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Abstract I greatly appreciate the invitation to give this

lecture with its century long history. The title is a warning

that the lecture is rather discursive and not highly focused

and technical. The theme is simple. That statistical thinking

provides a unifying set of general ideas and specific

methods relevant whenever appreciable natural variation is

present. To be most fruitful these ideas should merge

seamlessly with subject-matter considerations. By contrast,

there is sometimes a temptation to regard formal statistical

analysis as a ritual to be added after the serious work has

been done, a ritual to satisfy convention, referees, and

regulatory agencies. I want implicitly to refute that idea.
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Introduction

I greatly appreciate the invitation to give this lecture with

its century long history. The title is a warning that the

lecture is rather discursive and not highly focused and

technical. The theme is simple. That statistical thinking

provides a unifying set of general ideas and specific

methods relevant whenever appreciable natural variation is

present. To be most fruitful these ideas should merge

seamlessly with subject-matter considerations. By contrast,

there is sometimes a temptation to regard formal statistical

analysis as a ritual to be added after the serious work has

been done, a ritual to satisfy convention, referees, and

regulatory agencies. I want implicitly to refute that idea.

Statistical notions aim to provide a reasonably coherent

way of thinking about variability and its impact, various

specialized techniques of study design and analysis and, in

particular, a way of quantifying the security of ones con-

clusions. That last aspect, the whole elaborate apparatus of

significance tests, confidence distributions, posterior dis-

tributions and so on quite often is overemphasized, but is

nevertheless clearly important and intellectually

challenging.

A sequence

It is helpful to think about these issues in the following

sequence: the order is not to be taken too seriously

Question formulation

Choice of study individuals

Study design

Metrology

Data collection and monitoring, that is quality control
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Data analysis, through various stages

Presentation of conclusions

Interpretation, including decision implications, possibly

about the welfare of patients, policy implementation, and

possibly about what to do next

The bulk of the formal statistical literature is on analysis,

probably too much of it, as I have already said, on the

formal assessment of security.

Question formulation

There is much to be said about all the themes I have listed

above but I am going to make only some isolated com-

ments, including a few historical points.

In all fields of work, even in pure mathematics, the

formulation of issues or questions for investigation is

central. Better a rough answer to an important issue than a

beautiful study of a topic of no real concern. Statistical

considerations enter in at least two ways. The first is to

ensure that the questions are reasonably defined and cap-

able of being addressed. Then, do we have or can we

collect data capable of giving a reasonable answer?

Then, secondly, and more specifically, there is the so-

called factorial principle. In many, but not all, contexts,

experimental and observational, it is wise to ask a series of

interrelated questions rather than a single such question.

There are already important issues implicit.

In a few fields such as infectious disease epidemiology

initial investigation may be helped by simple, if highly

idealized mathematical models. For example in a fairly

recent veterinary study of bovine TB the special issue arose

of the interaction between the disease in two species, cattle

and wildlife, each affected its own and the other. The effect

on cattle of intervening on the wild life was studied

mathematically and gave some partial guidance to a

10 years experimental study of the intervention.

In initial investigation of a broad topic simplicity may

be central.

A little history

On the theme of simplicity let me digress into a piece of

history. In 1930 a very early nutrition study, the Lanark-

shire milk experiment, was set up in a very poor area of

Scotland. Within each of a considerable number of classes

of children, individuals were essentially randomized

between free milk each day and control. In some schools

the milk was pasteurized and in some not. The design was

such that in each class of children taking part the heights

and weights of the children were measured and the children

divided into two groups, either by an essentially random

device or by alternation down the alphabetical list of the

childrens’ surnames. Then the teachers had the opportunity

to ‘‘improve’’ the assignment. About 30,000 children were

involved. After 3 months the children were remeasured.

Although he was not involved in the experiment the

statistician Student [8] published a gently worded but

powerful critique of the study showing, in particular, that

altering the randomization in what was in fact a biased way

had made the experiment virtually uninterpretable. There

were major issues involved also in the measurement pro-

cess. Student also suggested that as a preliminary study in

what was an open field a matched pair investigation using

twins might have been preferable. He did point out though

that the design would be sensitive to mischievous beha-

viour by the twins as well as to a broader criticism that the

response pattern of twins might be atypical.

And that gives me the excuse to say something about

Student.

