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Abstract Associations between traffic-related air pollu-

tion and incident childhood asthma can be strengthened by

analysis of gene-environment interactions, but studies have

typically been limited by lack of study power. We com-

bined data from six birth cohorts on: asthma, eczema and

allergic rhinitis to 7/8 years, and candidate genes. Indi-

vidual-level assessment of traffic-related air pollution

exposure was estimated using land use regression or dis-

persion modeling. A total of 11,760 children were included

in the Traffic, Asthma and Genetics (TAG) Study; 6.3 %

reported physician-diagnosed asthma at school-age, 16.0 %

had asthma at anytime during childhood, 14.1 % had

allergic rhinitis at school-age, 10.0 % had eczema at

school-age and 33.1 % were sensitized to any allergen. For

GSTP1 rs1138272, the prevalence of heterozygosity was

16 % (range amongst individual cohorts, 11–17 %) and

homozygosity for the minor allele was 1 % (0–2 %). For

GSTP1 rs1695, the prevalence of heterozygosity was 45 %

(40–48 %) and homozygosity for the minor allele, 12 %

(10–12 %). For TNF rs1800629, the prevalence of heter-

ozygosity was 29 % (25–32 %) and homozygosity for the

minor allele, 3 % (1–3 %). TAG comprises a rich database,

the largest of its kind, for investigating the effect of

genotype on the association between air pollution and

childhood allergic disease.
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Abbreviations

APMoSPHERE Air pollution modelling for support to

policy on health and environmental risk

in Europe

BAMSE Children, allergy, Milieu, Stockholm,

epidemiological survey

CAPPS Canadian asthma primary prevention study

GINIplus German infant study on the influence of

nutritional intervention plus environmental

and genetic influences on allergy

development

GSTP1 Glutathione S-transferase pi 1

LISAplus Lifestyle related factors, immune system

and the development of allergies in East

and West Germany plus the influence of

traffic emissions and genetics study

LUR Land-use regression

NO2 Nitrogen dioxide

O3 Ozone

PIAMA Prevention and Incidence of asthma and

mite allergy

PM2.5 Particulate matter of diameter less than

2.5 lm

SAGE Study of asthma, genes, and environment

TAG Traffic, asthma and genetics study

TNF Tumour necrosis factor

TLR Toll-like receptor

TRAP Traffic-related air pollution

Introduction

Traffic-related air pollution (TRAP) has been consistently

associated with exacerbation of childhood asthma [1] and

growing evidence supports an association with incident

childhood asthma [2–5].

As part of the traffic related air pollution and childhood

asthma (TRAPCA) international collaboration, individual

estimates of air pollution exposure were assigned to children

in four European birth cohorts [6, 7]. Using similar meth-

odology, individual exposures were also assigned to children

in two Canadian birth cohorts [8, 9]. To date, four of these

cohorts have reported statistically significant associations

between traffic-related air pollution and asthma or atopic

disease during childhood [10–13]; and one has reported

associations between TRAP and wheeze [14].

Gene-environment studies are of special interest in the

examination of childhood asthma because they are able to

identify children most susceptible to the harmful effects of

TRAP [2, 15] and identification of these interactions could

provide biological plausibility for epidemiologic observa-

tions. Oxidative stress genes are of particular interest [16]

but there have been limited studies that have examined the

development of asthma. Carriers of a specific GSTP1 var-

iant have been identified as a susceptible population in the

association between TRAP and allergic sensitization [17],

persistent wheeze [18], and asthma [19]. A common limi-

tation in gene-environment studies is lack of sufficient

power. To address this issue, and to improve our under-

standing of gene-environment interactions, investigators

have called for analyses that combine data from studies

with similar assessments of air pollution and asthma [20].

The Traffic, Asthma and Genetics study (TAG) has

combined data from multiple birth cohorts to examine the

influence of candidate genes related to oxidative stress and

inflammation on the association between TRAP and the

incidence of asthma, allergic rhinitis, eczema and wheeze

in childhood. Here we describe the methodology used to
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pool data and provide information on the combined dataset

and individual cohorts.

