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Abstract Children in less developed countries die from

relatively small number of infectious disease, some of

which epidemiologically overlap. Using self-reported ill-

ness data from the 2000 Malawi Demographic and Health

Survey, we applied a random effects multinomial model to

assess risk factors of childhood co-morbidity of fever,

diarrhoea and pneumonia, and quantify area-specific spatial

effects. The spatial structure was modelled using the con-

ditional autoregressive prior. Various models were fitted

and compared using deviance information criterion. Infer-

ence was Bayesian and was based on Markov Chain Monte

Carlo simulation techniques. We found spatial variation in

childhood co-morbidity and determinants of each outcome

category differed. Specifically, risk factors associated with

child co-morbidity included age of the child, place of

residence, undernutrition, bednet use and Vitamin A.

Higher residual risk levels were identified in the central and

southern–eastern regions, particularly for fever, diarrhoea

and pneumonia; fever and pneumonia; and fever and

diarrhoea combinations. This linkage between childhood

health and geographical location warrants further research

to assess local causes of these clusters. More generally,

although each disease has its own mechanism, overlapping

risk factors suggest that integrated disease control approach

may be cost-effective and should be employed.

Keywords Childhood co-morbidity � Bayesian

multinomial logit model � Spatial modelling �
Multicategorical response data � Conditional autoregressive

models � Malawi

Abbreviations

CAR Conditional autoregressive

CI Confidence Interval; Credible Interval

DIC Deviance information criterion

EA Enumeration areas

ITN Insecticide treated nets

MCMC Markov Chain Monte Carlo

MDHS Malawi demographic and health Survey

ROR Relative odds ratio

Introduction

Children in sub-Saharan Africa experience disproportion-

ately huge burden of morbidity and mortality. About 180

deaths per 1,000 live births occur in the region [1], and

mostly from relatively small number of infectious diseases

[2]. Among these, diarrhoea, pneumonia and malaria are a

common cause and inflict the largest burden. For example,

a recent national sample survey carried out in Malawi re-

ported that the prevalence of fever, diarrhoea and pneu-

monia was 44, 22 and 45% respectively [3]. At outpatients’

clinics in the country, malaria is the most common cause of

attendance followed by acute respiratory infections like

pneumonia [4]. Although the trend is dropping, these dis-

eases, together with diarrhoea, are still a major cause of

mortality in most sub-Saharan African countries. In Ma-
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lawi, in particular, malaria, diarrhoea and pneumonia cause

14, 18 and 23% of overall under-five childhood mortality

[4]. In many ways than not, these illnesses occur simulta-

neously, largely because of common risk factors, and

probably due to overlap between multiple risk factors, or

that one disorder creates an increased risk for the other. Co-

morbidity of any of these illnesses exacerbates severe

disease, and expedites early and high childhood mortality

[5, 6].

The last few years has seen increased attention aimed at

reducing the burden of diseases in poorly-resourced

countries like in sub-Saharan Africa. With improved san-

itation and increased access to safe drinking water, coupled

with other interventions such as insecticide treated bednets,

vitamin A and other micro-nutrient supplements, as well as

vaccinations, the burden of the diseases can dramatically

be reduced [7]. Moreover, successful control of certain

diseases like malaria and HIV/AIDS can lead to lower risk

of the other diseases like pneumonia and diarrhoea, thus

there is potential public importance and synergetic oppor-

tunities for combined control [2, 6]. Remarkably, there is

not much research to model multiple disease outcomes,

moreover, little is known about geographical overlaps in

these illnesses, as this may improve our understanding of

the epidemiology of the diseases for efficient and cost-

effective control. Simultaneous modelling of diseases

would be more appealing, leading to identification of

common risk factors or overlapping multiple risk factors,

which is critical for integrated management of these dis-

eases [8, 9]. Evidence-based utilization of resources may

require knowledge of local and geographical variability of

risk [10]. Spatial modelling has emerged as a valuable

approach for explaining small area variations in such out-

comes [8, 11].

This study is motivated by the analysis of childhood

morbidity in Malawi, using the 2000 Malawi Demographic

and Health Survey [12]. The survey recorded self-reported

morbidity patterns of common illnesses like fever, diar-

rhoea and pneumonia, among under-five year old children

within 2 weeks preceding the survey. Previous studies have

used binary response models to analyse the probability of

individual illness [13, 14]. However, the diseases often co-

exist in the same eco-epidemiological settings, and may

share common risk factors [5]. Thus much work remains to

be done to develop a better understanding of childhood co-

morbidities. To study pattern of co-morbidity, combina-

tions of overlapping illnesses reported in a child can be

constructed to give a multi-categorical response, which can

be analysed by multinomial regression models. An alter-

native approach for modelling several diseases is to extend

the binary models to the multivariate setup, which is more

natural to analyse more than one disease simultaneously.

