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Vitamin D and high blood pressure: causal association

or epiphenomenon?
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Abstract High plasma levels of vitamin D are associated
with a reduced risk of high blood pressure, but whether this
association is causal remains to be ascertained. We per-
formed a meta-analysis of randomized clinical trials, to
examine the effect of vitamin D supplementation on both
systolic blood pressure (SBP) and diastolic blood pressure
(DBP) and supplemented these results with a Mendelian
randomization analysis to investigate the causal relation-
ship between vitamin D status (25-hydroxyvitamin D
[25(OH)D]) and BP. Pooled random effects meta-analysis
of weighted mean differences across 16 trials of vitamin D
supplementation showed a non-significant reduction in
SBP (—0.94, 95 % CI —2.98, 1.10 mmHg) and DBP
(—0.52, 95 % CI —1.18, 0.14 mmHg), with evidence of
heterogeneity (I> = 67.9 %, P < 0.001) and publication
bias (P = 0.02) among trials of SBP. There was a signifi-
cant reduction in DBP (—1.31, 95 % CI —-2.28,
—0.34 mmHg, P = 0.01) in participants with pre-existing
cardiometabolic disease. Variants at three published loci
(GC, DHCR7, CYP2RI1, and CYP24A1) for 25(OH)D, were
not significantly associated with BP, but rs6013897 in
CYP24A1 gene region had nominally significant associa-
tions with both SBP and DBP (P < 0.05). Evidence from
the associations of the genetic variants with the risk of
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vitamin D deficiency (defined as a 25(OH)D
level < 50 nmol/L) and BP showed that the causal effects
of a doubling of genetically-elevated risk of vitamin D
deficiency were 0.14 mmHg (95 % CI -0.19, 0.47,
P =042), and 0.12 mmHg (95 % CI -0.09, 0.33,
P = 0.25) on SBP and DBP respectively. Additional evi-
dence from genetic data are directionally consistent with
clinical trial data, though underpowered to reliably dem-
onstrate a strong causal effect of vitamin D status on BP.
Further investigation may be warranted.
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Introduction

Vitamin D is pivotal in regulating calcium and bone
homeostasis [1] and is associated with several biological
processes, including modulation of blood pressure (BP).
Amongst the proposed mechanistic pathways for the
development of high BP, vitamin D inhibits the renin-
angiotensin-aldosterone system [2], alters proliferation of
vascular endothelial smooth muscle cells [3], and is
essential for insulin secretion [4]. Several prospective
studies and meta-analyses have consistently shown an
inverse association between vitamin D status (as measured
by 25-hydroxyvitamin D [25(OH)D]) and BP [5, 6]. As
observational epidemiological studies are beset by residual
confounding and reverse causation, it is difficult to infer
causality from these findings. From a public health per-
spective, it is crucial to address this issue as the therapeutic
modification of circulating vitamin D levels can be
achieved through supplementation or therapy, more so as
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both vitamin D deficiency and high BP have risen to
pandemic proportions, individually affecting over 1 billion
people worldwide [7, 8]. High BP has been shown to be
continuously and linearly associated with cardiovascular
risk over several decades ago [9] and is the most common
modifiable risk factor for cardiovascular disease (CVD)
[10], which represents a worldwide epidemic and is the
leading cause of death globally [11]. Vitamin D deficiency
may increase CVD risk by activating an inflammatory
cascade, which results in endothelial dysfunction and
increased arterial stiffness, both of which contribute to high
BP and are risk markers for CVD risk [12-14].

Randomized clinical trials (RCTs) of vitamin D supple-
mentation offer the highest clinical evidence for establishing
whether vitamin D deficiency is causally related to high BP.
However, findings from previous trials have failed to dem-
onstrate significant reductions in BP and results of prior
meta-analyses have been inconclusive [15-17]. In the
absence of such trials, Mendelian Randomization (MR) [18]
studies utilizing genetic variants which specifically alter
levels of vitamin D may provide another route to help judge
the causal relevance of vitamin D to BP. An MR study uti-
lises the fact that since the presence of particular genetic
variants or alleles are randomly allocated at conception
(gamete formation) and such allocation is expected to be
independent of any behavioural and environmental factors,
the associations of such variants with levels of the exposure
(in this case vitamin D status) or with disease outcome (in
this case high BP) are not likely to be affected by potential
confounding or reverse causation [19]. If lower vitamin D
status is causally related to high BP, then a genetic variant
associated with lower 25(OH)D levels should be associated
with a higher risk of high BP. Since the last previous review
[17], several interventions studies evaluating the effects of
vitamin D supplementation on BP outcomes have been
published and their results have been inconsistent. Against
this background, we aimed to assess the potential causal
relevance of vitamin D deficiency to high BP by updating the
evidence on the effect of vitamin D supplementation on
circulating levels of 25(OH)D and its impact on both systolic
and diastolic BP. We have also supplemented this with evi-
dence from published genetic association studies of
25(0OH)D levels and BP and applied a MR approach [20]
using summarized published data on four genetic variants of
vitamin D status [as measured by 25(OH)D].

