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Abstract The attributable fraction (or attributable risk) is a
widely used measure that quantifies the public health impact
of an exposure on an outcome. Even though the theory for
AF estimation is well developed, there has been a lack of
up-to-date software implementations. The aim of this article
is to present a new R package for AF estimation with binary
exposures. The package AF allows for confounder-adjusted
estimation of the AF for the three major study designs:
cross-sectional, (possibly matched) case–control and cohort.
The article is divided into theoretical sections and applied
sections. In the theoretical sections we describe how the
confounder-adjusted AF is estimated for each specific study
design. These sections serve as a brief but self-consistent
tutorial in AF estimation. In the applied sections we use real
data examples to illustrate how the AF package is used. All
datasets in these examples are publicly available and included
in theAF package, so readers can easily replicate all analyses.

Keywords Attributable fraction · Attributable risk · Public
health · R package · Regression model · Confounder-
adjusted · Statistical software

1 Introduction

One of the main goals in public health research is to eval-
uate the disease burden due to a specific exposure. For this
purpose, the attributable fraction (AF) is commonly used.
The AF was initially defined in the 1950s and has been used
extensively since then in epidemiological studies.A thorough
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historical review of the AF is given by Poole [1]. Originally,
the AF was defined for binary outcomes as the proportion
of unfavourable outcomes that would have been prevented
if the exposure of interest were eliminated from the popula-
tion [2]. As such, the AF takes both the exposure-outcome
association and the exposure prevalence into account, and is
specific to the study population. To formalize, let X and Y
be the exposure and outcome of interest. In standard coun-
terfactual notation, the AF is defined as

AF = 1 − Pr(Y0 = 1)

Pr(Y = 1)
, (1)

where Pr(Y = 1) is the factual outcome prevalence, and
Pr(Y0 = 1) is the counterfactual outcome prevalence had
the exposure been eliminated (set to 0) for everyone. For
instance, if the factual outcome prevalence is 10 % and
the counterfactual outcome prevalence is 5 %, then 1 −
0.05/0.1 = 50% of all outcomes would have been pre-
vented, had the exposure been eliminated. We note that the
exposure doesn’t have to be binary per se, but the definition in
Eq. (1) assumes that there is a ‘zero-level’ for the exposure,
corresponding to the exposure being completely absent.

Recently, the AF has been extended to time-to-event out-
comes [3–5]. Let T be the time-to-event of interest, e.g. time
to death. The AF function is then defined as

AF(t) = 1 − Pr(T0 ≤ t)

Pr(T ≤ t)
, (2)

where Pr(T ≤ t) is the factual probability of an event at or
before time t , and Pr(T0 ≤ t) is the counterfactual proba-
bility of an event at or before time t had the exposure been
eliminated for everyone at baseline.

To estimate the AF from observational data, it is important
to adjust for confounders for the exposure-outcome asso-
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ciation. If a covariate set Z is sufficient for confounding
control, then the AF can be consistently estimated by adjust-
ing for Z. For binary outcomes in cross-sectional studies,
the confounder-adjusted AF can be estimated with logistic
regression [6–9]. For binary outcomes in (possibly matched)
case–control studies, the confounder-adjusted AF can also
be estimated with logistic regression, under a ‘rare-disease’
assumption [10,11]. For time-to-event outcomes in cohort
studies, the confounder-adjusted AF function can be esti-
mated with Cox proportional hazard regression [4].

Even though the theory for AF estimation is well devel-
oped, there is still a lack of up-to-date software implementa-
tions. In this article we focus on the open-source statistical
software R [12]. To our knowledge there are three earlier
packages for AF estimation available at CRAN: epiR [13],
attribrisk [14] and paf [15]. These packages all have
important limitations. The epiR package uses the function
epi.2by2 to estimate the AF for various sampling designs,
but does not allow for model-based confounder adjust-
ment. The attribrisk package allows for confounder
adjustment through logistic regression, but it relies on the
‘rare-disease’ assumption and is thus essentially restricted to
case–control studies. Furthermore, the attribrisk pack-
age only provides bootstrap and jackknife standard errors,
which makes it relatively time consuming. The paf pack-
age estimates the AF function using Cox proportional hazard
regression for confounder adjustment. However, it does not
handle big data (in our simulations it breaks down for data
with around 20,000 observations or more). A common lim-
itation of all three packages is that none of them provides
accurate standard errors when data are clustered, e.g. when
there are repeated measures on each subject.