Two approaches of joint analysis of diseases have

emerged: the shared component model [8, 9], and multi-

variate random fields model [15, 16].

The modelling framework proposed in this paper is the

multinomial approach. The multinomial approach is pre-

ferred because it allows separate treatment of the co-mor-

bidities versus a control or baseline group. The multinomial

models have received a lot of attention [17], and have re-

cently been extended to incorporate spatial random effects

to deal with unstructured extra-multinomial heterogeneity

and spatially structured variations within the framework of

generalized linear mixed models [18, 19]. A model

framework for analysing space-time multi-categorical re-

sponses has also been reported [19, 20].

Spatial random effects allow to quantify the effects of

unobserved environmental factors that are represented by

geographical locations. Some of these factors operate at

small scale, while others operate at large scale, thereby

inducing similarities in risk pattern for neighbouring areas

than those further apart. When these are estimated and

mapped they may be compared to known spatial patterns of

possible explanatory factors, or they may provide leads for

further epidemiological investigation. Incorporation of

spatially correlated prior also permits smoothing for in-

creased precision of effects, which is necessary when

sparse counts are observed at small area [18]. Furthermore,

in many spatial models only a single spatial random effect

is analysed, that is, data is associated with one spatial unit

only. In many situations, data can be nested within a

hierarchy of administrative areas, for example, data can be

clustered in three administrative structures such as region,

district and sub-district, and each of these has some influ-

ence on the health outcome. One may be interested,

therefore, to measure the spatial effect of each of these on

the outcome, and moreover, failure to account for the intra-

correlation may lead to biased estimates. Recent literature

have proposed models to analyse these data with multilevel

or multi-scale geographical structures [21, 22, 23]. Spatial

random effects for each area are introduced, in a similar

fashion as in a single spatial structure, to estimate variation

of risk at different levels.

In this study, we employed a Bayesian hierarchical ap-

proach, by extending the approach of Vounatsou et al. [18],

Dean and MacNab [21], Banerjee et al. [22] and Muggin

et al. [23], to analyse patterns of childhood co-morbidity of

fever, diarrhoea and pneumonia in Malawi, with data

clustered within two geographical levels, that is, subdis-

tricts and districts. Two reasons actuated the choice of

these three diseases for spatial analysis. First, these, as

discussed above, are of epidemiological importance in

Malawi because they are the main causes of morbidity and

mortality in under-five years old children. Second, the

diseases share common risk factors, in particular, they are

associated with environmental factors of which geograph-
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ical location forms an important risk factor, thus plausible

for spatial analyses. Spatial structure were modelled by

employing intrinsic conditional autoregressive (CAR)

models [24]. To further our understanding of potential

variation in risk, various models were fitted that introduced

spatial structure at one or both levels, and competing

models were compared using the deviance information

criterion [25].

Methods

Data

We analysed data from 4,778 under-five years of age

children. The data were collected as part of the 2000 Ma-

lawi Demographic and Health Survey (DHS) [12]. A two-

stage stratified sampling design was implemented to collect

the data. At first stage, a total of 560 enumeration areas

(EA), as defined in the 1998 Malawi Population and

Housing Census, were selected stratified by urban-rural

status with sampling probability proportional to the popu-

lation of the EA. At the second stage, a fixed number of

households were randomly selected in each EA. All women

of age 15–49 years were eligible for interview.

The outcome variables were derived from self-reported

sickness status of each child for the three illness (fever,

diarrhoea and pneumonia), as reported by the care-givers

(often mothers), experienced within 2 weeks prior to the

survey date. A multi-categorical response was constructed

as follows: (1) if the child experienced all three illnesses

(ALL), (2) if the child was sick of both fever and diarrhoea

(FD), (3) if the child had both fever and pneumonia (FP),

(4) if the child had both diarrhoea and pneumonia (DP), (5)

if the child experienced fever only, (6) if the child expe-

rienced diarrhoea only, (7) if the child experienced pneu-

monia only, and (8) if the child experienced no disease

within the observation period. Since detailed single disease

analyses have been dealt with elsewhere [14], our reporting

shall deal with the first four diseases combinations. For

completeness, results on the single diseases will be

reported.

The following individual covariates were included in

the analysis: (1) age of the child categorized as

(a) 1–5 months, (b) 6–11 months, (c) 12–23 months, d)

24–35 months and (e) 36–59 months (reference group);

(2) ownership of bednets (yes = 1, no = 0); (3) received

vitamin A within 6 months prior to the survey date

(yes = 1, no = 0); (4) weight-for-age (WTAGE) as a

general indicator of nutritional status, measured as

Z-scores, was fitted as a continuous variable; (5) type of

place of residence (rural = 1, urban = 0); (6) crowding

indicator based on the whether household size exceeded 6

(yes = 1, no = 0). The ‘‘no’’ category was the reference

group for all binary variables above.