Methods

We included six birth cohort studies in TAG (Table 1): The

Canadian Asthma Primary Prevention Study (CAPPS) [10],

The Study of Asthma, Genetics and Environment (SAGE)

[21], The Children, Allergy, Milieu, Stockholm, Epidemio-

logical Survey (BAMSE) [14, 17, 22], The German Infant

Study on the Influence of Nutrition Intervention plus Envi-

ronmental and Genetic Influences on Allergy Development

Study (GINIplus) [23], the Influence of Life Style Factors on

the Development of the Immune System and Allergies in East

and West Germany plus the Influence of Traffic Emissions and

Genetics Study (LISAplus) [23], and the Prevention and

Incidence of Asthma and Mite Allergy (PIAMA) Study [24].

Detailed information for all six cohorts including case defini-

tions are provided in the Supplementary Material. Children

were born during the mid-to-late 1990s and recruitment was

done primarily through hospitals, clinics and outpatient prac-

tices. SAGE identified children born in 1995 from a healthcare

registry and asthma and allergy phenotypes were diagnosed by

a physician at age 8, at which time parent histories were

recalled retrospectively. CAPPS is the only study that did not

originally recruit a population-based sample. Although SAGE

and BAMSE recruited population-based samples, the data

available for TAG are based on nested case–control samples.

In each cohort the following information was available

for all or a subset of children: TRAP, assigned individually

based on address at birth; assessment of physician-diag-

nosed asthma at 7 or 8 years; and available genotyping data

for single nucleotide polymorphisms (SNPs) of primary

interest. The studies recruited children primarily in urban

areas. A primary objective of each study was examination

of the epidemiology of childhood asthma. In CAPPS, GINI

and PIAMA a portion of the population was assigned to a

preventive intervention (education and counseling, pro-

motion of hypoallergenic formula, and the use of dust mite-

impermeable mattress covers).

Exposure assessment

For all cohorts except BAMSE, annual average NO2, as an

indicator of TRAP, was estimated for each child’s birth

address using land use regression models [6, 8, 9, 25]. For

all study sites, integrated 14-day samples (Ntotal = 40–116)

were collected. Potential predictors of traffic were screened

by examining their correlation with measured air pollution

and final models were assessed based on the coefficient of

determination and root mean square error from cross-

validation.

Models developed for the PIAMA cohort and for LISA

and GINI children born in Munich were based on mea-

surements collected between March 1999 and July 2000

[6]. The remaining LISA and GINI cities of Wesel and

Leipzig were sampled in 2003 [26]. The model developed

for CAPPS children born in Vancouver was based on

measurements in the spring and fall of 2003 [9]; and the

model developed for SAGE and CAPPS children born in

Winnipeg was based on measurements in 2007 [8].

NO2 estimates for the BAMSE birth cohort were

assigned to birth addresses using dispersion models [14,

27]; emission data for traffic-generated NOx were collected

for the years 1990 and 2000. Pollutant dispersion was

estimated using a dilution model based on wind speed,

direction and precipitation [14]. Final models were vali-

dated using measurements taken outside the homes of 487

study children in the BAMSE cohort.

Ozone estimates were assigned to the European cohorts

based on models developed in the APMoSPHERE project

[28]. Predictions were made for the year 2001. In Canada,

ozone estimates were assigned based on the average con-

centration among the three closest ambient monitors (within

50 km) using an inverse distance weighted approach.

Data transfer and creating a common database

Primary (asthma, wheeze) and secondary (allergic rhinitis,

eczema, sensitization) outcome variables were available

for all cohorts along with several potential confounders.

Data were collected at different time points across the

cohorts (Fig. 1), and there were slight differences in

questionnaire wording and case definitions (see Supple-

mentary Material). New TAG variables were derived from

data common to all cohorts.

For all cohorts, questions pertaining to physician-diag-

nosed asthma, allergic rhinitis and eczema were asked

when the child was 8 years of age, with the exception of

CAPPS (assessed at 7 years).

