ALL cases/controls

(N)

OR (95% CI)a

Paternal age

\ 25 years

Paternal age

25–34 years

Paternal age

C35 years

Maternal age

\ 25 years

1181/4318

0.84 (0.77–0.91)

I2: 0%, p = 0.53

1036/3357

0.96 (0.82–1.12)

I2: 55%, p = 0.07

87/279

1.17 (0.77–1.77)

I2:45%, p = 0.12

Maternal age

25–34 years

192/678

0.88 (0.74–1.04)

I2: 0%, p = 0.71

3382/10,122

Reference

1114/3343

1.05 (0.97–1.13)

I2: 0%, p = 0.80

Maternal age

C35 years

264/793

1.07 (0.92–1.24)

I2: 0%, p = 0.64

906/2582

1.16 (1.04–1.28)

I2: 11%, p = 0.34

Bold indicates statistical significance (p\ 0.05 for effect size and p\ 0.10 for heterogeneity). Maternal

and paternal age are simultaneously introduced in all models
aRandom-effect meta-analysis of maximally adjusted odds ratios from individual studies for any of the

following variables that were available with\ 20% missing values in the total dataset: index child’s age

(categorical; \ 1, 1–4 [reference], 5–9, 10–14 years), sex, ethnicity (Caucasian vs. non-Caucasian), birth

weight (continuous; 500 gr increment), maternal education (categorical; low, intermediate [reference],

high) pre-term birth (yes vs. no), maternal smoking during pregnancy (yes vs. no), multiple pregnancy (yes

vs. no) and birth order (continuous; 1, 2, C 3)

Table 3 Meta-analysisa derived odds ratios (OR) and 95% confi-

dence intervals (95% CI) on the association of parental age at birth of

the index child with childhood (0–14 years) acute lymphoblastic

leukemia in sub-analyses by index child’s age group, sex, ethnicity,

and time period of diagnosis/recruitment, as determined by the 5

registry-based case–control studies (Canada-Quebec; Denmark; Fin-

land; US, California State, CCLRP; US, Washington State)

Variable N

ALL cases

N

Controls

Paternal age

(5-year increment)

Maternal age

(5-year increment)

OR (95% CI)a Heterogeneity

I2, p

OR (95% CI)a Heterogeneity

I2, p

Index child’s age group (years)

\ 1 272 860 1.09 (0.92–1.29) 0%, 0.53 0.98 (0.81–1.18) 0%, 0.53

1–5 5270 16,302 1.05 (1.01–1.09) 0%, 0.83 1.04 (1.00–1.09) 0%, 0.89

6–14 2621 8304 1.03 (0.90–1.19) 74%, 0.004 1.06 (0.97–1.16) 30%, 0.22

Index child’s sex

Males 4576 14,293 1.07 (1.03–1.11) 0%, 0.64 1.04 (1.00–1.09) 0%, 0.54

Females 3586 11,180 1.00 (0.96–1.05) 0%, 0.96 1.05 (1.00–1.11) 0%, 0.83

Index child’s ethnicity

Caucasian 4771 13,898 1.06 (1.01–1.08) 0%, 0.82 1.04 (0.99–1.08) 0%, 0.67

Non-Caucasian 3348 11,522 1.02 (0.97–1.06) 0%, 0.38 1.06 (1.01–1.11) 0%, 0.36

Time period of diagnosis/recruitment

1968–1993 2152 6076 1.01 (0.75–1.08) 0%, 0.95 1.01 (0.89–1.15) 56%, 0.06

1994–2003 3446 10,939 1.04 (0.99–1.09) 0%, 0.97 1.07 (1.00–1.15) 20%, 0.29

2004–2015 2564 8458 1.06 (1.00–1.11) 0%, 0.40 1.03 (0.98–1.10) 0%, 0.50

Bold indicates statistical significance (p\ 0.05 for effect size and p\ 0.10 for heterogeneity). Maternal and paternal age are simultaneously

introduced in all models
aRandom-effect meta-analysis of maximally adjusted odds ratios from individual studies for any of the following variables that were available,

apart if stratified for the specific variable: index child’s age (categorical; 1, 1–4 [reference], 5–9, 10–14 years), sex, ethnicity (Caucasian vs. non-

Caucasian), birth weight (continuous; 500 gr increment), maternal education (categorical; low, intermediate [reference], high) pre-term birth (yes

vs. no), maternal smoking during pregnancy (yes vs. no), multiple pregnancy (yes vs. no) and birth order (continuous; 1, 2, C 3)
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studies, CC studies can additionally be subject to recall

bias; it is considered implausible, however, that there might

be differential recall in the age of both parents at index

child’s birth [32].

The distribution of maternal and paternal age varied

widely across CLIC studies (Fig. 1). The heavy weight

towards the older age in some studies, possibly reflects

socioeconomic and cultural variations in the underlying

populations. This may have resulted in a deficit of variance

for parental age distribution in some CC studies, such as

NARECHEM-ST or SETIL, which could possibly explain

the null maternal age associations noticed in these two

studies. Temporal variations of the age distributions within

individual CLIC studies reflected dramatic increases in

parental age at first delivery in the recent decades [13, 14],

they were more prominent in studies with lengthy collec-

tion periods and were, therefore, taken into account in the

analyses.