He was educated as a chemist and had in his under-

graduate degree attended an introductory course in calcu-

lus, etc. He spent his whole career working for Guiness’s,

the brewers based in Dublin. He became interested in

statistical issues through the lab work in Dublin and from

their concern with agricultural trials of barley. His name

was W.S. Gosset but to protect the interests of his firm

employees were not allowed to publish under their own

name.

He published a fairly small number of statistical papers

several, that on the Student t test for example, of very high

originality and lucidity.

His work illustrates, in particular, the point that those

with very limited mathematics can make massive contri-

butions to statistical thinking, in particular by asking

focused questions. Many mathematicians in the 50 years

before Student’s very clumsy derivation of the t distribu-

tion could have derived it far more elegantly, but they did

not pose the right question. He is far from the only example

of this phenomenon.

One moral of the Lanarkshire experiment may be that

while planned complexity can be very fruitful in many

contexts this may not be so when there is little history of

previous investigation.

A modern emphasis

The modern emphasis is on large-scale studies of which

very notable examples are the Rotterdam study, the

Women’s Health Initiative and the Million Women study

and a number of impressive Chinese large-scale wide-

ranging investigations. There is literature on the design of
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such observational studies but there is some possibly

unexplored parallel with the old statistical literature on

the design of factorial experiments that was developed in

an agricultural context in the 1920’s and 1930’s and

elaborated in different form in an industrial context

30–40 years later. There may be scope for some of these

ideas in the context of large observational studies focus-

ing perhaps on measuring key features on all individuals

but being more selective in measuring less central

features.

Metrology

I pass rapidly through some other phases, metrology for

example: in many contexts a key to progress is the ability

to measure features in a reasonably convenient and accu-

rate way. Thus, how should one assess health-related

quality of life? One of my colleagues comparing two

regimes for dealing with arthritis asked at each clinic visit:

did you put your socks and shoes on unaided today? The

question was not intrusive and likely to receive a reason-

ably truthful answer. In other contexts, one single score

(QALY) may be appropriate, much loved by health econ-

omists, no doubt at least in part because of the one-di-

mensional nature of so much theoretical thinking in

economics, forced by the tyranny of wanting to optimize

something. A richer assessment will involve a lengthy

questionnaire with its attendant difficulties in

implementation.

How reliable are the conclusions drawn from various

scanning devices, and so on? How reproducible are the

images and how firmly based is their interpretation? These

are typical issues of metrology and their careful investi-

gation calls for appropriate statistical design and analysis.

Study design

In connection with study design let me comment first about

randomization.

It is common to contrast observational studies with

randomized clinical trials, with implicit or often explicit

emphasis on the word randomized. This is sometimes

misleading. The contrast is often better of observational

studies with studies in which treatment allocation is by a

defined algorithm specified by the investigator. In an

observational study we may observe meticulously that

individual A received exposure or treatment T but have

no direct knowledge of exactly how or why that came

about; in an intervention or experiment we do know

exactly why. Because a well-specified rule has dictated

so.

Now in some cases it is crucial that the assignment

involves randomization and in many situations random-

ization is certainly desirable. Moreover often one element

of randomization may be far from enough. On the other

hand, just occasionally it is a bad idea if allocation involves

randomization.

How can that come about? In two ways.

Here is a real example, admittedly not a biomedical one.

In a particular laboratory-based study, each section of a

large investigation involved a set of 8 specimens each of

which needed a rather different procedure taking about

5 min per specimen of dedicated work in the lab. There

were many such sets of 8, each thus involving about

40 min intensive work in appropriate sequence. Now if the

order of each of the many sets of 8 were to have been

independently randomized there would have been

increased possibility of sets getting the ‘‘wrong’’ treatment

and of this being undetected. It was decided to take the

specimens in systematic order, occasionally altered, and to

have careful quality control checks of the lab work, by

insertion blind of occasional ‘‘dummy’’ sets of specimens.

Separate randomization of each set of eight would have

been a bad idea.

A general and different point is that, powerful and

protective though randomization is, just because a study

involves one randomization may be far from enough.

Systematic distortion may enter at many phases of an

investigation.