Table 1 gives a summary of the data. Individual data

were nested within two areas: 364 subdistricts and 31

districts. The majority (58.5%) of children suffered one or

none of the illnesses. Co-morbidity of fever and pneu-

monia was highest (22.2%), followed by multiple mor-

bidity of fever, diarrhoea and pneumonia (11.1%). The

corresponding proportions for fever, diarrhoea and pneu-

monia were 14.7, 2.7, 19.6% respectively, while 21.4%

did not have any disease at the time of the survey. Very

young infants (age 0–5 months) and older children

(36–59 months) were proportionally less sick compared to

the other age groups, across all disease combinations.

Rural children were disproportionately more sick than

their urban counterparts.

Model

Let Yijk and pijk be the sickness status and probability of

multiple morbidity of fever, diarrhoea and pneumonia

(k = 1), co-morbidity of fever and diarrhoea (k = 2), co-

morbidity of fever and pneumonia (k = 3), co-morbidity of

diarrhoea and pneumonia (k = 4), fever only (k = 5),

diarrhoea only (k = 6), pneumonia only (k = 7), no disease

(k = 8) of child j, j = 1,...,ni in area i, i = 1,...,I. We as-

sumed that Yijk follows a multinomial distribution, i.e.,

Yijk~ MN(1, pij), where pij = (pij1,pij2,...,pij8)¢. Given some

covariates, xij, and area-specific random effects, sik, the

probability of co-morbidity can be modelled as [18, 19, 20]

pijk ¼
expðgijkÞ

1þ
Pk

l¼1 expðgijlÞ
; k ¼ 1; 2; � � � ; 7 ð1Þ

where

gijk ¼ x0ijbk þ sik ð2Þ

is the a predictor. We adopt a logit link, and relative to

category 8, gijk = log(pijk/pij8). In other words, the last

category k = 8 is set such that pij8 = 1–
P

k=1
7 pijk. The

component bk is a vector of regression parameters for each

sickness status k, and we shall refer to exp(bk) as relative

odds ratio (ROR). The random effects, sik, are district or

sub-district specific factors, and can be split into spatially

structured variation (hik) and unstructured multinomial

heterogeneity (/ik), such that, sik = hik + /ik.

Supposing that the outcome is clustered at a sub-district

and district administrative levels, then two area-specific

random effects can be introduced, in Eq. (2), to model their

effects. The predictor then becomes

ghijk ¼ x0hijbk þ shik þ dhk ð3Þ
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for sickness status k, of child j in subdistrict i and in

district h. The components shik and dhk are area-specific

random effects for the subdistrict and district respectively,

which can further be split into spatially structured variation

and unstructured heterogeneity.

To estimate model parameters we applied the fully

Bayesian approach. The following prior distributions were

specified for all parameters in the model. In modelling

spatially structured random effects, an intrinsic condi-

tional autoregressive (CAR) prior was chosen [24]. This

assumes that the mean for each area hi, conditional on the

neighbouring areas, has a normal distribution with mean

equal to the average of neighbouring areas hl, and vari-

ance inversely proportional to the number of neighbours

mi. Under contiguity, with wil = 1 if areas i and l are

adjacent and wil = 0 otherwise, the CAR prior has the

form,

hijfhl; l � ig � N
1

mi

X

l�i

hl;
r2

h

mi

 !

ð4Þ

where l~ i denotes adjacency of areas l and i on the map,

rh
2 is a spatial variance, which controls the degree of

smoothness. At a further step of hierarchy rh
2 is modelled

using the inverse Gamma (IG) with known hyperparame-

ters a = b = 0.001. This gives a weakly informative but

proper prior. For moderate to large data sets results are

rather insensitive to the choice of a and b. However, be-

cause of the known concerns about this prior’s possible

informativity, a sensitivity analysis was carried out.

The unstructured extra-multinomial heterogeneity was

estimated using an exchangeable normal prior, /i~ N(0,

r2
/), where r2

/ measures the degree of heterogeneity,

which again was assigned an IG hyperprior. The fixed

regression coefficients were assigned diffuse priors,

p(bk) � constant.

Analysis

A multinomial regression model was fitted to an eight-cat-

egory response variable (see Data Section) and assessed the

Table 1 Summary of data of

children reported to have had all

illnesses (fever, diarrhoea or

pneumonia), fever and diarrhoea

(FD), fever and pneumonia

(FP), diarrhoea and pneumonia

(DP); single disease (fever,

diarrhoea, pneumonia) or none

at the time of survey.

