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Abstract When studying the association between an expo-

sure and an outcome, it is common to use regression models

to adjust for measured confounders. The most common

models in epidemiologic research are logistic regression and

Cox regression, which estimate conditional (on the con-

founders) odds ratios and hazard ratios. When the model has

been fitted, one can use regression standardization to esti-

mate marginal measures of association. If the measured

confounders are sufficient for confounding control, then the

marginal association measures can be interpreted as poula-

tion causal effects. In this paper we describe a new R pack-

age, stdReg, that carries out regression standardization

with generalized linear models (e.g. logistic regression) and

Cox regression models. We illustrate the package with sev-

eral examples, using real data that are publicly available.

Keywords Cox regression � Hazard ratio � Logistic
regression � Odds ratio � Standardization

Introduction

When studying the association between an exposure and an

outcome, it is common to use regression models to adjust for

measured confounders. The most common models in epi-

demiologic research are logistic regression (for binary out-

comes) and Cox regression (for time-to-event outcomes).

These models are powerful and flexible, and can be adapted

to various situations and sampling schemes, e.g. case–con-

trol studies, matched cohort studies and case-cohort studies.

Logistic regression and Cox regression estimate condi-

tional (on the confounders) odds ratios and hazard ratios,

respectively. When the model has been fitted, one can use

regression standardization to estimate marginal measures of

association (see Rothman et al. [1, pp. 386–388, 442–445]

and the references therein). This method uses the regression

model to predict the risk of the outcome or the survival

function, for exposed and unexposed separately, at every

observed level of the measured confounders. Then, these

predictions are averaged over a ‘standard’ confounder dis-

tribution to produce a standardized risk or survival function,

for exposed and unexposed separately. Standardized sur-

vival functions are sometimes referred to as ‘direct adjusted

survival curves’ [2]. A natural choice of ‘standard’ con-

founder distribution is the observed distribution in the sam-

ple. Finally, the standardized risks/survival functions for

exposed and unexposed can be contrasted to produce stan-

dardized measures of association. If the measured con-

founders are sufficient for confounding control, then these

standardized measures of association can be interpreted as

population causal effects; they apply to a population with the

‘standard’ confounder distribution [1].

An appealing feature of regression standardization is

that, although the underlying models estimate odds ratios

and hazard ratios, the standardized measures are not

restricted to these contrasts. For instance, we can use

logistic regression to estimate a standardized risk differ-

ence, and we can use Cox regression to estimate a stan-

dardized difference in 5 year survival.

Another appealing feature of regression standardization

is that standardized measures have simple interpretations

even though the underlying models are complex. In the

conventional use of logistic/Cox regression it is common to

assume that the conditional odds/hazard ratio is constant

across levels of the measured confounders. Arguable, this
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1 Nobels väg 12 A, 171 77 Stockholm, Sweden

123

Eur J Epidemiol (2016) 31:563–574

DOI 10.1007/s10654-016-0157-3

http://orcid.org/0000-0001-5226-6685
http://crossmark.crossref.org/dialog/?doi=10.1007/s10654-016-0157-3&amp;domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/s10654-016-0157-3&amp;domain=pdf


assumption is typically not made because it is believed to

hold true, but because it implies that the adjusted exposure-

outcome association can be conveniently represented by a

single number. In principle, the assumption can be relaxed

by including interaction terms between the exposure and

the measured confounders, but this makes interpretation

more complicated and is therefore rarely done in practice.

However, since the standardized risk difference is averaged

over the confounder distribution, it remains a single num-

ber even when there are exposure-confounder interactions

in the underlying model. Thus, standardization relieves the

analyst from some of the pressure of having to rely on

unrealistically simple models.

