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Abstract There is growing concern in the scientific com-

munity that many published scientific findings may represent

spurious patterns that are not reproducible in independent

data sets. A reason for this is that significance levels or

confidence intervals are often applied to secondary variables

or sub-samples within the trial, in addition to the primary

hypotheses (multiple hypotheses). This problem is likely to

be extensive for population-based surveys, in which epide-

miological hypotheses are derived after seeing the data set

(hypothesis fishing). We recommend a data-splitting pro-

cedure to counteract this methodological problem, in which

one part of the data set is used for identifying hypotheses, and

the other is used for hypothesis testing. The procedure is

similar to two-stage analysis of microarray data. We illus-

trate the process using a real data set related to predictors of

low back pain at 14-year follow-up in a population initially

free of low back pain. ‘‘Widespreadness’’ of pain (pain

reported in several other places than the low back) was a

statistically significant predictor, while smoking was not,

despite its strong association with low back pain in the first

half of the data set. We argue that the application of data

splitting, in which an independent party handles the data set,

will achieve for epidemiological surveys what pre-registra-

tion has done for clinical studies.

Keywords Data splitting � Hypothesis fishing �
Data dredging � Two-stage analysis � Low back pain

Introduction

The concept of statistical significance may be the single-

most important mathematical invention for applied science.

Its use has become so widespread and commonplace that

many non-mathematical readers may not be actively aware

of its true meaning. To briefly review, the statement ‘‘X is

correlated with Y at significance level alpha’’ signifies, ‘‘If

no true correlation between X and Y exists, the probability of

obtaining the observed correlation is less than alpha.’’ The

P-value of a test is therefore a measure of surprise; the

smaller the P-value, the greater the surprise. Standard prac-

tice has been to set alpha at 0.05, which literally allows for a
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5% chance of erroneously reporting a significant finding

(Type I error). One cannot interpret the P-value as a proba-

bility of having made a Type I error, so 5% significance does

not imply that the conclusion is correct with a 95% proba-

bility. Such statements are meaningful only in a Bayesian

context where one assigns a priori probabilities to hypothe-

ses. The present article addresses non-Bayesian (frequentist)

analysis, which is by far the most common in epidemiology.

Ioannidis [1] purports that most scientific findings are

likely to be false, despite being reported as statistically

significant. One of his arguments, which we support, is that

the pressure to publish creates an incentive for researchers

to simultaneously address a large number of hypotheses

and selectively report only ‘‘significant’’ results. This

conduct is labelled hypothesis fishing or data dredging. (In

older papers the term data mining has also been used, but

the meaning of this has shifted toward discovery of valid

patterns in databases.) Also, the investigator may run dif-

ferent statistical tests (e.g. parametric and non-parametric

tests) for any given hypothesis, which is a less recognized

form of hypothesis fishing.

In an epidemiological and health services setting, com-

plex data sets based on statistical surveys are commonplace,

in which hundreds of variables are collected from thousands

of people. Data collection for a survey requires enormous

effort, with both individual and collective demands on the

researchers and respondents. From a purely economic point

of view, it appears logical to ‘‘turn the data set upside down,’’

searching for anything of interest buried in it. Therein lies the

temptation to launch a large-scale fishing expedition for all

potentially interesting hypotheses. Similar to real-life com-

mercial ocean fishing, which requires adjusting the mesh size

of the nets upward, researchers investigating multiple

hypotheses need to adjust the level of statistical significance

down in order to preserve the meaning of statistical signifi-

cance. The general rule of thumb is to divide alpha by the

number of hypotheses, referred to as a Bonferroni correction

[2]. However, in accordance with Ioannidis [1], we contend

this method is rarely applied. The limited use of Bonferroni

correction may result from uncertainty surrounding the exact

number of hypotheses ‘‘fished for,’’ but some researchers

may also be motivated to keep the ‘‘catch.’’ In epidemio-

logical research, upwards of 100 possible hypotheses are

common, and setting the alpha at 0.0005 eliminates much of

the fun in a fishing expedition. As a consequence, researchers

may be tempted to discuss only a handful of ‘‘significant’’

results, failing to mention the 95 that proved non-significant.

Hypothesis fishing renders P-values almost completely

meaningless, and we consider it to be a serious problem for

epidemiological survey analysis. The present paper rec-

ommends a very simple countermeasure against hypothesis

fishing, based on data splitting. The procedure is similar to

two-stage analysis of microarray data. We argue that if our

method could be applied for survey data in general, it could

do for epidemiological studies what pre-experiment regis-

tration of RCTs has done for medical experiments.