Percentages are given unless

stated otherwise

Variable ALL FD FP DP Fever Diarrhoea Pneumonia None Frequency

(n = 4,778)

Frequency (n) 530 248 1,077 146 701 131 933 1,020 –

Proportion 11.1 5.2 22.2 3.1 14.7 2.7 19.6 21.4 –

Age

0–5 months 7.1 3.2 23.5 3.1 15.7 1.1 17.9 23.5 616

6–11 months 20.5 10.3 21.6 4.9 8.9 6.2 21.5 11.9 668

12–23 months 19.9 8.3 20.8 4.3 10.2 4.3 20.8 15.9 1,068

24–35 months 8.6 4.1 24.4 2.2 15.2 2.3 19.6 21.4 930

36–59 months 7.2 5.1 21.2 2.1 14.7 2.7 19.6 21.4 1,468

Own bednet

No 11.8 5.1 22.6 3.1 14.2 2.8 19.7 20.4 3,998

Yes 7.6 5.6 20.3 2.9 16.9 2.6 18.8 25.8 780

Use bednet

No 11.7 5.2 22.4 3.2 15.2 2.9 18.9 20.6 4,150

Yes 7.2 5.1 21.2 2.1 11.1 1.6 23.9 26.8 628

Vitamin A

No 12.1 5.3 23.2 3.1 14.9 2.6 18.5 20.2 3,122

Yes 9.2 4.9 20.4 3.0 14.1 3.0 21.5 23.7 1,656

Residence

Urban 7.3 4.6 17.1 3.5 18.3 3.2 18.6 27.4 779

Rural 11.8 5.3 23.2 3.0 14.0 2.7 19.7 20.2 3,999

Crowding

No 11.1 4.6 22.7 3.1 12.9 1.8 20.7 21.2 1,480

Yes 11.1 5.5 22.0 3.0 15.5 3.2 19.0 21.5 3,298

Weight-for-Age (Z-scores)

Mean –0.21 –0.24 –0.018 –0.18 0.077 –0.21 –0.045 0.10

St.dev 0.91 0.89 1.02 0.84 1.03 0.89 0.96 1.02
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effect of fixed individual covariates (Table 1). The model

was extended to incorporate extra-multinomial heteroge-

neity and spatially structured variation. Since the data were

clustered at two geographical levels, we considered various

spatial structure formations. The subdistricts were fitted as

spatially structured effects, unstructured heterogeneity ef-

fects, or both combined as a Gaussian convolution prior.

Similar model formulations were repeated using district as a

spatial unit only. Then the two spatial levels were combined

fitting spatially structured variation at sub-district level and

unstructured heterogeneity effects at district levels. One

may even consider two CAR random effects, one for the

subdistrict and the other for the district, however, this was

not estimated because a CAR prior at subdistrict is adequate

to capture within and between district variation, while the

exchangeable prior at district permits all other unobserved

effects not modelled by the CAR at subdistrict. As a result,

we analysed the following set of models:

Model 0: g = xTb
Model 1: g = xTb + /subdistrict

Model 2: g = xTb + hsubdistrict + /subdistrict

Model 3: g = xTb + /district

Model 4: g = xTb + hdistrict + /district

Model 5: g = xTb + hsubdistrict + /district

where Model 0 estimated fixed effects only, which we

referred to as the null model. Model 1 added a unstructured

heterogeneity effects at subdistrict level. Model 2 consid-

ered both the unstructured random effects and spatially

structured variation at subdistrict level. Models 3 and 4,

similar to models 1 and 2, estimated spatial effects at

higher level, i.e. at district level, with an attempt to com-

pare with gains of modelling at highly disaggregate level.

Model 5 combined the unobserved effects at subdistrict and

district level, as we envisage that childhood co-morbidity

can be influenced by factors at all levels, i.e. individual risk

factors, shared effects of immediate community (subdis-

trict) and greater community (district).

Model comparison was based on the Deviance Infor-

mation Criterion [25]. This is given by DIC =D + pD,

where D is the deviance of the model evaluated at the

posterior mean of the parameters and represents the fit of

the model to the data. The component pD is the effective

number of parameters, which assess the complexity of the

model. Since small values of D indicate good fit while

small values of pD indicate a parsimonious model, small

values of DIC indicate a better model. Models with dif-

ferences in DIC of < 3 compared with the best model can

not be distinguished, while those between 3–7 can be

weakly differentiated [25, p. 613].

The models were estimated in BayesX 1.4 [26], using

Markov Chain Monte Carlo (MCMC) simulation tech-

niques. For all the models, we ran 35,000 iterations, with the

first 5,000 discarded and sub-sampled every 30th observa-

tion. This gave a final sample of 1,000 for which model

parameters were estimated. A sensitivity analysis was per-

formed by changing the prior distributions for the variance

components r2
h and r2

/, assuming a variety of different

inverse gamma priors. In particular, the following specifi-

cations: IG(0.001,0.001), IG(0.01,0.01), IG(0.5,0.0005) and

IG(1,0.026), of different degrees of uncertainty, commonly

used in disease mapping literature were examined, and the

results gave relatively similar inference on risks of mor-

bidity, variance components and model fit.

