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Abstract Asthma is the most common chronic illness in

children living in developed countries and the leading cause of

childhood hospitalization and school absenteeism. Prevalence

rates of asthma are increasing and show disparities across

gender, geographic regions, and ethnic/racial groups. Common

risk factors for developing childhood asthma include exposure

to tobacco smoke, previous allergic reactions, a family history

of asthma, allergic rhinitis or eczema, living in an urban

environment, obesity and lack of physical exercise, severe

lower respiratory tract infections, and male gender. Asthma

exacerbation in children can be triggered by a variety of fac-

tors, including allergens (e.g., pollen, dust mites, and animal

dander), viral and bacterial infections, exercise, and exposure

to airway irritants. Recent studies have shown that exposure to

polycyclic aromatic hydrocarbons (PAHs), a major component

of fine particulate matter from combustion sources, is also

associated with onset of asthma, and increasing asthmatic

symptoms. In this paper, we review sources of childhood PAH

exposure and the association between airborne PAH exposure

and childhood asthma prevalence and exacerbation.
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Childhood asthma

Incidence, prevalence, and morbidity

Childhood asthma is a chronic and heterogeneous disease

characterized by recurrent airway obstruction, bronchial

hyper-responsiveness, and airway inflammation [1]. It is

the most common chronic illness in children, affecting

approximately one in eight children worldwide, and 9.1 %

(6.7 million children) in the United States (US) [2, 3].

Asthma is the leading cause of childhood hospitalization

and school absenteeism among children around the world.

Only in the US, it causes more than 10.5 million physician

visits annually, and is projected to cost over 20 billion

dollars in health expenditures and lost productivity [4, 5].

In the United Kingdom, 70 % of parents of asthmatic

children take time off from work due to their child’s

asthma, while 13 % of them had given up their jobs

completely [6].

Prevalence rates of asthma show disparities across

gender, regions, and ethnic/racial groups. Asthma is more

prevalent in boys, as 2/3 of children with asthma are males

[7]. Asthma is most common in developed countries,

however, it is becoming increasingly common in devel-

oping countries, which is most likely related to the

increased urbanization of communities [6]. From 1950 to

2000, the prevalence of childhood asthma increased dras-

tically in Europe, and then decreased during the last decade

[8]. It varies across Europe from east to west, which is

probably because of simultaneous changes in lifestyle in
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eastern Europe [8]. The lowest prevalence is reported

1.6 % in Albania and the highest reported 20.7 % in the

United Kingdom [9]. Furthermore, racial disparities in

childhood asthma are extensive. African American children

have 60 % higher asthma prevalence, and children of

Native American and Alaskan decent have 25 % higher

prevalence than White children. The difference in preva-

lence between African Americans and Whites has

increased since 1980 [10]. Hispanic children have higher

rates compared to Whites; and among Hispanics, Puerto

Rican children have higher prevalence rates than Mexican–

American children [9]. Asian children have the lowest

prevalence among races in the US [11]. Regional differ-

ences in asthma prevalence in the US are also present.

Prevalence is highest in the northeast, and ranges from

4.4 % in Utah and Nevada to 12.1 % in Massachusetts

(Fig. 1) [3]. The intersection of socioeconomic status, race

and urbanity also influence asthma morbidity, while chil-

dren who live in low-socioeconomic urban environments

experience significantly more asthma-associated morbidity

[9].

Trends

Globally, childhood asthma prevalence has increased more

than twofold, from 3.6 % in 1980 to 7.5 % in 1995 [12].