A second quite different possibility is that a very small

number of units may be involved. An example would be a

trial of a community intervention policy using four com-

munities, two ‘‘treated’’ and two ‘‘control’’. Here the very

few possible arrangements all have distinctive features and

it would be wise to choose the one with fewest adverse

features, or the features most easily adjusted by analysis,

possibly randomizing the names. One important conceptual

and theoretical requirement for randomization is that all, or

virtually all, the arrangements in the randomization set are

equally effective. It is said that R.A. Fisher, [7] who

introduced formal randomization into experimental design,

was once asked: what should be done if the randomization

throws up a clearly undesirable allocation? Fisher is said to

have reacted with surprise: rerandomize of course. It is

important that this is both the practical and theoretically

correct procedure.

Analysis

The Princeton and Bell Labs statistician J.W. Tukey

emphasized what he called exploratory data analysis,

essentially descriptive statistics, and was surely right to

stress the underemphasized importance of such ideas,
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although they should be linked with the more formal side

as far as possible.

I want to consider briefly three levels of approach to a

standard type of study of dependence.

Focus first on the simplest situation. How does an out-

come (blood pressure, quality of life, survival, for example)

depend on explanatory variables, whether they are intrinsic

properties of the patients or exposures or treatments? We

can distinguish many kinds of such study but for the

moment I want to concentrate on just three, a very crude

classification;

We may have almost a text-book situation. There may be

a modest number of explanatory variables and an appre-

ciable but not enormous number of patients. So depending

on the nature of the outcome, continuous measurement,

binary response or survival time, say, we fit a standard-type

of model. Subject to checks for outliers, nonlinearities,

interaction terms, possible anomalous groups of observa-

tions and other peculiarities the conclusion may be clear and

in some cases a formal analysis may hardly be needed, a

simple graphical or tabular summary being totally adequate.

Of course planning a study must embrace planning an

analysis, in particular to ensure that the study is in principle

capable of answering the questions of interest. But perhaps

especially if a long time elapses between the initial phases

and the analysis of the data total adherence to the initial

analysis may for a range of reasons be wrong.

The second possibility is that there are a large number of

explanatory variables and an even larger number of indi-

viduals. I am not going to discuss the literature on backwards

selection, forward selection and combinations thereof and

the role of penalized methods of optimization such as ridge

regression in which the measure of lack of fit, for example a

sum of squares of residuals is supplemented by a multiple of

the sum of squares of the regression coefficients in suitably

standardized form. This has the effect of shrinking the

regression coefficients selectively towards zero.

Instead I want to go to the third case of an enormous

number of explanatory variables and a limited number of

study individuals, such as arise in particular in genomics;

lets say we have of the order of 100 individuals and 10,000

or more explanatory variables. Tibshirani [9] suggested the

lasso in which, in particular, the penalty for small regression

coefficients was relatively greater forcing many of them to

zero and thus achieving a simple sparse model with ade-

quate fit. That produces a single model. That may be fine for

empirical prediction but for interpretation it is not satis-

factory if there are many different choices that give

imperceptively different fits. We would like in some sense a

confidence set of those simple models that give adequate fit.

I want to outline some recent work [5] with Dr Heather

Battey, Dept of Mathematics, Imperial College London,

which aims at this.

Our example from the genomics literature had rather

over 100 patients for whom there was an outcome and for

whom microarrays contained probes for tens of thousands

of genes.

Clearly there must be some notion of sparsity of effects.

How should that be used?

In general we arrange the variables in a roughly

10 9 10 9 10 cube if there are of the order of 103 vari-

ables and in a 10 9 10 9 10 9 10 hypercube if there are

of the order of 104 variables. Do a large number of standard

regression analyses regressing outcome on the sets of say

10 variables formed from rows, columns, edges, etc. Thus

with 103 variables in a cube there are 300 standard

regressions in which each variable occurs three times

always in conjunction with different companions.

From each of these small regressions we select say the

two most significant variables. We repeat until a relatively

small number of relatively simple potential explanations

remain.

The essence is that if there are alternative well-fitting

explanations of the data we should aim to specify them not

choose one somewhat arbitrarily.

A general point is that the motivation for this procedure

comes directly from the work 80 years ago by F. Yates on

plant breeding studies where say 1000 varieties of wheat

were studied in simple block designs and gradually over a

few years reduced to a small number for agricultural use.

For this Yates introduced and studied so-called partially

balanced incomplete block designs. These are being used

here. This is illustrates in an extreme case the transference

of methodological ideas across fields.