Results

Tables 2 and 3 give values for model fit and complexity for

the co-morbidity health outcomes (i.e. the first four cate-

Table 2 Measures of model fit

and complexity and estimates of

random effects at subdistrict

levela

a Only multiple outcomes are

reported
b Posterior medians are given in

the table
c Response outcome categories:

I-all three (fever, diarrhoea and

pneumonia), II-fever and

diarrhoea

III-fever and pneumonia, IV-

diarrhoea and pneumonia

observed in a child

Model 0b Model 1 Model 2

Model fit and complexity

DevianceðDÞ 10395.53 10196.68 10181.19

pD 42.60 253.40 235.99

DIC 10438.13 10450.08 10417.18

DDIC 37.47 49.42 16.52

Variance components

rh
2(subdistrict) Ic 0.66 (0.29, 1.18)

II 0.30 (0.004, 0.91)

III 0.42 (0.14, 0.78)

IV 0.14 (0.001, 0.66)

r/
2 (subdistrict) I 0.29 (0.14, 0.48) 0.02 (0.001, 0.12)

II 0.17 (0.01, 0.42) 0.07 (0.001, 0.28)

III 0.21 (0.12, 0.34) 0.05 (0.001, 0.16)

IV 0.45 (0.10, 0.87) 0.42 (0.03, 0.90)
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gories) only. The null model (Model 0) was the least

complex and fitted poorly. Models 1 and 2 provided an

improved fit, but at increased complexity. Including ran-

dom effects in the model improved the fit of the model and

generally reduced the DIC, however in model 1, adding

unstructured subdistrict heterogeneity effects increased

DIC because the model increased in complexity

(pD = 253.40), and offset the gains made in model fit

(D ¼ 10196:68). Comparing model 1 to model 3, which

included district effects, we observed that model 3 offered

a slightly better fit (Table 3). This can be explained by less

complexity of the model (pD = 253.40 in model 1 versus

100.49 in model 3). The variance components for the

random effects (r/
2 (subdistrict)) in model 1 were 0.29,

0.17, 0.21 and 0.45 for outcome categories I (fever, diar-

rhoea, pneumonia), II (fever, diarrhoea), III (fever, pneu-

monia), and IV (diarrhoea, pneumonia) respectively, which

were similar to model 3 (r/
2 (district)): 0.23, 0.18, 0.16, 0.37

for outcome categories I (fever, diarrhoea, pneumonia), II

(fever, diarrhoea), III (fever, pneumonia), and IV (diar-

rhoea, pneumonia) respectively.

Including spatially structured subdistrict effects in

Model 2, the model fit improved significantly

(D ¼ 10181:19) and the DIC decreased (10417.18). The

variance components for the heterogeneity terms (r/
2 (sub-

2(subdistrict)) were reduced to 0.02, 0.07, 0.05 and 0.42 for

outcome category I (fever, diarrhoea, pneumonia), II (fe-

ver, diarrhoea), III (fever, pneumonia), and IV (diarrhoea,

pneumonia) respectively. For the spatial effects, the vari-

ance components (rh
2(subdistrict)) were 0.66, 0.30, 0.42

and 0.14 for category I (fever, diarrhoea, pneumonia), II

(fever, diarrhoea), III (fever, pneumonia), and IV (diar-

rhoea, pneumonia) respectively. In model 4 (Table 3),

district spatial effects were added to the unstructured het-

erogeneity terms in model 3, and these explained q = 0.79,

0.75, 0.92 and 0.40 of the total spatial variability for each

category. With regards the DIC, model 2 was better than

model 4. Fitting district as an unstructured random effect

and subdistrict as a structured spatial effect (model 5)

improved the model in terms of the DIC (10402.31). In fact

this was the best model.

Table 4 provides estimates for the fixed effects based on

the best model (model 5). The second column gives the

estimated odds ratios for probability of co-morbidity of

fever, diarrhoea and pneumonia versus observing none of

the illnesses within the 2-week period preceding the survey

date. With regard to this co-morbidity, children aged 0–5,

6–11, 12–23 or 24–35 months were at high risk relative to

children aged 36–59 months. Rural children were at in-

creased risk of co-morbidity of fever, diarrhoea and

pneumonia relative to urban children (ROR = 1.32, 95%

CI: 1.13, 1.55). Weight-for-age were associated with re-

duced risk (ROR: 0.78, 95% CI: 0.69, 0.86). Figure 1

displays the residual spatial effects at subdistrict level for

co-morbidity of fever, diarrhoea and pneumonia. The left

map shows ROR, which ranged from 0.55 (white colour) to

2.45 (black colour). The south-eastern and central regions

showed high risk, while the northern region was at lower

risk. This is validated by the corresponding probability map

(right panel), which shows areas of excess risk at nominal

value of 80%, a decision rule based on Richardson et al.