Despite its appeal, regression standardization is not

commonly used in epidemiologic studies. We believe that

this is largely due to a lack of software implementation. In

this paper we present a new R package, stdReg, which

carries out regression standardization with generalized lin-

ear models and Cox regression models [3]. The package is

available on CRAN’s webpage. The paper is organized as

follows. In ‘Standardization with generalized linear models’

section we consider regression standardization with gener-

alized linear models, e.g. logistic regression. In ‘Standard-

ization in case–control studies’ section we consider

regression standardization in case–control studies, based on

logistic regression models. In ‘Standardization with Cox

regression models’ section we consider regression stan-

dardization with Cox regression models. These sections are

split into subsections labelled ‘theory’ and ‘practice’. In the

‘theory’ subsections we review the theory behind regression

standardization, and in the ‘practice’ subsections we illus-

trate through practical examples how regression standard-

ization can be carried out with the stdReg package.

Throughout we use examples with publicly available

datasets, so that the reader can replicate and elaborate on

all analyses. All datasets are borrowed from the AF pack-

age [4]; we refer to the help files for this package and the

references therein for a thorough description of the data.

We assume that the reader has some familiarity with R, in

particular with the functionality for fitting generalized

linear models and Cox regression models.

Standardization with generalized linear models

Theory

Let X and Y be the exposure and outcome of interest,

respectively, and let x be a specific (fixed) exposure level.

Let Z be a vector of measured confounders that we wish to

adjust for in the analysis. Let E(Y|X, Z) be the conditional

mean of Y, given X and Z. The standardized mean of Y, at

X = x, is defined as

hðxÞ ¼ EfEðY jX ¼ x; ZÞg;

where the outer mean is taken over the marginal (popula-

tion) distribution of Z. If Z is sufficient for confounding

control, then hðxÞ can be interpreted as the counterfactual

mean outcome that we would have observed, had every-

body in the population been exposed to level X = x [1].

Standardized means at different levels of X can be con-

trasted to form standardized effects. For instance, if Z is

sufficient for confounding control and Y is binary (0/1),

then the contrast hðx1Þ � hðx0Þ can be interpreted as a

causal risk difference, comparing levels X ¼ x1 and

X ¼ x0. In practice, one would rarely believe that a set of

measured confounders is sufficient for confounding con-

trol. However, in the presence of unmeasured confounding

we may still view (contrasts of) hðxÞ as a useful summary

measure of the exposure-outcome association.

A generalized linear model is a model for E(Y|X, Z) on

the form

gfEðYjX; ZÞg ¼ hðX;Z; bÞ ð1Þ

where gð�Þ is a suitable link function. The identity link

gives linear regression, the log link gives Poisson regres-

sion, and the logit link gives logistic regression. The

parametric function hðX; Z;bÞ is often assumed to be a

linear in X and Z, e.g gfEðYjX; ZÞg ¼ b0 þ b1X þ b2Z, but
it may also, for instance, include interaction terms, higher

order terms or splines. Provided that the sample is taken

randomly from the population, a generalized linear model

can be used estimate standardized means as follows. First,

the model is fitted to obtain an estimate of the parameter

vector b. Then, for each subject i with confounder vector

Zi, i ¼ 1; 2; . . .; n, we use g�1fhðX ¼ x; Zi; b̂Þg as a pre-

diction of EðY jX ¼ x; ZiÞ. Finally, these predictions are

averaged to obtain an estimate of hðxÞ:

ĥðxÞ ¼
Xn

i¼1

g�1fhðX ¼ x; Zi; b̂Þg=n: ð2Þ

In Appendix 1 we use the ‘sandwich formula’ [5] to derive

the asymptotic distribution for the estimate ĥðxÞ, and for

estimated contrasts such as ĥðx1Þ � ĥðx0Þ.

Practice

In this section we use the dataset clslowbwt. This

dataset contains information on 487 births among 188

women. Here we are interested in the following variables:

lbw (a binary indicator of whether the newborn has low

birthweight, defined as birthweight B2500 g) smoker (a

binary indicator of whether the mother smoked during

pregnancy), race (race of the mother, coded as white,

black or other), age (age of the mother), and id (a unique
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identification number for each mother). We aim to estimate

the association between smoking during pregnancy and low

birthweight, adjusted for mother’s race and age.