While some of the global increase may be due to changes

in diagnostic practice, there is general agreement that it is

a true phenomenon [13]. This trend seems to be associated

with changes in lifestyle, which is supported by studies

that show an increased prevalence of asthma among those

who have moved from a traditional to a more westernized

style of living [14, 15]. Between 1980 and 1996, asthma

prevalence increased by an average of 4.6 % annually

[16, 17]. After a redesign of the National Health Interview

Survey (NHIS) in 1997, the trends in annual estimated

lifetime asthma, current asthma and asthma attack preva-

lence level out [17–19]. Childhood asthma prevalence in

the US, as estimated in the 2007 NHIS, remains at his-

torically high levels (9.1 %) (Fig. 2). An analysis of the

National Health and Nutrition Examination Survey II, has

shown asthma to be associated with younger maternal age

(relative odds (RO) = 1.4), residence in the city center

(RO = 1.6), and family income (lowest vs. highest tertile,

RO = 1.7), frequent wheeze associated with low birth

weight (RO = 1.4), and skinfold thickness (RO = 1.6)

[16]. These factors, however, do not explain racial dis-

parities in asthma prevalence. Even after adjustment for

environmental exposures, parental history, and demo-

graphic factors, African American children still had 1.6

times higher odds of asthma diagnosis compared to White

children and are 2.5 times more likely to experience

asthma-related emergency department visits and hospital-

izations [3, 16].

Symptoms and mortality

Asthma is characterized by attacks or episodes of inflam-

mation and narrowing of small pulmonary airways [18].

Symptoms can include dyspnea, frequent or intermittent

cough (especially at night and after exercise or exposure to

cold air), wheezing, and chest congestion or tightness [19].

Expiratory dyspnea is a common symptom characteristic of

asthma attacks, however, inspiratory dyspnea may coexist

as symptoms progress [20]. In general, asthma severity

ranges from mild to severe and life-threatening attacks,

Fig. 1 Asthma prevalence

among children 0–17 years old,

by state, annual average for the

period 2001–2005 [3]
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with children experiencing more severe symptoms than

adults [3].

Asthma deaths among children are rare and potentially

avoidable. High risk of asthma death is reported among

children with severe, uncontrolled disease, a near-fatal

attack of asthma, and a history of recurrent hospitalization

or intubation for asthma [21]. Recent data from children

aged 0–14 years revealed that mortality is generally very

low in Europe, with little difference between countries,

implying better control of the condition with improvements

in treatment [22]. In 2005, 167 asthma-related deaths were

reported among the US children (a mortality rate of 2.3

deaths per 1 million children) [12]. Asthma-related death

rates increased by an average of 3.2 % per year from 1980

to 1996, then decreased by an average of 3.9 % per year

from 1996 to 2005 [17]. Race and socioeconomic status are

factors that confer higher rates of asthma-related mortality.

African American children are 5 times more likely to die

from asthma than White children [3]. Asthma-related

mortality among African American children exceeds the

expected difference based on racial disparities in preva-

lence, and may be related to other factors, such as access to

care, exposure to smoking, and non-adherence to treatment

among inner-city children [23]. In addition, children from

low-socioeconomic families have dramatically higher

overall mortality rates, compared to those from moderate/

high-socioeconomic families [24].

Risk factors

Several factors have been associated with the development

of childhood asthma, but none have proven to be an

exclusive causative agent. Common risk factors that may

increase the likelihood of developing childhood asthma

include exposure to tobacco smoke, previous allergic

reactions (allergic skin reactions, food allergies, or allergic

rhinitis), a family history of asthma, allergic rhinitis or

eczema, living in an urban environment, obesity and lack

of physical exercise, severe lower respiratory tract infec-

tions (such as pneumonia), small family size, dietary hab-

its, and male gender [25–33]. Other potential risk factors

include peripheral blood eosinophilia, lower school-aged

lung function, higher levels of airway responsiveness, and

breast feeding [34, 35].

Asthma exacerbation or attacks in children is triggered

by a variety of factors including allergens (e.g., pollen, dust

mites, and animal dander), viral and bacterial infections,

exercise, changes in the weather, and exposure to airway

irritants (e.g., tobacco smoke) [36–42]. Recent studies have

shown that exposure to polycyclic aromatic hydrocarbons

(PAHs), a major component of fine particulate matter from

combustion sources, is associated with onset of asthma, and

increasing asthmatic symptoms [43, 44]. The aim of this

paper is to review sources of childhood PAH exposure and

the association between airborne PAH exposure and

childhood asthma.