[8].

Table 3 Measures of model fit

and complexity and estimates of

random effects at subdistrict and

district levelsa

a Only multiple outcomes are

reported
b Posterior medians are given in

the table
c Response outcome categories:

I-all three (fever, diarrhoea and

pneumonia), II-fever and

diarrhoea, III-fever and

pneumonia, IV-diarrhoea and

pneumonia observed in a child

Model 3b Model 4 Model 5

Model fit and complexity

DevianceðDÞ 10333.71 10332.47 10218.48

pD 100.49 100.51 183.83

DIC 10434.20 10432.98 10402.31

DDIC 33.54 32.32 0.00

Variance components

rh
2(subdistrict) Ic 0.49 (0.06, 1.06)

II 0.19 (0.001, 0.77)

III 0.42 (0.12, 0.80)

IV 0.04 (0.001, 0.26)

rh
2(district) I 0.37 (0.002, 1.22)

II 0.30 (0.001, 1.44)

III 0.35 (0.02, 0.83)

IV 0.21 (0.001, 1.46)

r/
2 (district) I 0.23 (0.09, 0.47) 0.10 (0.001, 0.35) 0.10 (0.002, 0.31)

II 0.18 (0.02, 0.46) 0.10 (0.001, 0.36) 0.13 (0.001, 0.41)

III 0.16 (0.07, 0.32) 0.03 (0.001, 0.17) 0.06 (0.002, 0.19)

IV 0.37 (0.11, 0.81) 0.31 (0.01, 0.78) 0.36 (0.10, 0.82)
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Fixed effects estimates for co-morbidity of fever and

diarrhoea versus observing none are also given in Table 4.

The risk was high for children aged 0–5, 6–11, 12–23 and

24–35 months relative to children aged 36–59 months.

However, rural children compared to urban children were

at same risk of fever-diarrhoea co-morbidity (ROR: 1.14,

95% CI: 0.95, 1.41). Weight-for-age was again associated

with reduced the risk of co-infection with fever and diar-

rhoea (ROR: 0.71, 95% CI: 0.61, 0.83). Figure 2 shows the

spatial effects of co-infection of fever and diarrhoea rela-

tive to one or no infection. Relative odds ratio ranged from

0.85 to 1.87 (left map). Although the northern and central

region were at lower risk, while the southern tip was at

increased risk, none of the areas showed excess risk com-

pared to the overall mean risk (ROR = 1), as evidenced by

the corresponding probabilities map (Fig. 2 right panel).

The risk factors of fever and pneumonia co-morbidity

versus no infection were age of the child, place of resi-

dence, and vitamin A supplement (Table 4). Children at

age 0–5, 6–11, 12–23 or 24–35 months were at increased

risk compared to those aged 36–59 months. The risk was

higher for rural children compared to urban children (ROR:

1.27, 95% CI: 1.15, 1.41). Those who received vitamin A

supplement compared to those who did not were at

increased risk (ROR: 1.11, 95% CI: 1.02, 1.20). Perhaps it

is not surprising that those who received vitamin A have an

increased risk because it might be that they were given

vitamin A because of initial higher risk. Figure 3 gives

spatial effects at subdistrict level. The highest risk was in

the south-eastern and central region (ROR = 1.46). Lowest

risk was at the northern tip (ROR = 0.67). However, none

of the areas registered excess risk at 80% nominal value.

The last column in Table 4 gives estimates for fixed

effects of diarrhoea and pneumonia co-morbidity. The risk

was again associated with child’s age, owning and using a

bednet, and underweight. At ages 0–5, 6–11 and 12–

23 months relative to 36–59 months the risk of having

diarrhoea and pneumonia were high (ROR = 1.59, 95% CI:

1.13, 2.16; ROR = 2.22, 95% CI: 1.69, 2.88; ROR = 1.88,

95% CI: 1.49, 2.45 respectively). Those aged

24–35 months were not significantly different from those

aged 36–59 months (ROR: 1.15, 95% CI: 0.85, 1.53).

Similarly, underweight children were at increased risk

compared to the average (ROR: 0.73, 95% CI: 0.60, 0.89).