A conventional analysis fits the logistic regression

model

logitfPrðlbw ¼ 1jsmoker; race; ageÞg
¼ b0 þ b1smokerþ b2Iðrace ¼’’black}Þ
þ b3Iðrace ¼}other}Þ þ b4age;

ð3Þ

where I(A) is the indicator variable taking value 1 if A is

true, 0 otherwise. In R, the model is fitted by typing

which gives the output

The output indicates that the odds of having low birth-

weight is about expð0:6Þ � 1:8 times higher among children

born to smokers as compared to children born to non-smokers.

The model in (3) is perhaps unrealistically simple, since

it assumes that the effect of smoking is the same regardless

of age and race. Thus, we next consider the following

model, which includes both main effects and all pair-wise

interactions between the predictors:

logitfPrðlbw ¼ 1jsmoker; race; ageÞg
¼ b0 þ b1smokerþ b2Iðrace ¼}black}Þ
þ b3Iðrace ¼}other}Þ þ b4age

þ b5smoker� Iðrace ¼}black}Þ þ b6smoker

� Iðrace ¼}other}Þ þ b7smoker� age

þ b8Iðrace ¼}black}Þ � age

þ b9Iðrace ¼}other}Þ � age:

ð4Þ

The model is fitted by typing

which gives the output
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We observe that the interaction term between smoker

and age is highly significant, with a p value\0.001. Thus, it

seems like the model in (3), which only includes main

effects, may indeed be too simplistic. On the other hand, the

more realistic model in (4) is harder to interpret and com-

municate, since the smoking effect in this model is captured

by four parameters (one main effect plus three interaction

terms). We note that the standard errors and p-values in the

output may not be entirely correct, as the glm function

assumes that all observations are independent. This

assumption is not likely to hold in the clslowbwt dataset,

since some women have given birth to multiple children.

To perform regression standardization with the model in

(4), we use the function stdGlm from the stdReg

package. The function takes a fitted model as input, toge-

ther with the data frame that was used to fit the model, and

standardizes to the confounder distribution in the data

frame. This is done by typing

The argument X is mandatory, and specifies the name of

the exposure variable. The argument clusters is

optional, and specifies the name of a cluster identification

variable. By specifying this argument we ensure that the

standard errors of the estimates are corrected for within-

cluster correlations. The results are summarized by typing

This produces a table with the standardized risk for low

birthweight, for the unexposed (smoker=0) and the

exposed (smoker=1), together with standard errors and

95 % confidence intervals. If race and age are sufficient

for confounding control, we may conclude that 28 % of all

newborns would have had low birthweight, had no mother

smoked, and that 41 % of all newborns would have had

low birthweight, had all mothers smoked.

To obtain the standardized risk difference we type

which gives the risk difference for the unexposed and

exposed, using unexposed as the reference level. The

contrast argument can also be set to ‘‘ratio’’,

which then gives the standardized risk ratio. The summary

function has an additional argument, transform, which

allows for a log-, logit-, and odds-transformation of the

standardized risks. The transformation is applied before

taking the contrast. By combining the contrast and

transform arguments, all common (and some less

common) association measures can be obtained. For

instance, to obtain the standardized odds ratio we type
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The stdGlm is not limited to binary exposures. Sup-

pose that we want to fit the model in (4), but consider age

as the exposure. We then type

The x argument specifies at what exposure levels to

standardize; we here chose to standardize at ages 20 to 40,

in steps of 1 year. The x argument defaults to ‘all levels’

when the exposure is categorical/binary. When the expo-

sure is continuous, it may be more convenient to summa-

rize the results in a plot. This can be done by typing

which gives the plot in Fig. 1. This plot shows that the risk

of low birthweight (solid line) increases from 0.3 at age 20,

to 0.37 at age 40, in an almost linear fashion. By default, the

plot displays 95 % pointwise confidence intervals (dashed

lines). Like the summary function, the plot function has

optional arguments transform and contrast, which

can be used to plot, for instance, the standardized risk dif-

ference and the odds ratio as a function of age.