The aim of this article is to present a new R package for
AF estimation. This new package AF allows for confounder-
adjusted estimation of the AF for the three major study
designs: cross-sectional, (possibly matched) case–control
and cohort. It provides analytical standard errors for all esti-
mates, which obviates the need for bootstrapping. When
data are clustered, these standard errors are adjusted for the
within-cluster correlations. The package is designed to scale
up, so that it is able to handle very large datasets (up to several
millions of observations).

The article is organized as follows. In Sects. 2, 3 and 4
we describe how the AF package is used to estimate the AF
in cross-sectional, case–control and cohort studies, respec-
tively. Each section is divided into a theoretical part and an
applied part. In the theoretical sections we describe how the
confounder-adjusted AF is estimated for each specific study
design. These sections serve as a brief but self-consistent
tutorial in AF estimation. In the applied sections we use real
data examples to illustrate how the AF package is used. All
datasets in these examples are publicly available and included
in theAF package, so readers can easily replicate all analyses.

2 Cross-sectional study and cohort
study with binary outcome

2.1 Theory

In cross-sectional studies with binary outcomes, the AF
is defined as in Eq. (1). The factual outcome prevalence,
Pr(Y = 1), can be estimated as the observed (sample) out-
come prevalence. To estimate the counterfactual outcome
prevalence, Pr(Y0 = 1), it is usually assumed that a set of
observed covariates Z is sufficient for confounding control.
Under this assumption, Pr(Y0 = 1) can be obtained by aver-
aging the outcome prevalence among the unexposed, at a
given value of Z, over the population distribution of Z:

Pr(Y0 = 1) = E{Pr(Y = 1 | X = 0,Z)}.

In practice, Pr(Y = 1 | X = 0,Z) is usually estimated with
a logistic regression model

logit{Pr(Y = 1|X,Z)} = g(X,Z;β), (3)

where g() is a specified function indexed by the parameter
vector β. For example, g() could be specified as β0 +β1X +
β2Z. However, g() could also involve interactions and higher
order terms.Themodel inEq. (3) is fitted to obtain an estimate
of β. Then, for each subject i with covariate vectorZi we use
expit{g(X = 0,Zi ; β̂)} as a prediction of Pr(Y = 1 | X =
0,Zi ). These predictions are averaged to obtain an estimate
of Pr(Y0 = 1):

̂Pr(Y0 = 1) = 1

n

n
∑

i=1

expit{g(X = 0,Zi ; β̂)}. (4)

The estimates of Pr(Y = 1) and Pr(Y0 = 1) are plugged into
Eq. (1), to produce an estimate of the AF. The standard error
for the resulting estimate can be obtained by combining the
sandwich formula with the delta method [8,9].

We end this section by noting that neither the definition in
Eq. (1), nor the estimationprocedure described in this section,
requires a cross-sectional study design per se. For instance,
they are also applicable in cohort studies with time-to-event
outcomes, if the outcome is dichotomized as having the event
before a fixed timepoint, e.g. 5 years frombaseline.However,
when censoring is present, as is often the case in cohort stud-
ies, itmore natural to use the time-to-event analysis described
in Sect. 4.

2.2 Applied example

To illustrate the theory we use a dataset on 487 births among
188 women described in Juul and Frydenberg [16]. For each
birth, the following variables are measured: parity (birth),
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a binary indicator ofwhether themother smoked during preg-
nancy (smoker), race of the mother (race: white, black
or other), age of the mother (age), a unique identification
number for each mother (id), weight of the mother at last
menstrual period in pounds (lwt), birthweight of the new-
born child (bwt), and a binary indicator of whether the
newborn has low birthweight (defined as birthweight smaller
or equal to 2500 grams) (lbw). These variables are stored in
the data frame clslowbwt, which is included in the AF
package.

We are interested in the effect of smoking during preg-
nancy on the child’s birthweight. We will adjust for age and
race, since both these variables are potential confounders.
Initially, we assume the following standard logistic regres-
sion model:

logit{Pr(lbw = 1 | smoker, age, race)}
= β0 + β1smoker + β2 I (race=“black”)

+β3 I (race=“other”) + β4age. (5)

To estimate theAFunder thismodelwe canuse theAF.cs
function in the AF package. This function fits the model
‘internally’, and then outputs the estimated AF. However,
for illustrational purpose we first fit the model separately,
and discuss the output.