Asthma at any time during follow-up (‘ever’) and

wheeze ‘ever’ variables were created using every available

follow-up to the age of 8 years. If parents reported no

asthma or wheeze at every follow-up and no more than one

follow-up had missing data then children were coded as not

having ever asthma/wheeze. Children in the referent group

missing data for more than two follow-up periods were

excluded.

Sensitization was assessed by skin prick testing at age 7

for CAPPS and SAGE and by RAST at age 6 for GINI and

LISA and at age 8 for BAMSE and PIAMA (defined as any

specific IgE antibody value of 0.35 kU/L or greater).

Results are presented for outdoor (birch, dactylis, timothy

grass, mugwort, ragweed, rye, trees, and weeds) and indoor
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(alternaria, cats, cladosporium, dogs, feathers, house dust

mites, molds, and cockroaches) allergens.

Results

There are a total of 15,134 children in the merged dataset

(11,760 with complete follow-up; Table 1): 11,720 chil-

dren have complete data on wheeze, 10,202 children have

complete data on asthma and 10,743 children have

assigned NO2. NO2 was the only traffic pollutant available

for every cohort. In the SAGE, GINI and LISA studies,

NO2 was available only for children living in the urban

centers of Winnipeg (SAGE) and Munich (GINI/LISA).

GSTP1 rs1138272 was available for 40 % of the com-

bined dataset (21–94 % coverage by cohort), GSTP1 rs1695

was available for 44 % (30–97 %) and TNF rs1800629 for

39 % (20–93 %). Additional SNPs of interest for allergic

rhinitis and eczema were available for 11.4–38.9 % of the

combined dataset and coverage within each cohort ranged

from 1.9 to 94.9 % (Table 2).

The proportion of children with asthma, wheeze, allergic

rhinitis, sensitization and eczema are shown in Table 3. The

Canadian and Swedish studies had the highest incidence and

prevalence of asthma while the German and Dutch cohorts

had the lowest. This is due in part to study design, since

CAPPS recruited only high-risk children and the data used for

SAGE and BAMSE were from nested case–control studies.

The proportion of children with physician-diagnosed asthma

reported at 7/8 years was 6.3 % and ranged from 2.4 % in

LISA to 31.4 % in SAGE. The proportion of children with a

physician-diagnosis of asthma ‘ever’ was 16.0 % and ranged

from 6.1 % in LISA to 41.6 % in CAPPS. The proportion of

children with ‘wheeze ever’ was 44.5 % and ranged from

37.2 % in GINI to 62.6 % in SAGE. Finally, the proportion of

children with both physician-diagnosed asthma ever and

wheeze at 6/7/8 years was 7.2 % and ranged from 3.7 % in

PIAMA to 43.7 % in SAGE. Overall, 1,412 (14.1 %) children

reported allergic rhinitis and 2,083 (30.5 %) were sensitized to

at least one aeroallergen. Among those reporting a doctor

diagnosis of allergic rhinitis with available information on

sensitization, 63.3 % (655/1,035) were sensitized to at least

one aeroallergen. A breakdown of important covariates by

cohort is provided in Tables 3 and 4.

NO2 distributions for Germany and The Netherlands

were similar while those for Canada (SAGE) and Sweden

indicate slightly lower mean concentrations (Table 4). For

NO2 there was little overlap in concentration range

Table 1 Summary of TAG birth cohorts

Location Study type Cohort recruitment Follow-up and cohort

retention

Strategy Dates Target

population

Numbera Age Numberb

CAPPS Winnipeg &

Vancouver,

Canada

Birth cohort with asthma

intervention

Prenatal

clinics

1995 Pregnant

women

545 7 years 380

SAGE Manitoba, Canada Population based birth

cohort with nested

asthma case–control

Provincial

healthcare

registry

1995 Newborns 723 in

nested

case–

control

8 years 683

BAMSE Stockholm, Sweden Population based birth

cohort with nested

wheeze case–control

Initial Child

Health

visits

1994–1996 Newborns 982 in

nested

case–

control

8 years 982

GINI Munich & Wesel,

Germany

Population based birth

cohort with nutrition

intervention

Maternity

hospitals

1995–1998 Pregnant

women

5,991 8 years

(asthma);