We end this section by noting that, although we have

restricted attention to logistic regression, other models can

be used as well. The stdGlm function accepts all models

that have been fitted with the glm function, e.g. linear and

log-linear (Poisson) models.

Standardization in case–control studies

Theory

Standardization is more difficult when data are collected

under a ‘biased’ sampling scheme, as in case–control

studies. If the sampling probabilities are known, then

standardization can be carried out as described above, by

using weights that ‘corrects’ for the sampling scheme.

These weights should be used both when fitting the gen-

eralized linear model in (1) and when averaging the pre-

dictions in (2). In case–control studies, the generalized

linear model in (1) would typically be a logistic regression,

but other choices are possible, e.g. probit regression.

Different weights are possible, and the choice of weights

may affect the efficiency of the resulting estimators [7]. We

here consider weights for matched case–control studies that

are conceptually simple and easy to compute. Let pðY ¼ 1Þ
and p�ðY ¼ 1Þ be the population and sample probability of

the outcome, respectively. Let Mi be the value of the

matching variable observed for subject i. Let pðMijY ¼ 0Þ
and pðMijY ¼ 1Þ be the probability of Mi among the con-

trols and the cases in the population, respectively. When

the controls are matched to the cases, we assign the fol-

lowing weight to subject i:

wi ¼

pðY ¼ 1Þ
p�ðY ¼ 1Þ if subject i is a case

pðY ¼ 0Þ
p�ðY ¼ 0Þ

pðMijY ¼ 0Þ
pðMijY ¼ 1Þ if subject i is a control

8
>><

>>:

These weights are mathematically equivalent to the

weights proposed in Theorem 3 by van der Laan [7].

Weights for unmatched case–control studies can be

obtained as a special case, by setting the ratio pðMijY ¼
0Þ=pðMijY ¼ 1Þ equal to 1.
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Fig. 1 Standardized risk of low birthweight as a function of mother’s

age
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Practice

In this section we use the dataset singapore. This dataset

contains information on 80 male cases of oesophageal can-

cer, who were collected from hospitals in Singapore during

1970–1972. Each case was individually matched to 4 con-

trols on age within 5 year intervals. We are interested in the

following variables: Oesophagealcancer (the binary

case–control indicator), Everhotbev (a binary indicator

of whether the subject drinks beverages at ‘burning hot’

temperatures on a daily basis), Age (the subject’s age),

Dial (dialect group; 1 for Hokhien/Teochew and 0 for

Cantonese/Other), Samsu (a binary indicator of whether the

subject consumes Samsu wine on a daily basis), Cigs

(number of cigarettes smoked per day), and Set (a unique

identification number for each matched set). We aim to

estimate the association between intake of beverages at

‘burning hot’ temperatures and oesophageal cancer, adjusted

for age, dialect group, intake of Samsu wine and smoking.

A conventional analysis fits the conditional regression

model

logitfPrðOesophagealcancer ¼ 1jEverhotbev;
Dial; Samsu; Cigs; SetÞg
¼ bSet þ b1Everhotbevþ b2Ageþ b3Dial

þ b4Samsu þ b5Cigs;

where bSet is a set-specific intercept. The variable Age is

‘absorbed’ by the intercept, since the study is matched on

age. In R, the model is fitted by the clogit function in the

survival package:

which gives the output

The output indicates that the odds of getting oesopha-

geal cancer is about 1.18 times higher for those who drink

beverages at ‘burning hot’ temperatures as compared to

those who do not.