Methods
Data sources and study selection

This review was conducted using a predefined protocol and
in accordance with PRISMA guidelines [21] (Appendix 1).
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We systematically searched MEDLINE, EMBASE, Web of
Science, and Cochrane Central Register of Controlled
Trials from inception up to November, 2013 for RCTs of
vitamin D supplementation (cholecalciferol [vitamin D3]
or ergocalciferol [vitamin D2]) on systolic blood pressure
(SBP) and diastolic blood pressure (DBP). The searches
combined terms for vitamin D and blood pressure and no
language restrictions were imposed (Appendix 2). Addi-
tional studies were sought from the reference lists of
recovered articles and previous review articles, by hand
searching of relevant journals, and by correspondence with
authors of included studies. We included only RCTs that
aimed to study the effects of oral vitamin D supplemen-
tation alone. Studies in which the intervention was calci-
triol or one of its analogues and those with participants not
receiving an intervention to raise their vitamin D
[25(OH)D] levels were excluded. The primary outcome
was the difference in office or ambulatory SBP and DBP
among treatment and control groups compared with base-
line BPs. Additionally, lead single nucleotide polymor-
phisms (SNPs) exclusively associated with circulating
levels of 25(OH)D were identified by searching the original
publications of genome-wide association studies (GWASs)
for vitamin D that have been indexed by the National
Human Genome Research Institute (NHGRI) GWAS cat-
alogue [22]. Single nucleotide polymorphisms were con-
sidered for inclusion if they were associated with levels of
25(OH)D at genome-wide significant levels
(P<5 x 1073 unless otherwise specified) and were
uncorrelated.

1,287 Potentially relevant
citations identified from search
strategy

1,203 Excluded on basis of title and/or
abstract

84 Full-text articles retrieved for
more detailed evaluation

48 Not meeting inclusion criteria on
review of article

36 Potentially appropriate for
inclusion

20 Articles excluded due to:
8 Used combination therapy vs. placebo
6 Used calcitriol or its analogues
4 No values of BP reported
2 Duplicate reports

16 RCTs included in meta-
analysis

Fig. 1 Trial selection flow diagram. BP blood pressure, RCT
randomized clinical trial
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Vitamin D and high blood pressure 5
N, mean N, mean %
Lead author, year of publication [reference] WMD (95% Cl) (SD); Treatment (SD); Control Weight
Systolic blood pressure
Scragg 1995 [32] 0.00 (-4.15, 4.15) 95, -5 (16) 94, -5 (13) 7.35
Pfeifer 2001 [33] — B -6.40 (-12.20, -0.60) 74,-13 (18.7) 74,-6.6 (17.3) 5.70
Schleithoff 2006 [34] 1.00 (-0.90, 2.90) 61,-3(5.5) 62, -4 (5.25) 9.69
Nagpal 2009 [35] — 3.95 (-0.07, 7.97) 35, .6 (9.82) 36, -3.35 (7.21) 7.50
Sugden 2008 [3] —_— . -13.90 (-21.16, -6.64) 17,-7.3(11.8) 17,6.6 (9.7) 452
Jorde 2010 [36] —— 4.60 (1.76, 7.44) 139, 3.5 (11.8) 149, -1.1 (12.8) 8.78
Witham 2010 [37] L -5.10 (-17.67, 7.47) 20, -5.6 (20.9) 22, -5 (20.6) 2.1
Shab-Bidar 2011 [38] —a— -4.80(-11.33,1.73) 50, -7.3(18.5) 50, -2.5 (14.6) 5.07
Larsen 2012 [39] —B— -3.00 (-6.80, 0.80) 55, -2 (10.5) 57,1 (10) 7.74
Witham 2012 [40] 0.40 (-6.56, 7.36) 29,-1.3(11.4) 27,-1.7 (14.8) 4.74
Gepner 2012 [41] E 2.20 (-1.44, 5.84) 55, -.3 (8.4) 55, 2.5 (10.9) 7.92
Wood 2012 [42] 0.90 (-5.17, 6.97) 101, -1.5 (22.4) 102, -2.4 (21.7) 5.46
Forman 2013 [43] — -5.70 (-11.52,0.12) 70, -4 (17.6) 72,1.7 (17.8) 5.68
Witham 2013 [44] —B— -1.30 (-5.58, 2.98) 80, -2.7 (12.5) 79, -1.4 (14.9) 7.22
Witham 2013 [45] —1 . 3.00 (-1.72,7.72) 25,2 (7.9) 25,-1(9.1) 6.75
Wamberg 2013 [46] . -5.00 (-13.48, 3.48) 26, -6 (15.8) 26, -1 (15.4) 3.74
Subtotal (I-squared = 67.9%, p = 0.000) <:> -0.94 (-2.98, 1.10) 932 947 100.00
Diastolic blood pressure
Scragg 1995 [32) 0.00 (-2.57,2.57) 95,-1(9) 94,-1(9) 6.57
Pfeifer2001 [33] -0.30 (-3.43, 2.83) 74,-7.2(10) 74,-6.9 (9.4) 4.43
Schleithoff 2006 [34] -1.00 (-2.20, 0.20) 61,-3(3) 62, -2 (3.75) 30.09
Nagpal 2009 [35] —1— 1.69 (-1.51, 4.89) 35, .43 (7.66) 36, -1.26 (5.97) 4.22
Sugden 2008 [3] — =1 -4.50 (-9.40, 0.40) 17,-2.2 (8.6) 17,2.3(5.7) 1.80
Jorde 2010 [36] —.— 0.80 (-1.12,2.72) 139,1(8.3) 149, .2(8.3) 11.76
Witham 2010 [37] _ -1.20 (-8.28, 5.88) 20,-3.1 (13.1) 22,-1.9(9.9) 0.86
Shab-Bidar 2011 [38] —— -2.87 (-6.23, 0.49) 50, -3.5(7.8) 50, -.63 (9.3) 3.82
Larsen 2012 [39] -1.00 (-3.41, 1.41) 55, -1 (6.5) 57,0 (6.5) 7.46
Witham 2012 [40] -1.40 (-6.01,3.21) 29,-1.9(9.5) 27,-5(8.1) 2.03
Gepner 2012 [41] -0.30 (-2.08, 1.48) 55, -7 (5.1) 55, -.4 (4.4) 13.66
Wood 2012 [42] —— 1.20 (-1.79, 4.19) 101,-.9 (11) 102, -2.1 (10.7) 485
Forman 2013 [43] —.—— 2,50 (-6.78, 1.78) 70, -1.8 (12.5) 72, .7 (13.5) 2.36
Witham 2013 [45) —— 0.60 (-2.42, 3.62) 25,-1(5.7) 25,-7(5.2) 473
Wamberg 2013 [46] —_— -4.00 (-9.68, 1.68) 26,-1(10.4) 26, 3(10.5) 1.34
Subtotal (I-squared = 0.0%, p = 0.503) C -0.52(-1.18,0.14) 852 868 100.00
NOTE: Weights are from random effects analysis
[ I I I
-15 -5 0 5 15
Favours intervention Favours control