In R, we fit the model in Eq. (5) with the glm function by
typing

fit <- glm(formula = lbw ˜ smoker + race + age, family = binomial, data = clslowbwt)

Summarizing the output gives

> summary(fit)

Call:

glm(formula = lbw ˜ smoker + race + age, family = binomial, data = clslowbwt)

Deviance Residuals:

Min 1Q Median 3Q Max

-1.2326 -0.8936 -0.6491 1.2249 1.9808

Coefficients:

Estimate Std. Error z value Pr(>|z|)

(Intercept) -1.35946 0.53281 -2.551 0.01073 *

smoker 0.60080 0.21693 2.770 0.00561 **

race2. Black -0.85852 0.32331 -2.655 0.00792 **

race3. Other -0.70449 0.24624 -2.861 0.00422 **

age 0.02399 0.01785 1.344 0.17900

---

Signif. codes: 0 "***" 0.001 "**" 0.01 "*" 0.05 "." 0.1 " " 1

(Dispersion parameter for binomial family taken to be 1)

Null deviance: 603.05 on 486 degrees of freedom

Residual deviance: 570.53 on 482 degrees of freedom

AIC: 580.53

Number of Fisher Scoring iterations: 4

The output indicates that the odds of getting a low birth-
weight is about e0.6 ≈ 1.8 times higher among children born
to smokers as compared to children born to non-smokers. The
effect is highly significant, with a p-value equal to 0.00561.
To estimate the proportion of low birthweights that would

have been prevented if no mother had smoked during preg-
nancy we use the AF.cs function.

> AFest <- AF.cs(formula = lbw ˜ smoker + race + age,

data = clslowbwt, exposure = "smoker")

Like the glm function, the AF.cs function has a
formula argument and a data argument. Since the out-
come is by definition binary in Eq. (1), the AF.cs function
always uses logistic regression, and thus has no family
argument. The name of the exposure variable is specified by
the exposure argument. Summarizing the output gives

> summary(AFest)

Call:

AF.cs(formula = lbw ˜ smoker + race + age, data = clslowbwt,

exposure = "smoker")

Estimated attributable fraction (AF)and untransformed 95% Wald CI:

AF Std.Error z value Pr(>|z|) Lower limit Upper limit

0.1697446 0.06357109 2.670154 0.007581644 0.04514756 0.2943417

Exposure : smoker

Outcome : lbw

Observations Cases

487 151

Method for confounder adjustment: Logistic regression

Formula: lbw ˜ smoker + race + age

The output indicates that approximately 17% of all low
birthweights would have been prevented if no mother had
smoked during pregnancy. The AF is highly significant, with
a p-value equal to 0.0076. However, the 95% CI is quite
wide, ranging from 5 to 29%. The default CI is untrans-
formed, but the summary function also allows for log- and
logit-transformed CIs, which sometimes have more accurate
coverage probabilities [17].

There are two problems with the analysis above. First,
children born to the same mothers are correlated, which is
not accounted for in the standard errors and p-values. Second,
the model in Eq. (5) is perhaps unrealistically simple, since
it assumes that the effect of smoking is the same regardless
of age and race. Thus, we next consider the following model,
which allows for interactions between all predictors:

logit{Pr(lbw = 1 | smoker, age, race)} = β0 + β1smoker

+ β2 I (race=“black”) + β3 I (race=“other”) + β4age

+ β5smoker × I (race=“black”) + β6smoker × I (race=“other”)

+ β7smoker × age

+ β8 I (race=“black”) × age + β9 I (race=“other”) × age. (6)

The glm function has no facilities for handling clustered
data. Thus, we instead fit the model with the gee function
from the drgee package:

> fit <- gee(formula = lbw ˜ (smoker + race + age)ˆ2, link = "logit",

data = clslowbwt, clusterid = "id")
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By typing (smoker + race + age)∧2, the formula
automatically constructs all possible main effects and inter-
actions between smoker, race and age. By specifying
theclusterid argument, cluster-robust standard errors are
calculated. Summarizing the output gives