Table 4 Regression coefficient summaries for the best model (Model 5) fitted to data on children co-morbidity of diarrhoea, pneumonia and

fever

Variable Fever, Diarrhoea, Pneumonia Fever, Diarrhoea Fever, Pneumonia Diarrhoea, Pneumonia

RORa 95% CI ROR 95% CI ROR 95% CI ROR 95% CI

Age

0–5 months 1.65 (1.32, 2.08) 1.51 (1.09, 2.06) 1.17 (1.04, 1.33) 1.59 (1.13, 2.16)

6–11 months 3.10 (2.61, 3.67) 3.00 (2.41, 3.78) 1.29 (1.15, 1.45) 2.22 (1.69, 2.88)

12–23 months 2.82 (2.39, 3.33) 2.47 (2.00, 3.09) 1.20 (1.08, 1.34) 1.88 (1.49, 2.45)

24–35 months 1.61 (1.34, 1.90) 1.49 (1.17, 1.93) 1.14 (1.03, 1.27) 1.15 (0.85,1.53)

36–59 months 1.00 1.00 1.00 1.00

Crowded

No 1.00 1.00 1.00 1.00

Yes 0.98 (0.88, 1.08) 1.10 (0.95, 1.27) 0.98 (0.91, 1.07) 1.01 (0.85, 1.22)

Vitamin A

No 1.00 1.00 1.00 1.00

Yes 1.06 (0.94, 1.20) 0.97 (0.84,1.13) 1.11 (1.02, 1.20) 1.02 (0.85, 1.23)

Own Net

No 1.00 1.00 1.00 1.00

Yes 0.98 (0.71, 1.33) 1.32 (0.91, 1.83) 0.89 (0.70, 1.12) 1.53 (1.07, 2.14)

Use net

No 1.00 1.00 1.00 1.00

Yes 0.75 (0.54, 1.05) 0.70 (0.48, 1.00) 1.08 (0.84, 1.41) 0.48 (0.32, 0.75)

Residence

Rural 1.32 (1.13, 1.55) 1.14 (0.95, 1.41) 1.27 (1.15, 1.41) 0.96 (0.78, 1.21)

Urban 1.00 1.00 1.00 1.00

Weight-for-Age 0.78 (0.69, 0.86) 0.71 (0.61, 0.83) 0.96 (0.89, 1.04) 0.73 (0.60, 0.89)

a Calculated from posterior medians; ROR-Relative odds ratio; CI-Credible interval
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Children in households possessing a bed net were at in-

creased risk compared to those from households without a

bednet. Children using net were at reduced risk of diar-

rhoea and pneumonia compared to those who did not

(ROR: 0.48, 95% CI: 0.32, 0.75). The unexpected result of

bednet possession increasing the risk of co-morbidity does

suggest that having a bednet does not always translate unto

usage. Bednet ownership, unlike usage, is a poor indicator

of protection against mosquito-transmitted diseases, and

may therefore give unexpected results. Figure 4 gives maps

of spatial effects. Evidently, there was no area of signifi-

cant excess risk as the estimated ROR ranged between 0.98

and 1.01.

Finally in Table 5, fixed effects on the single diseases

are considered. The risk of childhood fever increased with

rural residence relative to urban residence. Children aged

0–5, 6–11, 12–23, 24–35 months relative to 36–

59 months were at higher risk of fever. Those who re-

ceived vitamin A relative to those who did not were at

increased risk of fever. Net ownership, usage and weight

for age were associated with lower risk of fever. Risk

factors positively associated with diarrhoea were rural

place of residence, and all age groups. Lower risk of

diarrhoea was observed with bed nets ownership, usage

and weight for age. Pneumonia was positively associated

with all age groups, rural type of residence, weight for

age, and vitamin A uptake, while low risk was observed

with bednet usage. The effect size for the risk factors

changed when one compares mono-morbidities to co-

morbidities. For example, the age effects were relatively

higher in mono-morbidities than in co-morbidities. Simi-

larly, the effects of residence were significant for mono-

infections of fever and pneumonia, and the same effects

were reflected in the in fever and pneumonia co-infec-

tions, e.g. categories I (fever, diarrhoea, pneumonia) and

III (fever, pneumonia), and none where diarrhoea com-

bines with others, e.g. categories II (fever, diarrhoea) and

IV (diarrhoea, pneumonia). Clearly, common increased

risk effects produce a correspondingly increased risk on

the disease co-morbidities.

Discussion

The central question in this study was to identify areas of

high and low risk of childhood co-morbidities of fever,

0.55 2.45

Fig. 1 Residual spatial effects at sub-district level (I. all three

illnesses (fever, diarrhoea and pneumonia) concurrently versus no/one

illness only). Shown are the relative risk ratio (ROR) on the left map.