Polycyclic aromatic hydrocarbons (PAHs)

Characteristics

Polycyclic aromatic hydrocarbons (PAHs) are a group of

hydrocarbons, defined by two or more fused aromatic rings,

that are products of incomplete combustion of tobacco,

wood, coal, and fossil fuels [45]. PAHs are one of the most

widespread organic pollutants and the widespread environ-

mental distribution of PAHs results in a great deal of human

exposure [46, 47]. Due to their lipophilic nature, PAHs are

easily absorbed and distributed throughout the human body

Fig. 2 Prevalence of asthma

among children 0–17 years old

in the United States,

1980–2007. In 1997, the NHIS

survey was redesigned [17]
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[48]. PAHs are metabolized by enzymes that convert xeno-

biotic compounds into more hydrophilic and polar metabo-

lites for easier excretion in human body fluids [49]. There are

hundreds of PAHs, which usually occur as complex mixtures

rather than as individual compounds (Fig. 3) [50]. Volatile

(e.g. naphthalene) and semi-volatile (e.g. phenanthrene and

pyrene) PAHs are products of combustion at high tempera-

tures, and can be found in both gas and solid phases [51, 52].

Non-volatile PAHs having 4–6 aromatic rings (e.g.

benzo[a]nepyrene, benzo[a]anthracene and ide-

nol[1,2,3,a,b]pyrene) are found as solids bound to particulate

matter in air [52].

Sources of exposure

Humans are exposed to PAHs from occupational, envi-

ronmental, medicinal and dietary sources. Routes of

exposure include inhalation, ingestion or percutaneous

penetration [53]. Volatile PAHs are primarily inhaled,

while semi-volatile and non-volitile PAHs can be inhaled,

ingested, and absorbed dermally [51, 52]. After absorption,

PAHs distribute to various organs, especially the liver [54].

Initially, they are hydrophobic and relatively inert, but are

metabolized within cells to many active forms, including

diol-epoxides, quinones, semi-quinones and peroxides [50].

Diet

Diet is the main source of PAH exposure in non-smokers

who are not occupationally exposed [55, 56]. The Total

Human Environmental Exposure Study in the US estimated

that diet accounts for up to 96 % of the daily intake of

carcinogenic PAHs in non-smokers [57]. The highest levels

of PAHs are found in diets including cereals, meat, and

meat products and foods that are smoked, broiled, or gril-

led. Contamination of foods by PAHs may occur during

food processing (e.g., smoking or cooking), or by acci-

dental environmental contamination (e.g., atmospheric

pollution of vegetables) [58, 59]. Agricultural crops can be

an important source of exposure to PAHs due to the high

surface area of some food plants that are exposed to

atmospheric deposition of particulate matter containing

PAHs [60, 61]. It is believed that the majority of PAH

contamination of agricultural crops comes from the air

rather than the soil [62].

Tobacco

Smoking tobacco is a major source of exposure to PAHs

[63]. Several studies reported a significant positive rela-

tionship between urinary levels of the pyrene metabolite,

1-hydroxypyrene-glucuronide (1-OHPG) and smoking

Polycyclic Aromatic Hydrocarbons

Benz[a]anthracene

Anthanthrene Phenanthrene  

Pyrene

Chrysene

Benzo[c]phenanthrene

Benzo[a]pyrene

Picene

Dibenzo[a,e]pyrene

Dibenzo[a,h]pyrene

Dibenzo[a,l]pyreneDibenzo[a,i]pyrene

Benzo[k]fluoranthene

Benzo[e]pyrene
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Fig. 3 Structures of common polycyclic aromatic hydrocarbons

(PAHs). Source: Reprinted (adapted) with permission from Dipple,

A. Polycyclic Aromatic Hydrocarbon Carcinogenesis. Polycyclic

Hydrocarbons and Carcinogenesis. 1-17. Copyright (1985) American

Chemical Society
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[64, 65]. A study by Van Rooij et al. demonstrated that

active smoking and PAH-containing food products account

for 99 % of urinary excretion of PAH biomarkers in those

with no other known exposure to PAHs [66]. Individuals in

the US with recent smoking have significantly elevated

levels of PAH metabolites in their urine compared to non-

smokers [66]. Secondhand tobacco smoke exposure is also

correlated with elevated urinary PAH metabolite concen-

tration and children whose parents smoke at home have

significantly elevated levels compared to children in non-

smoking households [67, 68].