> summary(fit)

Call: gee(formula = lbw ˜ (smoker + race + age)ˆ2, link = "logit",

data = clslowbwt, clusterid = "id")

Model: lbw ˜ smoker + race2. Black + race3. Other + age + smoker:race2. Black +

smoker:race3. Other + smoker:age + race2. Black:age + race3. Other:age

Link function: logit

Estimate Std. Error z value Pr(>|z|)

(Intercept) 1.91927 1.06155 1.808 0.070607 .

smoker -3.81160 1.28115 -2.975 0.002928 **

race2. Black -4.79348 1.99482 -2.403 0.016263 *

race3. Other -2.99103 1.47110 -2.033 0.042033 *

age -0.08611 0.03586 -2.401 0.016335 *

smoker:race2. Black 1.43758 0.80736 1.781 0.074977 .

smoker:race3. Other 1.00778 0.77086 1.307 0.191093

smoker:age 0.14763 0.04482 3.294 0.000988 ***

race2. Black:age 0.10954 0.06123 1.789 0.073625 .

race3. Other:age 0.06936 0.05244 1.323 0.185915

---

Signif. codes: 0 "***" 0.001 "**" 0.01 "*" 0.05 "." 0.1 " " 1

487 complete observations used

Cluster-robust Std. errors

188 clusters

We observe that the interaction term between smoker
and age is highly significant, with a p-value < 0.001. Thus,
it seems like the model in Eq. (5), which only includes main
effects, may indeed be too simplistic. On the other hand, the
more realistic model in Eq. (6) is harder to interpret and com-
municate, since the smoking effect in this model is captured
by four parameters (one main effect plus three interaction
terms). This is not a problem for the AF though, since the
AF is always a single number, regardless of the complexity
of the underlying model. Estimating the AF, together with
cluster-robust standard errors, gives:

> AFest <- AF.cs(lbw ˜ (smoker + race + age)ˆ2, data = clslowbwt,

exposure = "smoker", clusterid = "id")

> summary(AFest)

Call:

AF.cs(formula = lbw ˜ (smoker + race + age)ˆ2, data = clslowbwt,

exposure = "smoker", clusterid = "id")

Estimated attributable fraction (AF)and untransformed 95% Wald CI:

AF Robust SE z value Pr(>|z|) Lower limit Upper limit

0.1006186 0.0943206 1.066772 0.2860749 -0.08424642 0.2854836

Exposure : smoker

Outcome : lbw

Observations Cases Clusters

487 151 188

Method for confounder adjustment: Logistic regression

Formula: lbw ˜ (smoker + race + age)ˆ2

The estimated AF is now reduced to 10%, and not statis-
tically significant. At first glance, it may appear surprising
that the AF is not statistically significant, given that both the
main effect of smoker and the interaction betweensmoker

and age are statistically significant in the gee output. There
are two reasons for this discrepancy. First, the main effect of
smoker is negative, but thesmoker-age interaction is pos-
itive. This means that for young women, smoking appears to
decrease the risk of low birthweight in the newborn, whereas
for oldwomen smoking appears to increase the risk; forwhite
women the ‘switch’ occurs at 3.8116/0.14763 = 25.8 years.
Thus, when averaging over all ages, as in theAF, these effects
may cancel out. Second, the statistical uncertainty in the AF
does not only depend on the uncertainty in the model para-
meters, but also on the sampling variability in the distribution
of the confounders. To see this, note that even if we would
replace the estimated parameter β̂ in Eq. (4) with the true
value β, there would be residual uncertainty in ̂Pr(Y0 = 1)
due to the sampling variability in Zi when estimating the
distribution of Zi with the empirical distribution.

3 Case–control study

3.1 Theory

Case–control sampling distorts the outcome distribution, so
that Pr(Y = 1) and Pr(Y0 = 1) in Eq. (1) cannot be sepa-
rately estimated from the data. However, by assuming that
the covariate vector Z is sufficient for confounding control,
and applying Bayes’ theorem [10,11], the AF can be refor-
mulated as

AF = 1 − E{RR(Z)−X |Y = 1} (7)

where

RR(Z) = Pr(Y = 1 | X = 1,Z)

Pr(Y = 1 | X = 0,Z)
(8)

is the conditional risk ratio, given Z. If the outcome is rare,
then the risk ratio RR(Z) can be approximated by the con-
ditional odds ratio

OR(Z) = Pr(Y = 1 | X = 1,Z)Pr(Y = 0 | X = 0,Z)

Pr(Y = 0 | X = 1,Z)Pr(Y = 1 | X = 0,Z)
.