Fig. 2 Meta-analysis of effects of vitamin D supplementation on blood pressure in eligible randomized controlled trials. The summary estimates
presented were calculated using random effects models; CI confidence interval (bars), SD standard deviation, WMD weighted mean difference

Data extraction and quality assessment

Data on the following characteristics were extracted inde-
pendently by two investigators who used standardised
protocols: number of participants, sampling population,
geographical location (defined as Europe, North America,
and the Asia—Pacific region); age range of participants at
baseline, gender; duration of intervention; type and for-
mulation of vitamin D supplementation, daily dose of
supplementations, composition of placebo, and mean BP
and standard deviation, or the mean difference were
abstracted. Discrepancies were resolved by discussion and
by adjudication of a third reviewer. The Cochrane Col-
laboration’s tool for assessing risk of bias was used to
assess the validity of the trials. This tool uses the following

methodological features most relevant to the control of
bias: randomization, random allocation concealment,
masking of treatment allocation and outcome assessments,
incomplete outcome data, selective reporting, and other
bias [23]. For each individual domain, studies were clas-
sified into low, unclear and high risk of bias.

Data synthesis and analysis

Random-effects models were used to pool the weighted
mean differences (WMDs) across trials. Heterogeneity was
assessed with the 12 statistic, with I> > 50 % considered to
be important. Study-level characteristics including geo-
graphical location, gender, number of participants, baseline
population (presence or absence of pre-existing
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Table 2 Subgroup analysis of vitamin D supplements and systolic blood pressure

Group No. of participants Weighted mean P value Heterogeneity P-value for
intervention/control difference (95 % CI) (I2 %) meta-regression

Location
Europe 722/734 —1.17 (-3.59, 1.25) 0.34 69.5 0.90
North America 125/127 —1.41 (—9.12, 6.30) 0.72 80.3
Asia 85/86 —0.03 (—8.57, 8.51) 0.99 80.0

Gender
Female 255/256 0.26 (—3.60, 4.12) 0.89 59.0 0.29
Male 35/36 3.95 (-0.07, 7.97) 0.05 -
Mixed 642/655 —2.05 (—4.71, 0.60) 0.13 72.0

Number of participants
>120 participants 620/632 —0.36 (—2.97, 2.26) 0.79 67.9 0.66
<120 participants 312/315 —1.68 (—5.10, 1.75) 0.34 70.4

Baseline population
Healthy 700/712 0.30 (—2.07, 2.67) 0.81 62.2 0.12
Pre-existing cardiometabolic disease 232/235 —3.53 (—7.69, 0.63) 0.10 74.0