The essence of Dr Battey’s and my formulation is that

we are not predicting but attempting to suggest explana-

tions, recognizing that there may be many explanations

that fit about equally well and that further expert infor-

mation or additional experimentation will be needed to

resolve the interpretation. The problem is essentially

exploratory and to force a single answer when there are

several or many virtually equally well-fitting but different

fits is misleading.

I have deliberately described the procedure in an

informal way. It does have some formal theoretical statis-

tical properties, however, derived under highly idealized

conditions. That is not the central point, though.

Interpretation

The final and in some ways most challenging phase is

interpretation. Suppose we have some reasonably secure

conclusions. What are their real implications?

For example, consider a randomized comparison of a

treatment, T, with control, C, under the unrealistic
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assumptions that there is complete adherence, and that the

patients can be treated as a random sample from the

relevant population. Suppose that there is a clear superi-

ority of T, highly significant statistically. What does this

show?

Does it mean that T is better for every patient? Obvi-

ously not. What it shows formally is something like the

following.

Consider two hypothetical situations. First, all individ-

uals receive T, all else being unchanged. Secondly, and

notionally quite separately, all individuals receive C all

else being unchanged. Then there is strong evidence that

the aggregate of all outcomes under T is better than the

aggregate outcome under C. This does not preclude there

being a minority of individuals for whom T is bad news.

Will the conclusion generalize to a new population,

inevitably somewhat different from the context of the

current investigation?

The problem is also acute for what is sometimes called

the issue of specificity. A treating clinician has a particular

patient about whom she or he has fairly detailed informa-

tion. Should he or she recommend T or should the rec-

ommendation be C?

So we have two big problems: generalizability and

specificity.

Some more history

So far the word causality has not been mentioned. But first

there is some more history.

W.G. Cochran was a Scot educated in mathematics and

physics at University of Glasgow and continuing to Cam-

bridge, UK, to do postgraduate work in fluid dynamics but

switching to statistics, then in a lively phase under the

direct and indirect influence of R.A. Fisher, and moved to

agricultural research at Rothamsted to work with Yates,

Fisher’s successor there. Cochran published important

papers in that period, in particular one with Yates on what

was in effect the first systematic study of metaanalysis or

overviews. Cochran emigrated and in 1957 moved to

Harvard where he became of course a pivotal figure in the

US and internationally.

In 1965 Cochran [2] returned to UK on study leave and

during that time read to the RSS a paper arguing that the

time was right for developing ideas for the interpretation of

observational studies to parallel the work on interventions,

that is experiments. The vote of thanks was proposed by

Bradford Hill who set out his considerations or guidelines

pointing towards causality; he strongly emphasized these

were not to be regarded as either necessary or as sufficient

conditions; see Bradford Hill [1].

It is hard to trace all influences but I suspect that the

direct and indirect influence of Cochran’s work has been

pivotal, nationally and internationally.

On a personal note, I met Cochran only a couple of

times briefly, but well before that, before he moved to

Harvard, he had been exceptionally encouraging and

helpful to me in correspondence about issues of experi-

mental design and I have always been very grateful for

that.

His 1965 paper was, in particular, surely one of the starts

of the current interest in causality.

Causality

There are broadly at least three views of causality in the

literature; for a brief review, see Cox and Wermuth [6].

First, largely in the time series field, there is Wiener-

Granger causality essentially about the ability of one time

series to predict the future of another. Wiener was an

outstanding MIT pure mathematician and Granger an

econometrician.

The second and widely used definition involves the

notion of an exposure being hypothetically changed, other

things being equal. It can be regarded as underpinning the

classical theory of randomized experiments and, general-

ized into broader settings, it has a large and rich literature.

The third notion adds to the second some notion of

evidence-based explanation in terms of an underlying

process, biological or physical perhaps. Of course such

explanations are not ‘‘ultimate’’. Their danger is that they

can nearly always be manufactured after the event, but very

much more than that is required, typically explicit inde-

pendent evidence. Davey-Smith coined the term triangu-

lation for this view of causality.

For example, in the veterinary study I mentioned briefly

above, an unexpected conclusion seemed to emerge, that a

control policy that was intended to reduce incidence of TB

actually increased incidence. There were two possible

explanations. A subsidiary experiment showed that one of

the explanations, that the control procedure led to infected

individuals, although fewer in number, travelling more

widely and hence producing more infection, was consistent

with the data.

This brings us back to a key question: what justifies

generalization and specificity?

Random sampling: not really or at least very rarely!