(9)

The AF is thus approximately equal to 1−E{OR(Z)−X |Y =
1}. Estimation of the AF proceeds as follows. First, a
logistic regression model is fitted to the data. Then, for
each subject i with covariate vector Zi the model is used
to estimate OR−Xi (Zi ). For exposed subjects (those with
Xi = 1), OR−Xi (Zi ) = OR−1(Zi ). For unexposed subjects
(those with Xi = 0), OR−Xi (Zi ) = 1. The predictions of
OR−Xi (Zi ) are then averaged among the cases (those with
Yi = 1), to produce an estimate of AF:
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̂AF = 1 −
∑n

i=1 YiOR
−Xi (Zi )

∑n
i=1 Yi

.

For instance, if we assume a logistic model without inter-
actions between X and Z

logit{Pr(Y = 1|X,Z)} = β0 + β1X + β2Z, (10)

then OR(Z) = eβ1 . It follows that ̂AF simplifies to

̂AF = 1−
∑n

i=1 Yi e
−β̂1Xi

∑n
i=1 Yi

= P̂r(X = 1|Y = 1)(1−e−β̂1),

(11)

where P̂r(X = 1|Y = 1) is the sample proportion of
exposed among the cases. If we assume a more complicated
model that allows for interactions between X and Z

logit{Pr(Y = 1|X,Z)} = β0 + β1X + β2Z + β3XZ, (12)

then OR(Z) = eβ1+β3Z. Under this model, ̂AF does not sim-
plify as in Eq. (11).

The estimation procedure outlined above applies to
matched case–control studies as well, where the conditional
logistic regression is commonly used instead of the ordinary
logistic regression. The standard error for the resulting esti-
mate can be obtained by combining the sandwich formula
with the delta method [8,9].

3.2 Applied example

In a studyon causes of oesophageal cancer, cases and controls
were collected from hospitals in Singapore during 1970–
1972 [18]. Each case was individually matched to 4 controls
on sex and age within 5 years intervals. In this article we re-
analyse a publicly available subset of these data, consisting
of 80 male cases and their 320 matched male controls. De
Jong et al.[18] considered various potential risk factors for
oesophageal cancer, such as intake of bread, potato, bananas
and beverages at burning hot temperatures, smoking, and
alcohol intake. In this article we focus on intake of bever-
ages at burning hot temperatures, which was observed to
be highly associated with oesophageal cancer by De Jong
et al. [18]. The available variables are the patient’s age
(Age), dialect group (Dial: 1 for Hokhien/Teochew and
0 for Cantonese/Other), a binary indicator of whether the
patient consumes Samsu wine on a daily basis (Samsu),
number of cigarettes smoked per day (Cigs), a binary
indicator of whether the patient drinks beverages at ‘burn-
ing hot’ temperatures on a daily basis (Everhotbev), a
unique identification number for eachmatched set (Set), and
a binary case–control indicator (Oesophagealcancer).
These variables are stored in the data frame singapore

which is included in the AF package. We will adjust for
age, dialect, if the patient drinks Samsu wine and number of
smoked cigarettes per day since these variables are potential
confounders. We assume the following conditional logistic
regression model:

logit{Pr(Oesophagealcancer
= 1 | Everhotbev, Age, Dial, Samsu, Cigs, Set)}
= βSet + β1Everhotbev + β2Age

+ β3Dial + β4Samsu + β5Cigs, (13)

where βSet is a set-specific intercept. The model in Eq.
(13) can be fitted in R with the clogit function from the
Survival package, as follows:

> fit <- clogit(Oesophagealcancer ˜ Everhotbev + Age + Dial + Samsu +

Cigs + strata(Set), data = singapore)

Summarizing the output gives:

> fit

Call:
clogit(Oesophagealcancer ˜ Everhotbev + Age + Dial + Samsu +
Cigs + strata(Set), data = singapore)

coef exp(coef) se(coef) z p
Everhotbev 1.16912 3.21915 0.29239 4.00 6.4e-05
Age 0.00786 1.00790 0.05500 0.14 0.88629
Dial 1.22857 3.41635 0.32017 3.84 0.00012
Samsu 0.48253 1.62017 0.28595 1.69 0.09152
Cigs 0.01114 1.01121 0.00962 1.16 0.24649

Likelihood ratio test=51.7 on 5 df, p=6.16e-10
n= 400, number of events= 80

The output indicates that the odds of getting oesophageal
cancer is about e1.16912 ≈ 3.22 times higher among those
who drink at least one beverage at burning hot tempera-
ture every day compared to those who do not. The effect
is highly significant, with a p-value of 0.000064. To esti-
mate the proportion of cases of oesophageal cancer that
would have been prevented if no patient had consumed
beverage at burning hot temperatures we use the AF.cc
function:

> AFest <- AF.cc(formula = Oesophagealcancer ˜ Everhotbev + Age + Dial + Samsu + Cigs,

data = singapore, exposure = "Everhotbev", clusterid = "Set", matched = TRUE)

By setting the argument matched=TRUE, conditional
logistic regression is used instead of ordinary logistic regres-
sion (the default). Summarizing the output gives:

> summary(AFest)

Call:

AF.cc(formula = Oesophagealcancer ˜ Everhotbev + Age + Dial +

Samsu + Cigs, data = singapore, exposure = "Everhotbev",

clusterid = "Set", matched = TRUE)

Estimated attributable fraction (AF) and untransformed 95% Wald CI:

AF Robust SE z value Pr(>|z|) Lower limit Upper limit

0.3360627 0.05542807 6.063041 1.335717e-09 0.2274256 0.4446997

Exposure : Everhotbev

123



580 E. Dahlqwist et al.

Outcome : Oesophagealcancer

Observations Cases Clusters

400 80 80

Method for confounder adjustment: Conditional logistic regression

Formula: Oesophagealcancer ˜ Everhotbev + Age + Dial + Samsu + Cigs

The output indicates that approximately 34% all cases of
oesophageal cancer would have been prevented if no patient
had consumed beverages at burning hot temperature. The AF
is highly significant, with a p-value close to zero, and a 95%
CI ranging from 23 to 44%.

4 Cohort study with time-to-event outcome

4.1 Theory

In cohort studies with time-to-event outcomes, the AF func-
tion is defined as in Eq. (2) [3]. Equivalently, the AF function
can be expressed as

AF = 1 − {1 − S0(t)}
{1 − S(t)} , (14)

where S(t) = 1 − Pr(T ≤ t) is the factual survival function,
and S0(t) = 1 − Pr(T0 ≤ t) is the counterfactual survival
function had the exposure been eliminated for everyone at
baseline.

As before, we assume that a set of observed covariates,
Z, is sufficient for confounding control. Under this assump-
tion, S0(t) can be obtained by averaging the survival function
among the unexposed at a given value of Z over the popula-
tion distribution of Z:

S0(t) = E{S(t | X = 0,Z)}.

In practice, S(t | X,Z) is usually estimated with a Cox pro-
portional hazards model

λ(t | X,Z) = h(t)eg(X,Z;β), (15)

where λ(t | X,Z) is the conditional hazard at time t , given X
andZ, h(t) is the unspecified baseline hazard, and g(X,Z;β)

is a specified function of the exposure X and confounders Z
indexed by the parameter vector β. For example, g(X,Z;β)

can be specified as g(X,Z;β) = β1X + β2Z. However, g()
could also involve interactions and higher-order terms.

The model in Eq. (15) is fitted to obtain the partial like-
lihood estimate of β [19] and the Breslow estimate of the
cumulative baseline hazard function Λ(t) = ∫ t

u=0 h(u)du
[20]. Then, for each fixed value of t we proceed as follows.
For each subject i with exposure level Xi and covariate vec-

tor Zi , we use e−eg(Xi ,Zi ;β̂)Λ̂(t) as a prediction of S(t |Xi ,Zi ).