Intervention duration (weeks)
>15 457/473 0.73 (—1.62, 3.07) 0.54 55.7 0.23
<15 475/474 —2.27 (-5.57, 1.03) 0.18 71.6

Intervention dose (IU/day)
<2,000 396/396 —2.94 (—6.58, 0.71) 0.11 63.5 0.11
>2,000 536/551 0.56 (—1.69, 2.80) 0.63 65.2

Intervention type
Cholecalciferol 886/903 —0.19 (—2.03, 1.66) 0.84 58.9 0.07
Ergocalciferol 46/44 —6.71 (=20.72, 7.30) 0.35 87.1

cardiometabolic disease), duration of intervention, daily
dose of supplementation, and type of vitamin D supplement
were pre-specified as characteristics for assessment of
heterogeneity, which was conducted using stratified ana-
lysis and random effects meta-regression [24]. We assessed
the potential for publication bias through formal tests,
namely Begg’s funnel plots [25] and Egger’s regression
symmetry test [26]. The associations of exclusive SNPs
identified from GWASs of 25(OH)D levels and other
published reports [27-30], were queried with both systolic
and diastolic BP using data from the International Con-
sortium of Blood Pressure GWAS (ICBPGWAS), which
has been described in detail elsewhere [31]. Briefly, the
ICBPGWAS involves a meta-analysis of GWAS data
evaluating the associations between 2.5 million genotyped
or imputed SNPs and SBP and DBP in 69,395 individuals
of European ancestry from 29 studies. Mendelian ran-
domization analyses were conducted using a likelihood-
based method for combining summarized genetic associa-
tion estimates [20] into single estimates of the causal
effects of vitamin D status on SBP and DBP. All analyses
were conducted using Stata version 12 (Stata Corp, College
Station, Texas) and R version 2.15.3 (R Foundation,
Vienna, Austria).

@ Springer

Results

Figure 1 shows the number of studies assessed and exclu-
ded through the stages of the meta-analysis. A total of 16
trials (comprising 1,879 participants) reported the effect of
vitamin D supplementation on SBP, of which 15 reported
on DBP [3, 32—46]. Duration of vitamin D supplementation
varied from 5 weeks to 12 months. Risk of bias assessment
in each trial is reported in Appendix 3. All trials had low
risk of bias for the random sequence generation, blinding of
both participants and personnel, and the selective reporting
domains. One trial had an unclear risk of bias for allocation
concealment and another had a high risk of bias. Eleven
trials had an unclear risk of bias for blinding of outcome
assessments. One trial had a high risk of bias for incom-
plete outcome data and risk of other bias was unclear in
five trials. There was considerable variability in study
populations which included healthy participants as well as
participants with pre-existing conditions such as diabetes,
hypertension, and cardiovascular disease. All trials used
vitamin D supplementation of more than 600 IU per day
(which is the US Institute of Health Recommended Dietary
Allowance [47]), with the doses varying from 800 to
8,571 IU per day. Comparing follow-up with baseline
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Table 3 Subgroup analysis of vitamin D supplements and diastolic blood pressure

Group No. of participants Weighted mean P-value Heterogeneity P-value for
intervention/control difference (95 % CI) (I2 %) meta-regression

Location
Europe 642/655 —0.50 (—1.26, 0.25) 0.19 0.0 0.98
North America 125/127 —0.63 (—2.27, 1.02) 0.46 0.0
Asia 85/86 —0.56 (—=5.03, 3.91) 0.81 73.0

Gender
Female 255/256 0.12 (—1.13, 1.37) 0.85 0.0 0.15
Male 35/36 1.69 (—1.51, 4.89) 0.30 -
Mixed 562/576 —-0.92 (-1.71, —0.12) 0.02 0.0

Number of participants
>120 participants 540/553 —0.37 (—1.22, 0.48) 0.40 0.0 0.58
<120 participants 312/315 —0.78 (—1.86, 0.31) 0.16 4.8

Baseline population
Healthy 620/633 0.16 (—0.74, 1.05) 0.73 0.0 0.03
Pre-existing cardiometabolic disease 232/235 —1.31 (—=2.28, —0.34) 0.01 0.0

Intervention duration (weeks)
>15 4571473 —0.47 (—-1.26, 0.32) 0.24 0.0 0.80
<15 395/395 —0.69 (—1.97, 0.60) 0.30 11.0

Intervention dose (IU/day)
<2,000 316/317 —0.72 (=2.15, 0.72) 0.33 54 0.77
>2,000 536/551 —047 (—1.22, 0.28) 0.22 0.0

Intervention type
Cholecalciferol 806/824 —0.43 (—1.10, 0.24) 0.21 0.0 0.16
Ergocalciferol 46/44 —2.86 (—6.22, 0.51) 0.10 0.0