The rest of the article is laid out as follows: First we

review some mathematical methods that might be consid-

ered useful for counteracting hypothesis fishing. Then we

explain our method in detail, and compare it to two-stage

analysis of microarray data, followed by a case study where

the method is applied to an analysis of low back pain. The

article ends with discussion and conclusion.

Mathematical remedies (that fail to solve the problem)

If one considers hypotheses fishing to be a mathematical

problem, it is reasonable to look for mathematical solu-

tions. There is a large mathematical literature that relates to

model building and multiple hypotheses, and we will only

try to point out the main themes.

The simplest way of handling the problem of multiple

hypotheses is to reduce the significance level through

Bonferroni correction. It is also possible to use so-called

false discovery rate (FDR) [3], which is a way of con-

trolling the expected percentage of rejected null-

hypotheses (discoveries) that are falsely rejected. If all the

null-hypotheses are true, FDR is equivalent to Bonferroni

correction, but otherwise it is less strict. As we mentioned

in the introduction, it can be hard to keep track of the

number of hypotheses one is really addressing, which

makes the use of Bonferroni or FDR cumbersome.

Complex mathematical methods exist that adjust for the

effect of model selection on inference (for example, see

Madigan and Raftery [4]). In order to utilize these methods,

however, one must describe the model-building strategy in

a formal mathematical way. Faraway [5] has analysed

various data splitting approaches similar to the one we

apply, and compares them to mathematical inference

adjustment methods. Based on his simulation study, he

concluded that data splitting costs more in reduced accu-

racy than it gains in ‘‘honesty’’. This conclusion is to be

expected, because adjustment methods utilize information

that the splitting methods disregard. In our present setting,

however, accurate information on modelling procedure is

not available, so adjustment methods are not an option.

The task of choosing a set of hypotheses is—at least

superficially—related to the problem of choosing the set of

predictors to include in a statistical model for the data. An

overview of this field is given by Hastie et al. [6], and we

only mention a few key concepts. An obvious goal in

statistical modelling of a given set of data is to develop a

model that fits the data well, and a model will always fit

better when the set of predictors is increased. However, if

one includes too many predictors, the model is prone to
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imitating random properties of the data set, which are not

present in the underlying sampling distribution of the data.

Therefore, one needs ways to make trade-offs between

model fit and model size. This can be done directly through

various information criteria, such as Akaike’s Information

Criterion (AIC), the Bayesian Information Criterion (BIC),

or the Divergence Information Criterion (DIC). A different

approach called cross validation is to split the data set in

two parts, using one part for estimating model parameters,

and the other for evaluating model fit. A problem with this

method is that only half of the data is used for each task. A

clever remedy is to leave one data point out at the time,

estimate the model from the remaining data points, and

measure model fit by taking the average fit on the points

left out (leave-one-out cross validation).

We mention these methods mainly to point out that they

are not very relevant for controlling hypotheses fishing. The

use of information criteria or cross validation helps in

trading model fit for model size, but does not produce

adjustments for the total number of variables. The cross

validation procedure of splitting the data set, using one part

to estimate model parameters and the other for validation is

deceptively similar to the method we apply. But the purpose

of validating a model’s predictions is entirely different from

our purpose of conducting sound hypothesis testing.

In addition to the inherent difficulties related to mathe-

matical ways of dealing with hypothesis fishing, we do not

see the problem as mainly a mathematical one. Some

researchers may not be aware of the fact that P-values lose

their meaning when the hypotheses are chosen from a large

pool of undocumented ones. Others may be vaguely aware

of the problem, but choose not to address it unless

reviewers demand it. Reviewers, on the other hand, may

not feel inclined to insist on purity beyond what they have

done in their own scientific work.

The solution: data splitting

We recommend splitting the data set randomly into two

sections (Parts 1 and 2). This allows the investigators to

identify hypotheses in Part 1 of the data set, while

remaining blind to Part 2 until the hypotheses are specified.