These predictions are averaged to obtain an estimate of S(t):

Ŝ(t) = 1

n

n
∑

i=1

e−eg(Xi ,Zi ;β̂)Λ̂(t). (16)

Similarly, for each subject i with covariate vector Zi , we use

e−eg(X=0,Zi ;β̂)Λ̂(t) as a prediction of S(t |X = 0,Zi ). These
predictions are averaged to obtain an estimate of S0(t):

Ŝ0(t) = 1

n

n
∑

i=1

e−eg(X=0,Zi ;β̂)Λ̂(t). (17)

The estimates of S(t) and S0(t) are plugged in to Eq.(14) to
produce an estimate of the AF function. The standard error
of the resulting estimate can be obtained by combining the
sandwich formula with the delta method [5].

4.2 Applied example

To illustrate the theory we use records from 2982 women
with primary breast cancer from the Rotterdam tumor bank
in the Netherlands. The Rotterdam breast cancer dataset is
thoroughly described in Sauerbrei et al.[21] and Royston
and Lambert [22]. The follow-up time ranges from 1 to 231
months. The outcome variables are the time, measured in
months, that the patient is under study (rf), and an indicator
of whether the patient experienced death or relapse before
censoring (rfi). Seven prognostic variables are recorded:
age at surgery (age), menopausal status (meno: 0=pre and
1=post), tumor size in three classes (size: ‘<=20mm’,
‘>20–50mm’ and ‘>50mm’), tumor grade (grade: 2 or
3), progesterone receptors, (pr: fmol/l), oestrogen recep-
tors, (er: fmol/l) and the number of positive lymph nodes
(nodes: ranging between 0 and 34). In our example, we
consider absence of chemotherapy as the exposure, i.e. we
wish to estimate the proportion of deaths that would have
been prevented before a given time, if all patients had been
given chemotherapy at baseline. Absence of chemotherapy
is measured by the variable no.chemo, with levels 0 for
‘yes’ and 1 for ‘no’. These variables are stored in the data
frame rott2, which is included in the AF package.

In the analysis we will adjust for the seven prognostic
factors as well as age since these variables are potential con-
founders.We assume the followingCox proportional hazards
model:

λ(t | no.chemo, age, meno, size, grade, nodes, pr, er)

= h(t)eβ1no.chemo+β2age+β3meno+β4size+β5grade+β6e−0.12nodes+β7pr+β8er.

(18)

In this model we used the transformation e−0.12nodes, since
Sauerbrei et al.[21] noted that this transformation gave a bet-
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ter model fit. The model in Eq. (18) can be fitted in Rwith the
coxph function from the survival package, as follows:

> fit <- coxph(Surv(rf,rfi) ˜ no.chemo + age + meno + size + grade+ as.factor(nodes) + pr + er,

data = rott2)

Summarizing the output gives:

> fit

Call:

coxph(formula = Surv(rf, rfi) ˜ no.chemo + age + meno + size +

grade + I(exp(-0.12 * nodes)) + pr + er, data = rott2)

coef exp(coef) se(coef) z p

no.chemo 2.82e-01 1.33e+00 7.23e-02 3.90 9.8e-05

age -1.60e-02 9.84e-01 3.52e-03 -4.54 5.7e-06

menopre -1.32e-01 8.76e-01 8.95e-02 -1.48 0.14

size>20-50mmm 2.89e-01 1.33e+00 5.85e-02 4.93 8.2e-07

size>50mm 4.81e-01 1.62e+00 8.91e-02 5.40 6.8e-08

grade 3.47e-01 1.42e+00 6.50e-02 5.34 9.1e-08

I(exp(-0.12 * nodes)) -1.85e+00 1.57e-01 9.79e-02 -18.92 < 2e-16

pr -9.55e-05 1.00e+00 1.06e-04 -0.90 0.37

er -5.09e-05 1.00e+00 1.04e-04 -0.49 0.63

Likelihood ratio test=574 on 9 df, p=0

n= 2982, number of events= 1518

The output indicates that the hazard of death or relapse
is about 1.33 times higher among those who did not receive
chemotherapy compared to those who did.