Table 4 Associations of identified vitamin D polymorphisms with 25(OH)D levels and blood pressure

Chromosome Gene Lead SNP % change in 25(OH)D % change in variation Association with Association with
per effect allele(95% CI) in 25(OH)D levels SBP (P-value) DBP (P-value)

4 GC rs2282679 —8.5 (—9.1 to —7.8) 1.18 0.467 0.640

11 DHCR7 rs12785878 —3.7 (—4.3 to —3.1) 0.35 0.703 0.121

11 CYP2RI rs10741657 —3.1 (—3.7 to —2.6) 0.21 0.998 0.587

20 CYP24A1 rs6013897 —-1.9 (-2.5t0 —1.2) 0.07 0.045 0.023

DBP diastolic blood pressure, SNP single nucleotide polymorphisms, SBP systolic blood pressure, 25(OH)D 25-hydroxyvitamin D

assessment, circulating levels of 25(OH)D increased sub-
stantially in the intervention arms in all the included trials
(Table 1).

Effect of vitamin D supplementation on blood pressure

In pooled random effects meta-analysis of WMDs across
eligible trials, vitamin D supplementation showed a non-
significant reduction in SBP (—0.94, 95 % CI —2.98,
1.10 mmHg, P = 0.37; I* = 67.9 %, Ptor nheterogencity <
0.001) and DBP (—0.52, 95 % CI —1.18, 0.14 mmHg,
P =0.12; " =00 %, Pror heterogencity = 0.50) (Fig. 2).
The heterogeneity among trials for SBP was not explained
by differences in several study level characteristics

(Table 2). In sensitivity analysis, we excluded the study by
Sugden et al. [3] as it reported a significant decrease in SBP
on vitamin D supplementation by about 14 mmHg com-
pared with placebo, which may have unduly influenced our
findings. The pooled random effects meta-analysis of
WDMDs excluding this study also showed a non-significant
reduction in SBP (—0.13, 95 % CI —1.89, 1.63 mmHg,
P =088 I?’=558 %, P, heterogeneity = 0.004). Sub-
group analysis of trials of DBP showed a significant
reduction in DBP with vitamin D supplementation in six
trials involving participants with pre-existing cardiometa-
bolic disease (—1.31, 95 % CI —2.28, —0.34 mmHg,
P =001; = 0.0 %, P heterogeneity = 0.03) (Table 3).
Egger’s test for publication bias among trials for SBP was
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«Fig. 3 Regional association plots of vitamin D related gene regions.

Each panel spans 200 kb around the published vitamin D SNP in the
region, which is highlighted with a purple diamond. The SNPs are
coloured according to their linkage disequilibrium with the top variant

based on the CEU Hap Map population (http://www.hapmap.org).

Gene transcripts are annotated in the lower box. The association

results for blood pressure were taken from the International Consor-
tium of Blood Pressure Genome Wide Association Studies
(ICBPGWAS)

significant (P = 0.02), consistent with observed funnel plot

asymmetry.
Evidence from genome wide association studies

We identified genome-wide significant variants at GC,

DHCR7, and CYP2RIand CYP24Al loci which together

explained up to 1-4 % of the variation in 25(OH)D levels
(Table 4). Regional association plots within 200 kb win-

dow of these vitamin D SNPs showed lack of significant
associations (at a Bonferroni corrected P =1 X 1074
threshold; Fig. 3) with BP. However, the associations of
rs6013897 on chromosome 20q13 in CYP24A1 with SBP

and DBP were nominally significant (P < 0.05).

Mendelian randomization analysis using published data

Estimates using genetic variants for the causal effect of

vitamin D on BP were —0.11 mmHg (95 % CI —0.31, 0.09,

P = 0.27) for systolic BP and —0.10 mmHg (95 % CI

—0.22, 0.03, P = 0.13) for diastolic BP, based on a 10 %

increase in 25(OH)D levels (Fig. 4). Using published data on
the association of the genetic variants with the risk of vitamin
D deficiency [defined as a 25(OH)D level < 50 nmol/L] and
BP, we estimated the change in BP for an increase in the

genetic component of the risk of vitamin D deficiency. The

causal effect of a doubling of genetically-determined risk of

vitamin D deficiency on systolic BP was 0.14 mmHg (95 %
CI —0.19, 047, P =042), and on diastolic BP was
0.12 mmHg (95 % CI —0.09, 0.33, P = 0.25).