6 years

(wheeze)

3,241;

3,855

LISA Munich, Wesel, Bad

Honnef & Leipzig,

Germany

Population based birth

cohort

Obstetrical

clinics

1997–1999 Pregnant

women

3,095 8 years

(asthma);

6 years

(wheeze)

1,711;

2,577

PIAMA The Netherlands Population based birth

cohort with mattress

cover intervention

Midwife

practices

1996–1997 Pregnant

women

3,963 8 years 3,254

a Number of children included in the TAG database
b Number of children with complete follow-up in the TAG database
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between SAGE and the other cohorts. The within-cohort

variation for NO2 in CAPPS and BAMSE was greater than

the between-cohort variation (see Supplementary Mate-

rial). In Canada, the within-cohort variation was due to the

minimal overlap in the NO2 concentrations between the

two centers of Vancouver (18.9–55.2 lg/m3) and Winni-

peg (4.1–21.5 lg/m3).

Table 5 reports genotype frequencies for the pooled data

and by cohort. For GSTP1 rs1138272, GSTP1 rs1695 and

TNF rs1800629, heterozygous and minor alleles were more

common in PIAMA and major alleles were more common in

CAPPS. Allele frequencies for additional SNPs of interest

for allergic rhinitis and eczema are also included in Table 5.

Discussion

TAG represents the first consortium to examine the inter-

action between candidate genes of oxidative stress and

inflammation, and traffic-related air pollution in relation to

incident childhood airway diseases. Our database provides

an unprecedented opportunity for pooled analysis of a

significantly larger sample than in previously published

analyses. This also allows novel analyses examining the

interaction between air pollution and genome-wide data,

which have also been integrated into the TAG database.

Based on the literature, and availability of genotyping

within each cohort, we obtained data on three SNPs pos-

tulated to modify the relationship between air pollution and

asthma: rs1138272/1799811 (GSTP1), rs1695/947894

(GSTP1) and rs1800629 (TNF). Mutations in the glutathi-

one S-transferase (GST) enzymes have been associated

with asthma. The activity of GST in the lung is influenced

by the GSTP1 enzyme [29] and this oxidative stress-

modifying enzyme has been found to alter the response to

air pollutants [30, 31]. Moreover, the GSTP1 rs1695 SNP

may have a differential effect on the development of

asthma according to age—an association has been found

for early onset of disease but not for late onset [15]. TNF

responds to inflammation markers and has been shown to

modify the relationship between ozone and asthma [31].

NO2 is the pollutant with the most comprehensive

coverage across the birth cohorts and is useful as a marker

of within-city variability in exposure to traffic-related air

pollutant. NO2 is a reasonable indicator of TRAP and has

been a useful exposure marker in previous epidemiological

investigations [11, 32, 33].

Traffic-related air pollution exposures were calculated

as annual averages for the home address reported at birth,

Fig. 1 Follow-up time points for each cohort

Table 2 Numbers and proportion of children with air pollution, birthweight and genotyping data

Pooled CAPPSa SAGE BAMSE GINI LISA PIAMA

N % N % N % N % N % N % N %

Assigned NO2 10,742 71.2 371 97.6 235 34.4 980 99.8 3,497 58.4 1,706 55.1 3,953 99.7

Assigned PM2.5 5,893 39.0 185 48.7 – – – – 1,083 18.1 672 21.7 3,953 99.7

Assigned PM2.5 absorbance 8,615 57.1 185 48.7 – – – – 3,497 58.3 980 31.7 3,953 99.7

Assigned O3 11,757 77.9 186 48.9 – – – – 5,283 88.2 2,351 76.0 3,937 99.3

Birthweight 13,670 90.3 380 100 670 98.1 976 99.4 4,636 77.4 3,094 99.9 3,914 98.8