Occupation

Occupation is an important source of exposure to PAHs in

a small portion of the population. The level of exposure to

PAHs varies widely between occupations with high levels

of exposure reported in chimney sweeps, foundry workers,

blast furnace and coke-oven workers, vendors of broiled

food, waste incineration, and steel plant workers [69–75].

The highest levels of exposure to PAHs occur in coke-

oven, asphalt, and diesel workers [76, 77].

Indoor air pollution

Indoor air pollution consists of a complex mixture of

agents penetrating from ambient (outdoor) air and agents

generated by indoor sources [78]. The main source of

indoor air PAHs is the combustion of solid fuels for

cooking and heating. Smoking has been consistently

described as a major source of indoor air pollution over the

last several decades, with more than 30 % of all US chil-

dren exposed to secondhand smoke [79]. It is estimated that

children can spend as much as 90 % of their time indoors

making them one of the most vulnerable groups to indoor

air pollution exposures [80]. The major source of non-

dietary PAH exposure in children is believed to be from

indoor sources [81]. In contrast to outdoor environments,

modifying indoor air PAHs is more achievable making

indoor air pollution an attractive target for childhood

asthma prevention [82].

Outdoor air pollution

Motor vehicle engine emissions are a major source of

ambient PAHs, particularly in urban areas [83]. The

highest PAH emission rates occur in diesel and gasoline

engines operated without catalytic converters [84, 85]. In

addition, industrial operations, waste incinerators, and

residential boilers provide other major sources of ambient

PAHs in urban areas [86]. According to the US Agency for

Toxic Substances and Disease Registry (ATSDR), back-

ground atmospheric concentrations of representative PAHs

vary from 0.02 to 1.2 ng/m3 in rural and 0.15–19.3 ng/m3

in urban areas [87]. Regulatory values range from 1 to

10 ng/m3 in different countries, but are frequently excee-

ded in urban areas [48].

Measurement of PAH dose

A routine method for estimating dietary PAH dose is a

combination of usual food intake information obtained

from food frequency questionnaires (FFQ) and existing

PAH residue databases (RD) containing mean concentra-

tions of PAHs measured in cooked foods (FFQ-RD)

[88, 89]. Benzo[a]pyrene is often used as a representative

of the class of PAHs due to its carcinogenic potency,

prevalence, and correlation with other PAHs [90]. The

FFQ-RD method may improve accuracy compared with

previously used surrogates of dietary PAH exposure, such

as intake of meat or well-done meat [91]. However, there

are still some limitations, including inaccurate reporting of

usual intake and inadequacies (in completeness and accu-

racy) of the RD [88]. These limitations can potentially lead

to measurement error in the dose and thus limit the power

of studies to detect associations [92]. On the other hand,

urinary biomarkers of PAH exposure present a practical

alternative approach. For example, 1-hydroxypyrene-glu-

curonide (1-OHPG) is the major urinary metabolite of

pyrene, a common PAH, and easily measured in human

urine [93]. Since 1-OHPG occurs at higher concentration in

urine than most other PAH exposure biomarkers, it has

been proposed as a biomarker of exposure to PAHs [53].

The maximum concentration of 1-OHPG in human urine

samples is usually found in the evening, suggesting this as a

suitable time for sample collection for evaluation of PAHs

[94]. Urinary 1-OHPG has also been demonstrated to be

significantly higher in individuals exposed to high levels of

PAH through their diet [95]. Urinary levels of metabolites of

naphthalene (2-naphthol) and phenanthrene (3-hydroxyph-

enanthrene) have also been shown to be promising surro-

gates to assess PAH exposure [96]. The major metabolite of

naphthalene, 2-naphthol, is primarily found in gas phase and

is therefore as a good biomarker to assess airborne and

occupational exposures to PAHs [54].