Comment

Pooled results of the available clinical evidence were

directionally suggestive of a reduction in both systolic and
diastolic BP with vitamin D supplementation, but lacked
statistical significance. Subgroup analysis of trials of DBP

however, showed a significant reduction in DBP (by
1.3 mmHg) with vitamin D supplementation in participants

with pre-existing cardiometabolic disease. In the published

literature, [27-30] we identified several genome-wide sig-
nificant variants at 4 unique loci, involved in 25(OH)D
synthesis (DHCR7, CYP2RI) and metabolism (GC,
CYP24A1), which have been suggested to be exclusively

associated with vitamin D pathways. The variants together,
explained up to 1-4 % of the variation in 25(OH)D levels.
Utilizing data from ICBP GWAS [31], we demonstrated
that vitamin D SNPs had small effects on BP but lacked
statistical significance, except for one variant rs6013897 in
CYP24A1 gene region. All SNPs showed directionally
concordant associations with 25(OH)D levels and BP,
which were consistent with the clinical trial results. How-
ever, the causal effect estimates based on the available
genetic evidence did not achieve statistical significance.
The current results argue against a strong causal role of
vitamin D pathways in the aetiology of high BP, but cannot
rule out a weak causal effect. There was evidence of a
significant reduction in DBP in participants with pre-
existing cardiometabolic disease on vitamin D supple-
mentation. Several plausible reasons may explain this
observation. Whiles, optimal vitamin D status is an
excellent marker of good health [48], suboptimal vitamin D
status may reflect chronic illnesses [15] such as cardio-
metabolic diseases. Though our results (Table 1) were not
indicative of low baseline vitamin D status [25(OH)D
levels] in participants with pre-existing cardiometabolic
diseases, there is data to suggest that significant improve-
ments in cardiometabolic outcomes (such as reductions in
BP) with vitamin D supplement use may be seen only
among those with vitamin D deficiency [15]. Further data
are necessary to adjudicate this observation. The incon-
sistent results reported by the clinical trials have been
attributed to several reasons as suggested by previous
reviews [15, 16]. These include limited sample sizes to
detect incremental differences in BP, heterogeneity in
study populations, short follow-up periods, and the fact that
majority of trials reported results from post hoc sub-group
analyses. If there is a causal relationship between vitamin
D deficiency and high BP, then establishing this may
require carefully designed RCTs with large-sample sizes
and long follow-up durations. The on-going VITamin D
and OmegA-3 Trial (VITAL), with over 20,000 healthy
participants randomized to daily dietary supplements of
vitamin D3 or omega-3 fatty acids [49] may offer useful
insights. Whiles we await results of this trial, MR inves-
tigations using individual-level data may provide another
efficient method to help establish causality. Such MR
investigations have been used to investigate the causal
relevance of risk markers, such as C-reactive protein and
lipoprotein (a), to risk of coronary heart disease in the
absence of interventions that specifically modify levels of
these risk markers [50, 51]. Collective evidence from
several studies demonstrates that variability in 25(OH)D
levels is explained by both genetic and environmental
factors. Heritability of 25(OH)D levels has been estimated
to be as high as 80 % [52], and given this level of herita-
bility, recent advances have been made in identifying
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Fig. 4 Estimated effects on blood pressure change plotted against
estimated effects on serum vitamin D levels, for four SNPs associated
with vitamin D. SNP, single nucleotide polymorphism; Vertical and
horizontal solid black lines show 95 % confidence intervals (CIs) for
each individual SNP. Estimates of casual effect of vitamin D on blood
pressure, by using a likelihood-based method for combining summa-
rized genetic association estimates using all SNPs, are represented by
solid black line with gradient. Using all SNPs, multi-SNP risk score
analyses identified weak protective causal effects of vitamin D on
blood pressure levels, —0.11 mmHg (95 % CI -0.31, 0.09,
P = 0.27) for systolic blood pressure and —0.10 mmHg (95 % CI
—0.22, 0.03, P = 0.13) for diastolic blood pressure, based on a 10 %
increase in 25(OH)D levels

several genetic determinants of 25(OH)D levels. The four
genes identified in the present analysis play important roles
in the vitamin D metabolic pathway. DHCR7 and CYP2RI
function upstream of the 25(OH)D synthesis pathway,
whiles GC and CYP24Al function downstream of the

@ Springer

metabolism pathway [29]. The DHCR7 gene encodes
7-dehydrocholesterol reductase, the enzyme that converts
7-dehydrocholesterol to cholesterol. CYP2R1 is known to
encode the enzyme that catalyzes the synthesis of 25(OH)D
in the liver [53]. GC, the group-specific component gene
(located on chromosome 4ql12-q13), which encodes vita-
min D-binding protein, harbors a set of SNPs which are
associated with circulating levels of 25(OH)D levels at
genome-wide significance. The strongest association with
25(0OH)D levels has consistently been demonstrated for
rs2282679 [28, 29]. The CYP24A1 gene encodes the
enzyme which plays an important role in calcium homeo-
stasis and the vitamin D endocrine system, where it acts at
the initial stage of 25(OH)D catabolism [54]. Informative
MR studies on vitamin D and BP are likely to be feasible
given the potential specificity of the associations of these
genetic variants with vitamin D. However, given the small
fractions of the variances in vitamin D levels explained by
these common variants, MR studies would require large
sample sizes (~ 80,000 participants) to have sufficient
power to establish causality [29]. Fine mapping and exome
sequencing of the common gene regions involved in vita-
min D pathways may help uncover rarer genetic variations
with larger effects on vitamin D levels and may be better
instrumental variables for MR.