GSTP1 rs1138272 6,100 40.3 352 92.6 543 79.4 923 94.0 1,308 21.8 1,006 32.5 1,968 49.7

GSTP1 rs1695 6,600 43.7 353 92.9 536 78.3 956 97.4 1,803 30.1 1,003 32.4 1,949 49.1

GSTP1 rs4891 4,355 28.8 – – – – 932 94.9 1,432 23.9 – – 1,991 50.2

TNF rs1800629 5,891 38.9 354 93.2 545 79.6 914 93.1 1,223 20.4 907 29.3 1,948 49.2

TLR2 rs1898830 1,864 12.3 354 93.2 581 80.4 – – – – – – 929 23.4

TLR2 rs4696480 1,731 11.4 – – – – – – 113 1.9 669 21.6 949 23.9

TLR4 rs10759931 3,062 20.2 – – – – – – 1,226 20.5 906 29.3 930 23.5

TLR4 rs10759932 1,762 11.4 – – – – – – 112 1.9 668 21.6 946 23.9

TLR4 rs1927911 4,012 26.5 355 93.4 580 80.2 – – 1,226 20.5 904 29.2 947 23.9

TLR4 rs2737190 3,089 20.4 – – – – – – 1,225 20.4 906 29.3 958 24.2

Total Number 15,134 – 380 – 683 – 982 – 5,991 – 3,095 – 3,963 –

a NO2 was the only air pollutant modeled for the study city of Winnipeg
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Table 3 Data on key variables, for pooled TAG data and by cohort (percentages are relative to the total children for given cohort within TAG)

Pooled CAPPS SAGE BAMSE GINI LISA PIAMA

N % N % N % N % N % N % N %

Potential outcomes

Physician-diagnosed asthma at 7/8 years 643 6.3 71 18.7 212 31.4 113 12.3 91 2.8 40 2.4 116 3.6

Physician-diagnosed asthma ‘ever’ 1,581 16.0 158 41.6 212 31.4 295 30.0 272 9.5 98 6.1 546 16.2

Physician-diagnosed asthma ‘ever’ AND parent

reported wheeze at 6/7/8 years

668 7.2 70 18.4 172 43.7 125 13.6 122 4.3 61 3.9 118 3.7

Parent-reported wheeze at 6/7/8 years 1,265 11.5 87 22.9 249 62.6 165 18.0 341 8.9 208 9.5 215 6.6

Parent-reported wheeze ‘ever’ 5,209 44.5 178 46.8 249 62.6 578 58.9 1,432 37.2 1,115 43.3 1,657 47.0

Allergic rhinitis at 7/8 years 1,412 14.1 113 29.7 174 33.2 164 17.9 242 7.5 105 6.1 614 18.9

Sensitization to any allergen 2,264 33.1 167 45.5 201 29.6 235 30.6 634 32.3 323 27.1 704 37.7

Sensitization to any aeroallergen 2,083 30.5 165 45.0 189 27.9 158 20.6 574 29.3 300 25.3 697 37.3

Sensitization to any indoor aeroallergen 1,571 23.5 134 36.5 127 18.7 158 20.6 380 19.4 189 15.9 583 34.0

Sensitization to any outdoor aeroallergen 1,170 19.3 80 21.9 125 18.4 – – 420 21.4 220 18.5 325 17.4

Physician-diagnosed eczema (2nd year) 1,673 13.8 43 11.5 – – 207 21.1 467 10.9 336 12.3 620 16.7

Physician-diagnosed eczema (8th year; 7th year for

CAPPS)

957 10.0 49 12.9 144 25.0 96 10.8 141 4.4 59 3.5 517 16.0

Additional covariates

Intervention arm 3,235 21.4 202 53.2 – – – – 2,252 37.6 – – 781 19.7

Male gender 7,589 50.8 203 53.4 380 55.6 522 53.2 2,991 51.3 1,585 51.2 1,908 48.2