To carry out standardization we use weights, as descibed

in ‘Theory’ section. From the 1:4 matched design, we have

that p�ðY ¼ 1Þ is equal to 1/5. The incidence of oesopha-

geal cancer, in the population of male Chinese in Singa-

pore, was 19.3 per 100,000 person-years at the time when

data were collected [8]; we use this as an estimate of

pðY ¼ 1Þ. We note that by using the incidence at this step

in the weights, the standardized risks that we obtain should

be interpreted as incidences as well. Due to the matched

design, pðMijY ¼ 1Þ equals the probability of Mi among

the cases in the sample, up to sampling variability. We

don’t know the age distribution among the controls in the

population, so we vary pðMijY ¼ 0Þ in a sensitivity anal-

ysis. Towards this end we assume that age has a normal

distribution in the population, in both cases and controls.

We further assume that these normal distributions have the

same standard deviation, s, but possibly different means,

equal to m and m� d, respectively. The parameter d mea-

sures how much younger, on average, the controls are in

the population as compared to the cases. Under these

assumptions, the ratio pðMijY ¼ 0Þ=pðMijY ¼ 1Þ becomes

a ratio of two normal densitites evaluated at Mi, with

standard deviation equal to s and means equal to m� d and

m, respectively. We vary d over a range of values and carry
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out the standardization for each value separately. The fol-

lowing code shows the analysis for d ¼ 5. As before we

use a model that includes both main effects and all pair-

wise interactions between the predictors.

The standardized incidences of oesophageal cancer are

12.8 and 57.0 cases per 100,000 person-years, for those

who do and do not drink beverages at ‘burning hot’ tem-

peratures, respectively.

We make some remarks. First, note that we have used

an ordinary logistic regression model here, with explicit

adjustment for the matching variable age, instead of a

conditional logistic regression model. The reason for this

is that conditional logistic regression does not produce

estimates of the set-specific intercepts, which hampers

standardization. Second, note that there is no need (or

possibility) to explicitly input the weights to the stdGlm

function; it retrieves the weights from the fitted model

(the fit2 object), and uses them in the standardization.

Third, note the argument case.control in the

stdGlm function. Setting this to TRUE does not affect

the estimates, but corrects the standard errors for the fact

that the number and cases and controls are fixed by

design [9, Appendix E].

The plot in Fig. 2 shows the standardized incidence

difference as a function of the population mean difference

in age between cases and controls, together with 95 %

pointwise confidence intervals. We observe that the inci-

dence difference is not overly sensitive to the population

mean difference in age; it decreases from 49 to 39 cases

per 100,000 person-years when the mean difference is

increased from 0 to 10 years. The 95 % confidence

intervals are very wide, implying that the uncertainty in

the incidence difference is dominated by sampling

variability.

Standardization with Cox regression models

Theory

As before, let X and Z be the exposure and measured

confounders, respectively, and let x be a specific (fixed)
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population mean difference in age between cases and controls
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exposure level. Let T be a time-to-event outcome, e.g. time

to death. Let S(t|X, Z) and kðtjX;ZÞ be the conditional

survival function and hazard function, given X and Z,

respectively. The standardized survival function, at X = x,

is defined as

hðt; xÞ ¼ EfSðtjX ¼ x; ZÞg;

where the outer mean is taken over the marginal (popu-

lation) distribution of Z. If Z is sufficient for confounding

control, then hðt; xÞ can be interpreted as the counterfac-

tual survival function that we would have observed, had

everybody in the population been exposed to level

X = x [1]. Standardized survival functions at different

levels of X can be contrasted to form standardized effects.

For instance, if Z is sufficient for confounding control,

then the contrast hðt; x1Þ � hðt; x0Þ can be interpreted as a

causal survival function difference, comparing levels X ¼
x1 and X ¼ x0. In practice, one would rarely believe that a

set of measured confounders is sufficient for confounding

control. However, in the presence of unmeasured con-

founding we may still view (contrasts of) hðt; xÞ as a

useful summary measure of the exposure-outcome

association.