True hypothesis testing is then performed using only Part 2

of the data. At this point there is no second-guessing. If the

alpha-level is set to 0.05, and the P-value in Part 2 is 0.051,

the result is by definition not significant, even if it received

a P-value of 0.001 in Part 1. In such cases, there will be a

temptation to ‘‘make a compromise’’ by computing the

average of the P-values from Parts 1 and 2, but this is not

allowed. Because the data in Part 1 was used to construct

the hypotheses, it is tainted, and cannot take any part in the

hypotheses testing.

This procedure is strict with respect to identifying sta-

tistical significance. Once a hypothesis is supported,

however, the entire data set is used for estimating the effect

size. Thus, the purpose is to ensure the proper use of the

term statistical significance. Once a significant finding is

established, though, it is preferable to obtain the most

accurate parameter estimates possible.

Models: hypothesis variables, and confounders

Epidemiological hypotheses are usually formulated within

the framework of a model. Assume the hypothesis is that

eating mushrooms increases the risk of cancer. To test this

hypothesis, one would build a model with predictors like

age, gender, smoking status, as well as mushroom habits, in

order to control for these confounding factors. (If old

people eat more mushrooms, excluding age from the model

would give an incorrect positive association between

mushroom eating and cancer.)

From a purely computational point of view, no differ-

ences exist between predictors associated with hypotheses

and confounders, yet the semantics are very different. The

confounders are included only as a means of estimating the

causal link between the cause (mushrooms) and its

hypothesized effect (cancer).

Researchers often use P-values as a road map (in addi-

tion to literature reviews and general medical knowledge),

when deciding which variables should be included as

confounders. A common piece of advice is to include

confounders demonstrating an association at a P-value

below 0.1 or 0.2. Despite this rationale for including a

confounding factor, no similar demands are made for

inclusion of the confounder in Part 2. The chosen set of

confounders provides the framework within which the

hypothesis is defined, and it is not the framework that is

being tested. In the mushroom example, the hypothesis is

that mushroom eating is associated with cancer when

controlling for age, gender, and smoking, not that con-

trolling for each of these factors is necessary.

Size of Part 1 and Part 2

When deciding upon the relative size of Parts 1 and 2, a

trade-off exists between the need to identify hypotheses by

exploration in Part 1, and the need to achieve statistical

significance in Part 2. An even split may be reasonable in

cases where the need for exploration is high, particularly if

the data set is large, so that half of the data set is sufficient

to achieve statistical significance for stronger effects. In

cases where greater domain knowledge is available based

on the existing literature, a smaller Part 1 is reasonable,

especially when the sample size is small.

Data splitting as a countermeasure against hypothesis fishing 239

123



Multiple hypotheses

It is possible to investigate multiple hypotheses within our

splitting regime, using Bonferroni corrections. Assume, in

the mushroom-cancer example, that the analysis of Part 1

also provided strong support for the hypothesis that eating

bananas protects against cancer. One might then choose to

include both mushroom habits and banana habits as

hypothesis variables, and consequently divide alpha by 2

(the number of hypotheses). If either mushroom or banana

habit fails the significance test in Part 2, it will still be in

the model, as a confounder.

It might be the case that both banana and mushroom

habits get P-values that fall between alpha/2 and alpha. In

this situation, both hypotheses would have passed the sig-

nificance test individually, but the choice to include two

hypotheses resulted in failure of both variables to reach

significance. Many non-statisticians would argue that sci-

entific procedures and statistical analysis should be

objective, with conclusions based on ‘hard facts’, inde-

pendent of arbitrary choices of hypotheses. Unfortunately,

this is not the case if we wish to claim statistical

significance.

The mushroom-banana example is a clear case in which

investigators should reduce the alpha-level to account for

multiple hypotheses. At the other extreme, if independent

research groups investigating different research questions

based on independent data sets, their combined effort is

obviously not a case of ‘multiple hypothesis testing’. A

grey area exists with partially overlapping data sets,

hypotheses, and research groups, often making it difficult

to decide whether Bonferroni corrections are called for. A

pragmatic solution may be to view a published article as a

unit, and apply Bonferroni corrections within each one.

Relation to two-stage analysis in genetics

Readers who are familiar with microarray analysis will

recognize that our data splitting method is similar to two-

stage analysis, as it is routinely performed in genetics [7].