Overall outcome of randomized trial or observational

near equivalent: to a limited extent.

Stability of such an effect with respect to key intrinsic

features, not to be confused with subgroup analysis. Cer-

tainly this is important. Although only a limited number of
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such checks can be made in any one context, the impor-

tance of assessing stability probably deserves more

emphasis in some current contexts.

The above supplemented by third level causality, the last

often a relatively more fragile route.

Of course the smaller the effect the more delicate the

arguments that are needed, one of Bradford Hill’s points.

I have touched on just a few of the many broad issues

that can reasonably be called statistical and repeat that

integration into the subject-matter thinking of the field in

question is crucial for success: it not an issue of imposing

some ritualistic procedures of analysis or design.

The bulk of the formal statistical literature is on analy-

sis, probably too much of it on the formal assessment of

security by significance tests, confidence distributions and

posterior distributions with the mass of challenging con-

ceptual issues that they raise.

What is the main limitation of the kind of thinking I am

characterizing as statistical? It is probably the emphasis,

touched on at the end of my remarks on causality, on the

self-contained security of individual investigations and of

series of investigations that can be formulated as estimating

a common feature. For example, even though the studies of

Bradford Hill and Doll among others had by the early

1950’s shown compelling evidence of the harmful effect of

tobacco smoking, there was among some senior statisti-

cians, including some not well known for agreeing with

one another, widespread scepticism about the causal nature

of the effect. Cornfield et al. [3] showed in a powerful

paper that when various different kinds of evidence were

assembled together a virtually overwhelming case

emerged; an illustration of the general point made earlier

about synthesizing different kinds of evidence. It is hard to

see a general quantitative basis for such wide-ranging

synthesis of evidence, although for an individual research

worker a subjectivist view of probability might be invoked.

Some broad issues

First how should statistical ideas be taught?

If there is a general principle involved in teaching it may

be: Approach the new and unknown out of the known! So

for a mathematician one would emphasize the axioms of

probability theory and their links with other areas of

mathematics: for a research worker in a specific field one

would start with a possibly idealized example of an

important issue in that field. For a very broad audience one

might start with topics from every-day life, and so on. In so

far as feasible, emphasize principle over specific technique

but in so doing for most types of audience specific exam-

ples are crucial.

There is what might broadly be called an ethical issue

for statisticians, especially those in medical and associated

fields. Research is not for the timid and negative thinking is

dangerous. But statisticians are quite often in the position

of having to sound warnings against overinterpretation

arising from poor design and or inadequate scale. The

empirical evidence is overwhelming that such warnings are

necessary; our newspapers are almost daily describing

studies often with claims of strong implications for our

well-being, claims with at best dubious base. The answer is

to emphasize the role of general methodological consid-

erations in the many well-designed important studies that

do contribute so much to human welfare.

The future

We live in a dynamic age. There is Big data; Machine

learning; Data science; Deep learning. And the list is

probably already obsolete. There are surely important ideas

and problems in all of them, largely based on the computer

technology involved.

Big data have been around all my working life and no

doubt much longer, but of course in earlier times had to be

analysed on a sampling basis. Key issues are their quality

and relevance. Over quality, some big data, such as that

coming from CERN in connection with the discovery of the

Higgs boson, is undoubtedly of very high quality. But

quality may be less clear in other contexts. If a little bad data

is a little bit misleading what are the consequences of a large

amount of bad data? Next, are the study individuals, espe-

cially if self-selected, appropriate for the issue under

investigation? Finally there is a more subtle statistical issue

of precision. Estimates of precision, however calculated,

often involve explicit or implicit assumptions of the statis-

tical independence of individuals, leading to standard errors

of key estimates that implicitly are inversely proportional to

the square root of the number of individuals involved and

hence very small. Such estimates of error indeed are often so

small as to be intrinsically implausible and theoretical

arguments can be produced to show why this is [4].

More broadly and importantly the emphasis of the recently

popular themes is primarily on empirical prediction. Impor-

tant though that is, a deeper and ultimately more probing

approach is required for understanding, and ultimately also

for stable prediction beyond the immediate environment.

That is, the challenge in part is to give all these new

ideas a broader and richer perspective.

I greatly appreciate the invitation to give the Cutter

Lecture. The paper is a slightly extended version of that

Lecture. I thank Bianca de Stavola and Heather Battey for

helpful comments.
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