A Cox regression model is a model for kðtjX; ZÞ on the

form

kðtjX; ZÞ ¼ k0ðtÞexpfhðX;Z; bÞg;

where k0ðtÞ is the unspecified bazeline hazard. Often, the

parametric function hðX; Z; bÞ is assumed to be a linear in

X and Z, e.g kðtjX; ZÞ ¼ k0ðtÞexpðb0 þ b1Xþ b2ZÞ, but it
may also, for instance, include interaction terms, higher

order terms or splines. Provided that the sample is taken

randomly from the population, a Cox regression model

can be used estimate standardized survival functions as

follows. First, the model is fitted to obtain an estimate of

the parameter vector b. An estimate of the cumulative

baseline hazard K0ðtÞ ¼
R t

0
k0ðuÞdu is obtained by Bres-

low’s estimator [10]. Then, for each subject i with con-

founder vector Zi, i ¼ 1; 2; . . .; n, we use exp½�K̂0

ðtÞexpfhðX ¼ x;Zi; b̂Þg� as a prediction of SðtjX ¼ x; ZiÞ.
Finally, these predictions are averaged to obtain an esti-

mate of hðt; xÞ:

ĥðt; xÞ ¼
Xn

i¼1

exp½�K̂0ðtÞexpfhðX ¼ x;Zi; b̂Þg�=n:

In Appendix 1 we use the ‘sandwich formula’ [5] to derive

the asymptotic distribution for the estimate ĥðt; xÞ, and for

estimated contrasts such as ĥðt; x1Þ � ĥðt; x0Þ:

Practice

In this section we use the dataset rott2. This dataset

contains information on 2982 women with primary breast

cancer from the Rotterdam tumor bank in the Netherlands.

The follow-up time ranges from 1 to 231 months. We are

interested in the following variables: rf (the time, mea-

sured in months, that the patient is under study), rfi (an

indicator of whether the patient experienced death or

relapse before censoring), chemo (an indicator of whe-

ther the patient received chemotherapy, coded as ‘yes’ or

‘no’), age (the patient’s age at surgery), meno (meno-

pausal status, coded as 0 for pre and 1 for post), size

(tumor size in three classes: ‘� 20mm’, ‘[20–50 mm’

and ‘[ 50mm’), grade (tumor grade; 2 or 3), nodes

(the number of positive lymph nodes, ranging from 0 to

34), pr (progesterone receptors, fmol/l), and er (oe-

strogen receptors, fmol/l). We aim to estimate the asso-

ciation between chemotherapy and relapse-free survival

time, adjusted for age, menopausal status, tumor size,

tumor grade, lymph nodes, progesterone and oestrogen

receptors.

A conventional analysis fits the Cox regression model

kðtjchemo; age; meno; size; grade; nodes; pr; erÞ
¼ k0ðtÞexpfb1chemo þ b2ageþ b3menoþ b4size

þ b5gradeþ b6expð�0:12nodesÞ þ b7prþ b8erg:

In this model we used the transformation

expð�0:12nodesÞ, since previous analyses of this dataset

have shown that this transformation gives a better model fit

[11]. In R, the model is fitted by the coxph function in the

survival package:
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which gives the output

The output indicates that the hazard of death or relapse

is about 1.33 times higher for those who did not recieve

chemotherapy as compared to those who did recieve

chemotherapy.

To perform regression standardization with a Cox model

we use the function stdCox from the stdReg package.

This function estimates standardized survival functions,

based on a user-specified Cox regression model. The

function takes a fitted model as input, together with the

data frame that was used to fit the model, and standardizes

to the observed confounder distribution in the data frame.

We use a model that includes both main effects and all

pair-wise interactions between the predictors. The model is

fitted by typing

and the standardization is carried out by typing

The argument X is mandatory, and specifies the name of

the exposure variable. There is an optional argument t that

we have not used here. This argument specifies a vector of

time points at which standardization is carried out. It

defaults to all observed event times. When there are many

observed event times, the computing time can be dramat-

ically reduced by specifying a limited number of time point

through the t argument. In addition, there is an optional

argument clusters, which should be specified for

clustered data.