The strengths and limitations of this study merit careful
consideration. This study has provided a comprehensive
systematic synthesis of available evidence by including data
from different sources, evaluated the impact of vitamin D
supplementation for several relevant subgroups in a con-
sistent way, and has utilized genetic data to assess the causal
relevance of vitamin D to high BP. The majority of trials
included in this review appear to have low risk of bias;
however, the current findings should be interpreted with
some caution, owing to the potential differences in design
and population characteristics of each trial. There was
substantial heterogeneity among trials of SBP. Given this, it
was debatable whether pooled estimates should be presented
rather than reporting estimates in relevant subgroups, as the
presence of heterogeneity makes pooling of risk estimates
data somewhat controversial. We however systematically
explored possible sources of heterogeneity using stratified
analyses, metaregression techniques, and sensitivity analy-
ses and also presented pooled estimates for the relevant
subgroups. In general, there was a consistent trend of
reduction in BP in subgroups assessed. Our findings for
studies of SBP may have been over-estimated somewhat due
to preferential publication of extreme findings, or, analo-
gously, by selective reporting of striking results. Further-
more, in the current analyses, we employed an MR approach
using summarized published data on multiple genetic vari-
ants for 25(OH)D levels, as individual-level data on large
numbers of participants was unavailable. Though it has been
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reported that causal estimates from summarized data are
almost as precise as those obtained from individual-level
data [20], there are several limitations to the use of sum-
marized data. These include inability to (1) fully assess
instrumental variable assumptions; (2) address population
stratification; (3) test for the attenuation of genetic associ-
ations with the outcome on adjustment for the exposure of
interest; and (4) assess parametric assumptions required by
instrumental variable methods for effect estimation [20].
The results should therefore be interpreted in context of the
limitations available.

In conclusion, pooled results of relevant clinical trials
provide non-significant reductions in both SBP and DBP on
vitamin D supplementation, with evidence of considerable
heterogeneity and publication bias among studies of SBP.
Subgroup analysis however showed evidence of a significant
reduction in DBP in participants with pre-existing cardio-
metabolic disease. Additional evidence from genetic data are
directionally consistent with clinical trial data, though
underpowered to reliably demonstrate a strong causal effect
of vitamin D status on BP. Since vitamin D remains a

Table S PRISMA 2009 check-list

promising though unproven strategy in the prevention of
high BP (hypertension), further evaluation may be warranted
to assess any causal association. Further research is also
warranted to assess the evidence with more refined indices of
BP such as heart rate, pulse pressure, and cardiac output.
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Appendix 1

See Table 5.

Section/topic Item  Checklist item Reported on
No page No
Title
Title 1 Identify the report as a systematic review, meta-analysis, or both First page
Abstract
Structured summary 2 Provide a structured summary including, as applicable, background, objectives, data  First page
sources, study eligibility criteria, participants, interventions, study appraisal and
synthesis methods, results, limitations, conclusions and implications of key
findings, systematic review registration number
Introduction
Rationale 3 Describe the rationale for the review in the context of what is already known First and second pages
Objectives 4 Provide an explicit statement of questions being addressed with reference to Second page
participants, interventions, comparisons, outcomes, and study design (PICOS)
Methods
Protocol and registration 5 Indicate if a review protocol exists, if and where it can be accessed (such as web ~ Not applicable
address), and, if available, provide registration information including registration
number
Eligibility criteria 6 Specify study characteristics (such as PICOS, length of follow-up) and report Second page
characteristics (such as years considered, language, publication status) used as
criteria for eligibility, giving rationale
Information sources 7 Describe all information sources (such as databases with dates of coverage, contact Second page
with study authors to identify additional studies) in the search and date last
searched
Search 8 Present full electronic search strategy for at least one database, including any limits ~Appendix 2
used, such that it could be repeated
Study selection 9 State the process for selecting studies (that is, screening, eligibility, included in Second to fifth pages
systematic review, and, if applicable, included in the meta-analysis)
Data collection process 10 Describe method of data extraction from reports (such as piloted forms, Fifth page
independently, in duplicate) and any processes for obtaining and confirming data
from investigators
Data items 11 List and define all variables for which data were sought (such as PICOS, funding  Fifth page

sources) and any assumptions and simplifications made
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Table 5 continued

assessment (see item 12).