There are a few differences, however. In a microarray

context the set of possible hypotheses is given by the

number of genes, and the FDR method is normally used

to limit the number of incorrect findings. Rather than

primarily counteracting hypothesis fishing, microarray

two-stage analysis is usually motivated by cost effec-

tiveness: By screening out promising candidates first, and

then evaluating them, researchers can make a higher

number of valuable discoveries for each monetary unit

spent. In a microarray setting the procedure is also likely

to be more automatic, as interesting genes are filtered out

in two more or less mechanical steps of analysis. In our

epidemiological application, on the other hand, there will

be a man-in-the-loop, as the researcher builds a model

with hypothesis variables and confounders based on a

combination of his domain knowledge and Part 1 of the

data.

Case study of low back pain in the Ullensaker study

Study sample and setting

Data material consisted of adults enrolled in an epide-

miological survey for musculoskeletal pain (MSP) in the

Ullensaker municipality, 40 km northeast of Oslo in

Norway. In 1990, 4050 inhabitants born in 1918–1920,

1928–1930, 1938–1940, 1948–1950, 1958–1960 and

1968–1970 (age 20–70 years) were sent a postal ques-

tionnaire about MSP. Of these people, 67% responded.

Individuals who reported low back pain (LBP) during the

past year (1990) were excluded from this material

(N = 1439), such that the original sample consisted of

1283 participants who were free of LBP in 1990. In 2004,

a 14-year follow-up was conducted. A total of 763 par-

ticipants (59%) responded and formed the present study

sample. These 763 participants were randomly divided in

two samples with n = 369 (Part 1) and n = 394 (Part 2),

respectively.

Outcome measures

To identify respondents with LBP, we used the answer to

the question, ‘‘During the past year, have you experienced

pain or discomfort in your lower back?’’. This item was

based on the Standardised Nordic Pain Questionnaire [8],

which is a self-report questionnaire frequently used in

Scandinavian epidemiological studies.

Independent variables (potential risk factors)

In 1990, the survey questionnaire contained a number of

socio-demographic and health-related factors, which

could be included as risk factors in the present study.

Socio-demographic variables were gender, age, marital

status, and work status. Health-related variables were

body mass index (BMI), smoking status, number of MSP

sites other than the low back, duration of previous MSP,

use of medication due to MSP, having been examined by

a health care provider due to MSP during the last year,

comorbidity, family history of musculoskeletal problems,

emotional distress, leisure physical activity, participation

in competitive sports, sleeping problems, and self-per-

ceived health.
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Model and hypotheses

A logistic regression model was developed based on Part 1

of the data set and medical expertise. The number of pain

sites and smoking status were included as independent

variables. Smoking status was dichotomised as smoking

and non-smoking. Number of pain sites was operational-

ized using participant responses on the Nordic Pain

Questionnaire [8]. Specifically, respondents reported whe-

ther they had experienced any pain or discomfort from the

following 10 areas during the previous year: head, neck,

shoulder, elbow, hand/wrist, upper back, low back, hip,

knee and ankle/foot (responses were ‘‘yes/no’’). The total

number of pain sites was computed and categorized into

the following four categories: no pain sites, 1 or 2 sites, 3

or 4 sites, and 5 or more pain sites.

We also included age, which was categorized into val-

ues corresponding to the six birth cohorts: 1918–1920,

1928–1930, 1938–1940, 1948–1950, 1958–1960, and

1968–1970. In addition, gender and marital status (di-

chotomised into married/partnership versus living alone)

were included. Results of the logistic regression model are

presented in Table 1.

We hypothesized that smoking would be positively

associated with LBP. Therefore, a 1-tailed hypothesis test

was conducted. It was also hypothesized that individual

pain sites would be positively associated with LBP. To

limit the number of hypotheses, though, we hypothesized

that the total number of pain sites would affect LBP

probability, rather than run analyses for each level of the

variable.

Hypotheses testing

The significance level alpha was set to the usual value of

0.05. With two hypotheses, the critical P-value becomes

0.025. Results for Part 2 of the data set are illustrated in

Table 2. The P-value of the pain sites variable (0.015) was

below the critical value of 0.025, and therefore it is con-

cluded that the number of pain sites was significantly

associated with LBP at the 14-year follow-up.

Smoking status received a 1-sided P-value of 0.487,

which exceeds the limit of 0.025 by a large margin, and this

variable is thus deemed non-significant. This result may

seem surprising, given the variable’s strong association

with the dependent variable in Part 1 of the data set (2-

sided P-value = 0.003). This illustrates the dangers of

hypothesis fishing: Our analysis suggests that the smoking

status variable may only have been a ‘‘lucky winner’’ in the

‘‘P-value lottery’’ of Part 1.