It is convenient to summarize the results in a plot. This

is done by typing
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which gives the plot in Fig. 3. This plot shows that the

standardized survival function for those who did receive

chemotherapy (red solid line) and did not receive

chemotherapy (black solid line), together with pointwise

95% confidence intervals (dashed lines). The survival for

those who did receive chemotherapy is well above the

survival for those who did not. For instance, the stan-

dardized survival probabilities at 5 years (60 months) are

65 and 57 % for those who did and did not receive

chemotherapy, respectively.

To plot the difference in standardized survival functions,

with ‘no chemotherapy’ as the reference, we type

which gives the plot in Fig. 4. We observe that the 95%

confidence interval for the difference includes 0 every-

where, so that the observed difference is not statistically

significant.

Discussion

In this paper we have described a new R package for

regression standardization; stdReg. The stdReg pack-

age allows for standardization with generalized linear

models and Cox regression models, which are the most

commonly used models in epidemiologic research. We

have demonstrated that it can accomodate various sampling

schemes, such as longitudinal studies with repeated mea-

sures and case–control studies. We have made an effort to

optimize the code so that it runs fast and smoothly, even for

large datasets with millions of observations. In particular,

all standard errors are coded with analytic formulas based

on the theory for M-estimation and the ‘sandwich formula’

[5], thereby avoiding time consuming numerical approxi-

mations and bootstrap procedurs.

The stdReg package standardizes to the observed

confounder distribution in the sample. This is a natural

choice, which leads to a simple interpretation of the

standardized measures as population causal effects (pro-

vided that the observed confounders are sufficient for

confounding control). Other choices could be relevant

though, for instance, when one wants to study the effect

in a subpopulation, e.g. females. In this case it would be

appropriate to standardize to the confounder distribution

in the subpopulation of interest. We plan to extend the

stdReg package in the future, to allow for different

choices of ‘standard’ confounder distributions.

The stdReg package carries out standardization with

regression models for the outcome. Standardization can also

be carried out with regression models for the exposure [12,

13]. A more sophisticated approach combines an outcome

model with an exposure model to produce a doubly robust

estimator of the standardized measure of interest [14, 15]. A

possible extension of the package is to allow for standard-

ization with exposure models and doubly robust estimation.

The stdCoxph function only allows for time-station-

ary exposures and confounders. When the exposure and

confounders are time-varying, usual regression techniques

do not estimate parameters that can be interpreted as causal

effects, even when the measured confounders are sufficient

for confounding control [16]. Instead, standardization must

be based on the g-formula [16], which is currently not

implemented in the stdReg package.

An appealing feature of standardized measures is that

they have a simple interpretation even though the

underlying model is complex. To illustrate this, we have

consistently used models with both main effects and all

pair-wise interactions between the predictors. However,

as the number of parameters in the underlying model

increases, the statistical uncertainty in the standardized

measures increases as well. Indeed, in all our examples
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Fig. 3 Standardized survival functions for those who did receive

chemotherapy (red solid line) and did not receive chemotherapy

(black solid line)
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the confidence intervals are quite wide, and no effect is

statistically significant. In practice, the level of model

complexity must thus be chosen to strike a reasonable

balance between robustness and efficiency.