Maternal age at time of birth

15–19 years 298 2.0 6 1.6 124 17.2 1 0.1 68 1.3 39 1.3 60 1.5

20–29 years 5,737 37.9 112 29.5 311 43.0 386 39.9 2,222 37.1 1,064 34.4 1,642 41.4

30–39 years 8,767 57.9 247 65.0 275 38.0 568 57.8 3,558 59.4 1,896 61.3 2,223 56.1

40–46 years 333 2.2 15 4.0 13 1.8 27 2.8 144 2.4 96 3.0 38 1.0

Parental history

Maternal asthma 1,039 10.2 162 42.6 158 24.0 117 12.1 466 7.8 195 6.4 – –

Maternal/paternal allergic disease 323 33.2 – – – – 323 33.2 – – – – – –

Maternal allergies 5,199 34.5 292 76.8 290 44.1 349 35.5 845 14.2 390 12.7 1,237 31.2

Paternal asthma 810 8.3 130 35.3 87 16.6 93 9.6 352 5.9 148 5.1 – –

Paternal allergies 3,349 22.9 243 65.7 203 38.7 342 35.3 473 8.0 233 8.1 1,217 30.8

Place of birth

Vancouver, Canada 186 1.2 186 49.0 – – – – – – – – – –

Winnipeg, Canada 917 6.1 194 51.0 723 100 – – – – – – – –

Stockholm, Sweden 284 1.9 – – – – 284 29.0 – – – – – –

Jarfalla, Sweden 313 2.1 – – – – 313 32.0 – – – – – –

Solna, Sweden 242 1.6 – – – – 242 24.7 – – – – – –

Sundbyberg, Sweden 140 0.9 – – – – 140 14.3 – – – – – –

Munich, Germany 4,414 29.2 – – – – – – 2,949 49.2 1,465 47.3 – –

Leipzig, Germany 976 6.5 – – – – – – – – 976 31.5 – –

Bad Honnef, Germany 306 2.0 – – – – – – – – 306 9.9 – –

Wesel, Germany 3,390 22.4 – – – – – – 3,042 50.8 348 11.2 – –

Groningen, The Netherlands 1,231 8.2 – – – – – – – – – – 1,231 31.1

Rivm, The Netherlands 1,031 6.8 – – – – – – – – – – 1,031 26.0

Wageningen, The Netherlands 555 3.7 – – – – – – – – – – 555 14.0

Rotterdam, The Netherlands 1,146 7.6 – – – – – – – – – – 1,146 28.9

Maternal smoking during pregnancy 2,702 20.2 29 7.7 131 18.1 138 14.1 739 15.4 536 18.0 1,129 22.9

Environmental tobacco smoke in the home

1st year of life 2,600 32.5 74 19.5 – – 185 18.9 1,323 27.8 758 26.7 1,583 41.5

2nd year of life 3,354 27.6 74 19.5 – – 184 18.8 1,230 28.4 812 29.6 1,054 28.2

7th year of life 1,747 20.1 68 17.9 – – – – 793 24.4 245 14.4 641 19.1

8th year of life 1,895 19.4 – – 182 27.5 162 17.7 766 23.6 237 14.0 548 16.8
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even though the measurements used to estimate TRAP

were taken after birth for each of the cohorts. Recent

findings [34–36] suggest that it is reasonable to apply a

land use regression model from one time point to other

time points up to 7 years into the past, because the spatial

distribution of these pollutants is generally stable over

time.

The availability of individual data from each cohort

allows for pooled data analysis within TAG. There is

adequate variability across birth cohorts, and cities, in air

pollution distributions, and the prevalence of asthma and

SNP frequency to facilitate epidemiologic analyses. The

higher prevalence of asthma within CAPPS (high-risk

cohort), SAGE (nested asthma case–control) and BAMSE

(nested wheeze case–control) provides additional power for

pooled analysis [37] but the inclusion of cohorts with dif-

fering study designs warrant cautious interpretation of

pooled estimates. For CAPPS and BAMSE, the within-

cohort variation in NO2 is greater than the between-cohort

variation, and supports the rationale for a pooled analysis

versus a meta-analysis by cohort.