Parameter estimates

Having concluded that number of pain sites has a signifi-

cant effect on low back pain at follow up, we estimated the

magnitude of the effect from the full data set (Table 3).

Because the hypothesis test failed to give significance for

smoking status, it is included only as a confounder together

with age, gender, and marital status. The 2-sided P-value

for smoking status was 0.040, so researchers following a

hypothesis fishing procedure would probably have reported

it as a statistically significant predictor.

Discussion

Our study was designed to illustrate a simple and

straightforward data splitting method to counteract

Table 1 Parameter estimates from Part 1, controlling for age, gender,

and marital status

Predictor OR estimate 95% CI for OR P-value

Number of pain sitesa 0.012

1 or 2 pain sites 2.292 (1.248–4.208) 0.007

3 or 4 pain sites 2.690 (1.406–5.147) 0.003

5 or more pain sites 2.944 (1.193–7.262) 0.019

Smoking 2.079 (1.285–3.363) 0.003

a The reference category for number of pain sites was no pain sites

Table 2 Parameter estimates from Part 2, controlling for age, gender,

and marital status

Predictor OR estimate 95% CI for OR P-value

Number of pain sitesa 0.015

1 or 2 pain sites 1.328 (0.793–2.224) 0.281

3 or 4 pain sites 1.598 (0.857–2.979) 0.141

5 or more pain sites 3.941 (1.700–9.136) 0.001

Smoking 0.993 (0.627–1.571) 0.487*

a The reference category for number of pain sites was no pain sites

*1-sided P-value

Table 3 Parameter estimates of the hypotheses variable number of
pain sites, from the complete data set controlling for age, gender,

marital status and smoking status

Predictor OR estimate 95% CI for OR P-value

Number of pain sitesa 0.000

1 or 2 pain sites 1.637 (1.116–2.400) 0.012

3 or 4 pain sites 1.983 (1.285–3.061) 0.002

5 or more pain sites 3.346 (1.846–6.067) 0.000

a The reference category for number of pain sites was no pain sites
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hypothesis fishing in large-scale epidemiological surveys.

This method involves splitting the data set, where the first

half is used to identify hypotheses, while the remaining

data is used to test the hypotheses. The data splitting pro-

cedure was illustrated using data material collected for a

population-based health survey administered in Norway in

1990 and 2004. Results demonstrated that the number of

pain sites (‘‘widespreadness’’ of pain) was significantly

associated with LBP following a 14-year follow-up.

Smoking status was a strong predictor of LBP in Part 1 of

the data set (hypothesis identification), but did not achieve

significance in Part 2 (hypothesis testing). Therefore, this

finding was dismissed as non-significant in our study. For

the full data set, the P-value for smoking status was 0.040,

so the traditional way of analysing epidemiological data

would have given a different conclusion.

In this study, the investigators had free access to the

entire data set prior to data splitting and during model

development. However, any temptation to ‘‘peak’’ at the

material was successfully avoided, as indicated by the

discrepant results for smoking status. This indicates that the

data splitting procedure can indeed function properly in the

absence of strict external control of the data. Nevertheless,

we recommend that the data set be handled by an inde-

pendent party, so that researchers can document claims that

only Part 1 of the data set was used for model and

hypothesis development.

Ideally, the establishment of an independent interna-

tional body is recommended to manage splitting of survey

data. A fixed date for releasing data for Part 2 would be

agreed upon, so that only those hypotheses specified prior

to the release date would undergo a true significance test.

Although several challenges and practical issues would

inevitably need resolution (i.e., data collection, confiden-

tiality, release of data), such an organization should be

feasible and acceptable to the scientific community.

Conclusions

Results demonstrated that the number of musculoskeletal

pain sites significantly predicts low back pain at a 14-year

follow-up, when controlling for age, gender, marital status,

and smoking. The application of the data splitting method

in our study indicates its potential as an effective and useful

method to counteract hypothesis fishing in population

surveys. In our opinion, systematic data splitting adminis-

tered by an independent party would accomplish for

statistical surveys what pre-registration has already done

for clinical trials.

Open Access This article is distributed under the terms of the

Creative Commons Attribution Noncommercial License which per-

mits any noncommercial use, distribution, and reproduction in any

medium, provided the original author(s) and source are credited.
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