The AF function can be estimated by the function AF.ch
as follows:

> AFest <- AF.ch(Surv(rf,rfi) ˜ no.chemo + age + meno + size + grade + I(exp(-0.12 * nodes)) + pr + er,

data = rott2, exposure = "no.chemo",

times = c(12, 24, 36, 48, 60))

The formula argument is on the same format as the
formula argument in the coxph function. The times
argument specifies the time points at which the AF is sup-
posed to be estimated. If not specified, times defaults to all
observed event times. In the call to AF.ch above we have
asked for the AF at years 1 to 5 (12 to 60 months). Summa-
rizing the output gives:

> summary(AFest)

Call:

AF.ch(formula = Surv(rf, rfi) ˜ no.chemo + age + meno + size +

grade + I(exp(-0.12 * nodes)) + pr + er, data = rott2,

exposure = "no.chemo", times = c(12, 24, 36, 48, 60))

Estimated attributable fraction (AF) and untransformed 95% Wald CI:

Time AF Std.Error z value Pr(>|z|) Lower limit Upper limit

12 0.1818045 0.04398121 4.133686 3.569912e-05 0.09560292 0.2680061

24 0.1668268 0.04080641 4.088250 4.346397e-05 0.08684770 0.2468059

36 0.1557651 0.03845976 4.050080 5.120009e-05 0.08038538 0.2311449

48 0.1479756 0.03679384 4.021749 5.776757e-05 0.07586099 0.2200902

60 0.1416357 0.03544215 3.996251 6.435344e-05 0.07217040 0.2111011

Exposure : no.chemo

Event : rfi

Observations Events

2982 1518

Method for confounder adjustment: Cox Proportional Hazards model

Formula: Surv(rf, rfi) ˜ no.chemo + age + meno + size + grade + I(exp(-0.12 * nodes)) + pr + er

The output indicates that the AF function decreases over
the 5 year period, from 18% at 1year (12 months) after
baseline to 14% at 5years (60 months) after baseline. The
AF is statistically significant at all time points.
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Fig. 1 Estimated AF function over 5years for relapse-free survival
time in the Rotterdam dataset (solid line) together with point-wise 95%
confidence intervals (dashed lines)

A convenient way to visualize the AF function is to use
the plot function in the AF package:

> plot(AFest, CI = TRUE, ylim = c(0, 0.4), xlab = "time (months)")

where AFest is an object of class AF, estimated by the
AF.ch function. This function call produces the plot in
Fig. 1.

5 Discussion

In this articlewehave presented the newRpackageAF, devel-
oped for epidemiologists and biostatisticians. The package
AF estimates the confounder-adjusted AF for cross-sectional
studies, case–control studies (matched and unmatched)
and cohort studies with time-to-event outcomes, using the
functions AF.cs, AF.cc and AF.ch, respectively. We
have used three datasets (clslowbwt, singapore and
rott2) for illustration. These datasets are all publicly avail-
able and included in the AF package. Thus, readers of the
paper can easily replicate all analyses that we have presented.

In order for the estimated AF to have a causal interpreta-
tion, it is necessary that those covariates that are adjusted for
are sufficient for confounding control. In practice, impor-
tant confounders might be unknown and/or unmeasured,
which implies that the estimated AF should always be inter-
preted cautiously. For instance, in our applied example in
Section4.2 comorbidity is a potential confounder for the
association between chemotherapy and relapse-free survival,
since those patients who have severe comorbidities are less
likely to be prescribed chemotherapy due to the health risks
of this invasive treatment, and also more likely to die early
during follow-up. Thus, if comorbidities are not adjusted for,
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then the protective effect of chemotherapy may be overesti-
mated. As a consequence, the AF may be overestimated as
well.

The main advantage of the AF package, as compared to
other R packages for AF estimation (epi2by2,
attribrisk and paf), is that it offers a uniform way
to estimate the confounder-adjusted AF for all three major
study designs. The package has a standard input/output inter-
face, which makes it easy to use for practitioners who has
some familiarity with R. Another important advantage is that
the AF package provides analytic standard errors, based on
the delta method and the sandwich formula, which alleviates
the need for time-consuming bootstrap or jackknife meth-
ods. Finally, the AF package produces correct standard errors
when data are clustered, e.g. when there are repeated mea-
sures on each individual or when the dataset contains related
individuals.

The AF package covers the most fundamental estimation
strategies developed for the most common study designs.
Possible extensions include so-called ‘partial attributable
fractions’ [11,23,24], which allow for multiple exposures,
and so-called ‘generalized impact fractions’ [25–27], which
allow for continuous exposures. Another possible extension
is to allow for more advanced models for time-to-event out-
comes, such as flexible parametric models [22]. We plan to
make these extensions in the future.
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