The main strength of TAG is the increased study power

gained by combining data from multiple cohorts. How-

ever, this merging of data also carries some inherent

limitations. While outcome and exposure variables across

the European cohorts are comparable [38] the nonstandard

definitions used for some potential confounder definitions

may reduce precision of our estimates. A small number of

potential confounders could not be included in our pooled

dataset (mode of delivery, breastfeeding, parity, gas stove,

visible mold and pets in the home) because it was not

possible to harmonize data across each cohort. Asthma is

defined as parent report of physician diagnosis in the

European cohorts but is defined by a physical exam with a

pediatric allergist in the Canadian cohorts. All pooled

analyses will be replicated within each cohort to assess

agreement between effect estimates [37]. This is another

important strength of TAG because the consistency of

effects across different populations can be examined using

standardized methods. Further, children excluded from the

pooled analysis due to insufficient air pollution data may

have been more likely to live in rural areas, particularly

within the SAGE cohort, and restricting to those with

school age follow-up may have also resulted in selection

bias.

These cohorts are unique in that they have highly

detailed exposure assessment for TRAP and have

recruited pregnant women or newborns and therefore

have the ability to assess the development of asthma

from birth. TAG comprises a rich database, the largest of

its kind, for investigating the effect of genotype on the

association between air pollution and childhood allergic

disease.T
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Table 5 Genotype frequencies by cohort

Pooled CAPPS SAGE BAMSE GINI LISA PIAMA

N % N % N % N % N % N % N %

GSTP1 rs1138272a

CC 5,079 83.3 304 86.4 481 88.6 774 83.9 1,083 82.8 818 81.3 1,619 82.3

CT 971 15.9 48 13.6 61 11.2 134 14.5 219 16.7 176 17.5 333 16.9

TT 50 1.0 0 – 1 0.2 15 1.6 6 0.5 12 1.2 16 0.8

GSTP1 rs1695a

AA 2,835 43.0 172 48.7 260 48.5 434 45.4 752 41.7 435 43.4 782 40.1

AG 2,999 45.4 141 39.9 222 41.4 414 43.3 835 46.3 453 45.2 934 47.9

GG 766 11.6 40 11.3 54 10.1 108 11.3 216 12.0 115 11.5 233 12.0

GSTP1 rs4891

TT 1,571 36.1 – – – – 472 50.6 309 21.6 – – 790 39.7

CT 2,176 50.0 – – – – 352 37.8 886 61.9 – – 938 47.1

CC 608 13.9 – – – – 108 11.6 237 16.6 – – 263 13.2

TNF rs1800629a

GG 4,050 68.7 258 72.9 395 72.5 649 71.0 837 68.4 641 70.7 1,270 65.2

AG 1,686 28.6 92 26.0 136 25.0 245 26.8 348 28.5 250 27.5 615 31.6

AA 155 2.6 4 1.1 14 2.6 20 2.2 38 3.1 16 1.8 63 3.2

TLR2 rs1898830

AA 753 40.4 141 39.8 227 39.1 – – – – – – 385 41.4

AG 842 45.2 166 46.9 252 43.4 – – – – – – 424 45.6

GG 269 14.4 47 13.3 102 17.6 – – – – – – 120 12.9

TLR2 rs4696480

AA 416 24.0 – – – – – – 27 23.9 166 24.8 223 23.5

AT 855 49.4 – – – – – – 55 48.7 355 53.1 445 46.9

TT 460 26.6 – – – – – – 31 27.4 148 22.1 281 29.6

TLR4 rs10759931

GG 1,162 37.9 – – – – – – 494 40.3 319 35.2 349 37.5
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CC 2,249 54.8 193 54.4 323 55.7 – – 666 54.3 516 57.1 551 58.2

TC 1,510 36.8 136 38.3 223 38.5 – – 480 39.2 334 37.0 337 35.6
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TLR4 rs2737190
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GG 313 10.1 – – – – – – 123 10.4 87 9.6 103 10.8

a Primary SNPs of interest for asthma
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