Health effects of PAHs

PAHs are significant components of PM2.5 (particulate matter

diameter <2.5 lm) and less so of PM10 (<10 lm), both of

which have been linked to adverse respiratory health [97]. In

recent years, PAHs have received particular attention because

of their oxidative potential and related cytotoxicity [98].

Exposure to PAHs has been linked to several adverse out-

comes in children, including cognitive development, child-

hood IQ, and respiratory health [99–101]. The US National
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Health and Nutrition Examination Survey (NHANES)

(1999–2000, 2001–2002, and 2003–2004) provided compre-

hensive descriptions of reference ranges for a large panel of

urinary PAH metabolites collected from a population of

children and adults with no suspected occupational exposures

[102, 103]. Higher level of PAHs was detected among chil-

dren, suggesting that they may be at greater risk for adverse

health effects [104].

PAHs are the principal carcinogenic chemical constitu-

ents in soot and coal tar that are responsible for cancer

induction in animal models [50, 105, 106]. The International

Agency for Research on Cancer (IARC) and the United

States National Toxicology Program (NTP) have classified

a number of PAHs as ‘‘known human carcinogens’’,

‘‘probable human carcinogens’’ or ‘‘reasonably anticipated

to be a human carcinogen’’ The NTP lists 12 PAHs as

human carcinogen, including benz[a]anthracene, ben-

zo[a]pyrene, benzo[b]fluoranthene, benzo[j]fluoranthene,

dibenz[a,h]anthracene, dibenzo[a,h]pyrene, dibenzo[a,i]-

pyrene, indeno[1,2,3-cd]pyrene, benzo[k]fluoranthene,

dibenzo[a,e]pyrene, dibenzo[a,l]pyrene, and 5-methylchry-

sene [107–109].

PAHs and childhood asthma

Several lines of evidence support an association between

fine particulate matter, a major source of airborne PAHs,

and childhood asthma. During the 2008 Beijing Olympics,

the central government temporarily restricted air pollution

emissions in Beijing, greatly reducing ambient pollutant

levels. During this period, a statistically significant reduc-

tion in the mean concentration of PM2.5 (-27 %) coin-

cided with a decrease in childhood asthma admissions

[110]. In a prospective birth cohort study of 3,863 newborn

children, outdoor PM2.5 levels were associated with a

significant increase in the incidence of asthma (OR 1.28;

95 % CI 1.10–1.49), the prevalence of asthma (OR 1.26;

95 % CI 1.04–1.51), and the prevalence of asthma symp-

toms (OR 1.15; 95 % CI 1.02–1.28) [111].

Secondhand tobacco smoke is a major route of child-

hood PAH exposure and has been associated with child-

hood asthma. A meta-analysis of studies published from

1970 to 2005 showed a positive association between

household secondhand tobacco smoke exposure and cur-

rent childhood asthma (RR 1.25, 95 % CI 1.21–1.30), and

incident childhood asthma (RR 1.21, 95 %CI 1.08–1.36)

[112]. In addition, maternal tobacco smoking has been

associated with an increased incidence of childhood asthma

up to age 6 (OR 1.31, 95 %CI 1.22–1.41), but less strongly

thereafter (OR 1.13, 95 %CI 1.04–1.22) [113]. Similarly,

indoor air pollution has been associated with higher rates of

reported childhood asthma; compared with other fuel types,

coal was associated with the highest incidence of asthma

[114–116].

Further studies suggest that specific components of

PM2.5 including, black carbon, transition metals, or PAHs

are associated with adverse respiratory outcomes and

asthma, particularly in infants and children [101, 117–121].

Annual average particulate PAH exposure, estimated by a

land use regression model, was associated with decreased

forced expiratory volume (FEV1) in asthmatic children

[122]. Miller et al. [123] reported an association between

increased urinary PAH metabolites in children and bio-

markers of pediatric allergy including anti-mouse IgE and/

or anti-cat IgE levels. Subsequent studies investigated the

effect of early repeated exposures to PAHs and reported

that non-atopic children were susceptible to adverse

respiratory effects due to pyrene, but not higher molecular

weight (non-volatile) PAHs [123, 124]. In contrast, expo-

sure to non-volatile PAHs enhanced allergic sensitization

to cockroach allergen – a strong risk factor for greater

asthma morbidity in children [125].