The recently described E-value was used to assess

unmeasured confounding among the NCC studies [30]. In

order to sufficiently explain the observed effect estimates

for both maternal and paternal age, an unmeasured con-

founder may impact the risk of childhood ALL with an

effect estimate of a level of 1.6, which is considered quite

high, given the magnitude of the observed associations

with the perinatal factors that have already been described

in the literature.

Whether solely advanced paternal, solely advanced

maternal age or both contributed to the observed positive

association with ALL (Pearson coefficient: * 71%), is

difficult to tease out as the results remained nearly the same

in all analyses. Moreover, the numbers in the extreme

parental age discordant cells were rather limited to allow

firm conclusions on the seemingly higher contribution of

the advanced paternal compared to the maternal age on

ALL risk. Lastly, information on genetic markers and

maternal risk factors such as alcohol consumption [33] or

maternal diabetes [34] was not currently contributed by the

majority of studies to further enlighten underlying patho-

physiological mechanisms. Similarly, information on

breastfeeding, a proposed protective factor against child-

hood ALL [35] was actually missing in 3 out of 5 NCC

studies, thus precluding meaningful analyses; nevertheless,

sensitivity analyses restricted to studies availing this

information showed similar results.

The sub-analyses revealed a more marked effect of both

paternal and maternal age in the age group 1–5 years. This

might be expected given that infant leukemia (\ 1 year at

diagnosis) is characterized by distinct clinical and cyto-

genetic features and is assumed to have a distinct etiology

compared to leukemia in older children [36, 37], whereas

in older children the potential effect of perinatal factors on

leukemogenesis might be attenuated. Furthermore, we

found the effect of paternal age to be rather confined to

males. Although gender differences and a higher suscep-

tibility of males to childhood leukemia have previously

been described [1], this finding requires further

investigation.

Several outcomes, including chromosomal abnormali-

ties [16, 17], neurodevelopmental disorders [38, 39], psy-

chiatric diseases or conditions [40, 41] and cancer [25] in

the offspring have been associated with older parental age.

Indeed, accumulation of de novo genetic mutations in the

germ cells of older fathers [18, 19] could increase child-

hood cancer risk in the offspring [42, 43]. Related to older

maternal age was a DNA methylation processed in the

offspring and correlated with cancer as shown in an epi-

genome-wide association study [20]. Moreover, the well-

established association of older maternal age with chro-

mosomal abnormalities and birth defects [44, 45] as well as

ALL [46–48] could possibly mediate the observed effect.

Of note, in the current study, children with Down syn-

drome, which are more likely to develop the disease were

excluded. Lastly, we have also shown in previous publi-

cations of CLIC studies that cesarean delivery, and

specifically elective and not emergency cesarean section,

which is more likely among children born to older mothers

and consequently fathers, is associated with childhood

ALL [49, 50].

The sharp increase of advanced parental age at child-

bearing worldwide during the last decades seems to have

attracted scientific interest due to its public health impli-

cations [13, 14]. Following previous studies investigating

whether the temporal increase in childhood ALL rates in

the developed countries [1, 51–53] could be partially

attributed to advanced paternal age patterns [25, 31], sev-

eral CLIC studies participating in the current analyses have

published individual data since the expression of interest

and the meta-analysis on published studies [23, 24, 26, 27].

The strengths of the present study include access to large

numbers of primary case and control data and most

requested covariates along with availability of two efficient

study designs that allowed to explore robustness of the

observed associations in several sub-analyses testing a

hypothesis on the etiology of a rare disease [54]. Limita-

tions of the study include the divergent data collection

methods for cases and controls; the lengthy and variable,

by individual study, periods of data collection, by indi-

vidual studies, for the main variables of interest which

showed increasing trends over time within each individual

study; the high levels of missing values in several essential

covariates, which led to considerable decrease of the effi-

cient sample size in the maximally adjusted analyses and

the efforts to disentangle the collinear paternal and

maternal age and possibly led to heterogeneous results in

some instances. Lastly, the missing ALL immune-
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phenotype and cytogenetic data on the part of the majority

of the studies, especially the NCC studies precluded further

analyses.

In conclusion, this is the largest study to-date using

primary data aiming to further explore the association of

parental age at birth with childhood ALL. Our results

confirm those from the meta-analysis on published studies

and more recent reports demonstrating that advanced par-

ental age is associated with increased disease risk and

showed that the associations are mostly marked in the age

group 1–5 years. It is possible that advanced parental age

confers the effect through different parental gender related

mechanisms as indicated by the differential parental gender

by age, gender and ethnic group of the index child asso-

ciations. Indeed, de novo genetic mutations in the fathers’

germ cells and epigenetic alterations in the offspring born

to older mothers could explain the observed associations.

Subtype analysis on cytogenetic characterizations and

immunophenotype could further refine our understanding

on the mechanisms through which advanced parental age is

implicated in leukemogenesis among children.
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