Appendix 1: Asymptotic distribution
for standardized measures

For generalized linear models, let x0 and x1 be fixed con-

stants. Let w ¼ gfhðx0Þ; hðx1Þg be a function of hðx0Þ and
hðx1Þ, e.g. hðx1Þ � hðx0Þ. Define m ¼ fb; hðx0Þ; hðx1Þ;wg.
The estimator m̂ ¼ ½b̂; ĥðx0Þ; ĥðx1Þ; gfĥðx0Þ; ĥðx1Þg� is an

M-estimator [5] that solves the estimating equation

Xn

i¼1

Um;iðmÞ ¼
Xn

i¼1

Ub;iðbÞ
Uhðx0Þ;ifb; hðx0Þg
Uhðx1Þ;ifb; hðx1Þg

Uw;ifhðx0Þ; hðx1Þ;wg

2

6664

3

7775 ¼ 0;

where Ub;iðbÞ is the contribution to the maximum likeli-

hood score function from subject i, UhðxÞ;ifb; hðxÞg ¼
g�1fhðX ¼ x; Zi; bÞg � hðxÞ for x ¼ x1 and x ¼ x0, and

Uw;ifhðx0Þ; hðx1Þ;wg ¼ gfhðx0Þ; hðx1Þg � w.
For Cox regression models, let x0, x1 and t be fixed

constants. Let w ¼ gfhðt; x0Þ; hðt; x1Þg be a function of

hðt; x0Þ and hðt; x1Þ, e.g. hðt; x1Þ � hðt; x0Þ. Define

m ¼ fb;K0ðtÞ; hðt; x0Þ; hðt; x1Þ;wg. The estimator m̂ ¼
½b̂; K̂0ðtÞ; ĥðt; x0Þ; ĥðt; x1Þ; gfĥðt; x0Þ; ĥðt; x1Þg� is an M-es-

timator [5] that solves the estimating equation

Xn

i¼1

Um;iðmÞ ¼
Xn

i¼1

Ub;iðbÞ
UK0ðtÞ;ifb;K0ðtÞg

Uhðt;x0Þ;ifb;K0ðtÞ; hðt; x0Þg
Uhðt;x1Þ;ifb;K0ðtÞ; hðt; x1Þg
Uw;ifhðt; x0Þ; hðt; x1Þ;wg

2
6666664

3
7777775
¼ 0;

where Ub;iðbÞ is the contribution to the Cox partial likeli-

hood score function from subject i, UK0ðtÞ;ifb;K0ðtÞg is the

contribution to the estimating function for Breslow’s esti-

mator of the cumulative baseline hazard from subject i,

Uhðt;xÞ;ifb;K0ðtÞ;hðt;xÞg¼ exp½�K0ðtÞexpfhðX¼ x;Zi;bÞg�
�hðt;xÞ for x¼ x1 and x¼ x0, and Uw;ifhðt;x0Þ;
hðt;x1Þ;wg¼ gfhðt;x0Þ;hðt;x1Þg�w.

For both generalized linear models and Cox regres-

sion models it now follows from standard theory for M-

estimators [5] that n1=2ðm̂� mÞ is asymptotically normal

with mean 0 and variance given by the ‘sandwich

formula’

R ¼ E0 oUm;iðmÞ
om

� ��1

varfUm;iðmÞgE
oUm;iðmÞ

om

� ��1

: ð5Þ

A consistent estimate of the variance of m̂ is obtained by

replacing m in (5) with m̂, and the population moments in (5)

by their sample counterparts.

The sandwich formula assumes that Um;iðmÞ and Um;i0 ðmÞ
are independent, for i 6¼ i0. When data are clustered, as in

the example in ‘Standardization with generalized linear

models’ section, we may define Um;iðmÞ ¼
Pni

j¼1 Um;ijðmÞ,
where Um;ijðmÞ is the contribution to the estimating equation

from subject j within cluster i, and ni is the total number of

subjects in cluster i. Provided that the clusters are inde-

pendent we thus have that Um;iðmÞ and Um;i0 ðmÞ are inde-

pendent as well, for i 6¼ i0, so that the sandwich formula

still applies.

References

1. Rothman K, Greenland S, Lash T. Mod Epidemiol. 3rd ed.

Philadelphia: Lippincott Williams & Wilkins; 2008.

2. Gail M, Byar D. Variance calculations for direct adjusted survival

curves, with applications to testing for no treatment effect. Biom

J. 1986;28(5):587–99.
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