Studies suggest that PAHs may act through immuno-

globulin E (IgE) to stimulate inflammatory responses and

enhance allergic reactions [126–129]. Experimental evi-

dence indicates that pyrene enhances allergic IgE responses

in mice [130, 131]. Adjuvant effects of PAHs on IgE have

been demonstrated in human nasal provocation studies. A

study by Diaz-Sanchez et al. [133], showed that intranasal

instillation of PAH rich diesel exhaust particles increased

total IgE production, and acted as an adjuvant for ragweed

specific IgE after challenges with both ragweed ? DEP

compared to ragweed alone [132, 133]. Exposures to PAHs

in vivo may also influence B cell and T-helper cell dif-

ferentiation by skewing immune responses toward a Th2

specific profile, which favors B-cell production of IgE and

eosinophils both of which are hallmarks of allergic

inflammation and allergic asthma [134]. Recent studies

have focused on the role of PAHs on aryl hydrocarbon

receptors (AHRs) and induction of Th17 cells. Th17 cells

as a source of IL-17 and IL-22 are implicated in the

pathogenesis of airway disease and particularly asthma

[135, 136].

PAHs have also been linked to asthma through oxi-

dative stress pathways (Fig. 4) [137–140]. PAHs bioacti-

vated by cytochrome P450 generate reactive oxygen

species (ROS) (e.g. epoxides, peroxides, semiquinones

and quinones) that may enhance asthma morbidity [137].

Li et al. [141] demonstrated that PAHs in diesel exhaust

can initiate a cascade of oxidative stress that leads to

airway inflammation. In this model, the reactive oxygen

species, from redox cycling of PAH intermediates, acti-

vate both the anti-inflammatory and the pro-inflammatory

signaling pathways, leading to transcriptional upregula-

tion of genes involved in regulating immune response
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[137, 142–144]. Immune responses include synthesis of

cytokines, cell adhesion molecules and chemokines,

increases in neutrophils, eosinophils, and macrophage

production and activity, resulting in airway inflammation

and asthma exacerbation [124, 137, 145]. Other studies

suggest that prenatal exposure to PAHs may account for

some of the observed increased asthma prevalence [146].

A recent prospective cohort study revealed that prenatal

PAH exposure is associated with significant reduction in

Forced Expiratory Volume in 0.5 s, Forced Expiratory

Volume in 1 s (FEV1), and Forced Expiratory Flow 25–

75 % (FEV 25–75 %), suggesting that prenatal PAH

exposure inhibits the full development of respiratory air-

way caliber [147]. A study in northern Moravia region at

Czech Republic, a known region with high concentrations

of PAHs in Europe, showed an association between pre-

natal PAH exposure and intrauterine growth retardation

(IUGR) and higher prevalence of asthma [148]. Certain

PAHs resemble steroid hormones and are considered

endocrine disruptors [149]. They are lipid soluble, and are

transferred across the placenta and the fetal blood brain

barrier [150]. These results collectively demonstrate that

there are complex relationships between PAH exposure

and asthma development, and multiple potential mecha-

nisms might mediate this web of causation.

Future directions

The underlying cause of the association between air PM

exposure and childhood asthma is unclear. A variety of

constituents of PM are potential candidates for contributing

to asthma initiation, exacerbation and progression. These

include common allergens, microbial products, irritants,

PAHs, carbon black, and sensitizing agents. Research is

needed to clarify the associations between these constitu-

ents of PM and childhood asthma in order to focus efforts

to develop effective prevention measures. This approach

could lead to direct pollutant-control strategies toward

those sources or constituents responsible for the greatest

burden of risk for childhood asthma development and

morbidity [151]. Further investigation of the interactions

between multiple potential causative agents is needed to

clarify potential mechanisms underlying these associations

in order to enhance our ability to understand the patho-

genesis of this disease and its treatment.
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