For all outcomes considered (benefits or harms), present for each study (a) simple
summary data for each intervention group and (b) effect estimates and confidence

Present results of each meta-analysis done, including confidence intervals and

Present results of any assessment of risk of bias across studies (see item 15)

Give results of additional analyses, if done (such as sensitivity or subgroup analyses,

Summarise the main findings including the strength of evidence for each main
outcome; consider their relevance to key groups (such as health care providers,

Discuss limitations at study and outcome level (such as risk of bias), and at review
level (such as incomplete retrieval of identified research, reporting bias)

Provide a general interpretation of the results in the context of other evidence, and

Results of individual studies 20
intervals, ideally with a forest plot
Synthesis of results 21
measures of consistency
Risk of bias across studies 22
Additional analysis 23
meta-regression) (see item 16)
Discussion
Summary of evidence 24
users, and policy makers)
Limitations 25
Conclusions 26
implications for future research
Funding
Funding 27

Describe sources of funding for the systematic review and other support (such as
supply of data) and role of funders for the systematic review

Section/topic Item  Checklist item Reported on
No page No
Risk of bias in individual 12 Describe methods used for assessing risk of bias of individual studies (including Fifth page
studies specification of whether this was done at the study or outcome level), and how this
information is to be used in any data synthesis
Summary measures 13 State the principal summary measures (such as risk ratio, difference in means). Fifth page
Synthesis of results 14 Describe the methods of handling data and combining results of studies, if done, Fifth and sixth pages
including measures of consistency (such as I? statistic) for each meta-analysis
Risk of bias across studies 15 Specify any assessment of risk of bias that may affect the cumulative evidence (such Fifth and sixth pages
as publication bias, selective reporting within studies)
Additional analyses 16 Describe methods of additional analyses (such as sensitivity or subgroup analyses, Fifth and sixth pages
meta-regression), if done, indicating which were pre-specified
Results
Study selection 17 Give numbers of studies screened, assessed for eligibility, and included in the Sixth page, Fig. 1
review, with reasons for exclusions at each stage, ideally with a flow diagram
Study characteristics 18 For each study, present characteristics for which data were extracted (such as study Sixth and eighth pages,
size, PICOS, follow-up period) and provide the citations Table 1
Risk of bias within studies 19 Present data on risk of bias of each study and, if available, any outcome-level Sixth page, Appendix 3

Seventh page, Fig. 2

Seventh page

Sixth page, Appendix 3

Seventh to ninth pages,
Tables 2-3

Ninth page

Tenth page

Eleventh page

None

Appendix 2: Literature search strategy

Relevant studies, published before November 30, 2013 (date
last searched), were identified through electronic searches
not limited to the English language using MEDLINE, EM-
BASE, and Cochrane databases. Electronic searches were
supplemented by scanning reference lists of articles identi-
fied for all relevant studies (including review articles), by
hand searching of relevant journals and by correspondence
with study investigators. The computer-based searches
combined search terms related to vitamin D supplementation
and blood pressure without language restriction.

(i) MEDLINE strategy to identify relevant exposures:
(“Vitamin D”[Mesh] OR “vitamin d”[All Fields] OR
“25-hydroxyvitamin D”[All Fields] OR “25(OH)D”[All

@ Springer

Fields] OR “calcidiol”[All Fields] OR “ergocalcife-
rols”[Mesh] OR “ergocalciferols”[All Fields] OR “Vita-
min D Supplementation” [Mesh])

(i) MEDLINE strategy to identify relevant outcomes:
(“Hypertension”’[Mesh] OR  “hypertension”[All
Fields] OR “blood pressure”[Mesh])

(iii) MEDLINE strategy to identify relevant population:
(“humans”[MeSH Terms])

Parts i, ii and iii were combined using ‘AND’ to search
MEDLINE. Each part was specifically translated for
searching alternative databases.

Appendix 3

See Table 6.



Vitamin D and high blood pressure 13
Table 6 Risk of bias assessments for included trials

Lead author, Random Allocation Blinding Blinding Incomplete Selective Other
Year sequence concealment of participants of outcome outcome reporting bias
(Reference) generation & personnel assessments data

Scragg, 1995 [32] Low Low Low Unknown Low Low Unknown
Pfeifer, 2001 [33] Low Low Low Unknown Low Low Unknown
Schleithoff, 2006 [34] Low Unknown Low Unknown Low Low Unknown
Nagpal, 2009 [35] Low Low Low Unknown Low Low Low
Sugden, 2008 [3] Low Low Low Unknown Low Low Unknown
Jorde, 2010 [36] Low Low Low Low Low Low Low
Witham, 2010 [37] Low Low Low Unknown Low Low Low
Shab-Bidar, 2011 [38] Low High Low Unknown High Low Unknown
Larsen, 2012 [39] Low Low Low Low Low Low Low
Witham, 2012 [40] Low Low Low Low Low Low Low
Gepner, 2012 [41] Low Low Low Low Low Low Low
Wood, 2012 [42] Low Low Low Unknown Low Low Low
Forman, 2013 [43] Low Low Low Unknown Low Low Low
Witham, 2013 [44] Low Low Low Low Low Low Low
Witham, 2013 [45] Low Low Low Unknown Low Low Low
Wamberg, 2013 [46] Low Low Low Unknown Low Low Low
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