Right map shows corresponding posterior probabilities of ROR >1:

<20 per cent white, 20–80 per cent grey, >80 per cent black

0.85 1.87

Fig. 2 Residual spatial effects at sub-district level (II. fever and

diarrhoea concurrently versus no/one illness only). Shown are the

relative risk ratio (ROR) on the left map. Right map shows

corresponding posterior probabilities of ROR >1: <20 per cent white,

20–80 per cent grey, >80 per cent black
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diarrhoea and pneumonia in Malawi, after adjusting for

individual specific risk factors. We analysed self-reported

health data, realised in a cross-sectional national-wide

survey, to measure residual spatial patterns at both district

and sub-district levels. Our results provide evidence of

geographical impact of location on childhood health and

these can be compared with potential environmental risk

factors. Our approach used a mixed multinomial logit

model to analyse different combinations of co-morbidity of

fever, diarrhoea and pneumonia. This formulation of

structuring binary to multi-categorical response variable is

appropriate for the three diseases considering that these

epidemiologically overlap [5].

The overall co-morbidity prevalence of fever–diar-

rhoea–pneumonia, fever–diarrhoea, fever–pneumonia, and

diarrhoea–pneumonia were found to be 11, 5, 22 and 3%

respectively in this sample of under-five children. There

was considerable spatial correlation for the four co-mor-

bidity outcomes as evidenced by the maps. Residual risk

estimates ranged from 0.55 to 2.45 for fever-diarrhoea-

pneumonia, from 0.85 to 1.87 for fever–diarrhoea, from

0.67 to 1.46 for fever–pneumonia, and from 0.98 to 1.01

for diarrhoea–pneumonia co-morbidities. This confirms our

initial thought of strong spatial dependence at subdistrict or

districts levels. From the analysis we were able to establish

that the northern region was relatively at lower risk for all

four response outcomes, while the central and south-east-

ern regions were at higher risk of childhood co-morbidity.

Nevertheless, the residual spatial variation were signif-

icantly weak as demonstrated by the corresponding prob-

ability maps. Lack of excess risk in spatial effects can be

explained by the fact that much of the total variability in

the responses has already been accounted for by the fixed

individual covariates. Various risk factors affect the health

outcomes differently, and thus affect the geographical ex-

tent and spread of childhood co-morbidity in different areas

of the country. Thus the maps show the overall effect of

these (and any latent or unobserved) factors, and essentially

serve to highlight areas of excess risk, whatsoever the

cause.

Further research, therefore, is needed to disentangle

actual risk factors contributing to spatial co-morbidity of

these diseases. For example, the residual maps can be

compared with HIV risk map when such data become

0.67 1.46

Fig. 3 Residual spatial effects at sub-district level (III. fever and

pneumonia concurrently versus no/one illness only). Shown are the

relative risk ratio (ROR) on the left map. Right map shows

corresponding posterior probabilities of ROR >1: <20 per cent white,

20–80 per cent grey, >80 per cent black

0.98 1.01

Fig. 4 Residual spatial effects at sub-district level (IV. diarrhoea and

pneumonia concurrently versus no/one illness only). Shown are the

relative risk ratio (ROR) on the left map. Right map shows

corresponding posterior probabilities of ROR >1: <20 per cent white,

20–80 per cent grey, >80 per cent black
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available. For a country with high prevalence of HIV [27],

the relationship observed between fever, diarrhoea and

pneumonia may be due to the fact that symptoms of HIV

include fever and diarrhoea. In addition, pneumonia is a

common opportunistic infection associated with HIV

infection. Therefore, HIV prevalence remains a potential

risk factor which may explain spatially structured residual

variation in childhood morbidities.

One may also link malaria estimates, probably derived

from malaria risk map [28], to DHS data that measure

children’s health and investigate whether the spatial

residual effects are attenuated when these are adjusted for

in the model. Indeed, the clustering of fever and diarrhoea

risk in the central and south-eastern region (Figs. 1 and 2),

have been attributed to the unmeasured effect of malaria

risk [13, 14]. In fact, previous work in the area shows that

malaria risk is higher in the central and southern regions

than in other areas [29]. This coupled with the lack of

sustainable malaria control programmes or low coverage of

antimalarial interventions such as insecticide treated bed-

nets [28], means that perennial malaria risk may be

responsible for adverse co-morbidities of fever, diarrhoea

and pneumonia [1, 5]. In highly malaria endemic areas like

Malawi, the disease presents in various forms, ranging

from asymptomatic parasitemia which may present as

unspecific fever to complicated and severe malaria. Thus, a

bout of malaria may trigger other opportunistic diseases

such as pneumonia.

In addition, social, cultural and other environmental

factors which may impose a cumulative effect on child-

hood health may be worthwhile investigating, particularly

in high risk clusters. For instance, flooded plains in the

south lead to food shortages, resulting in childhood mal-

nutrition. This is another important risk factor of childhood

co-morbidity and mortality [30], which may warrant fur-

ther research. Increased population density in both central

and southern region, leading to over-cultivated land and

severe food shortages, thus inducing deep poverty [31], is

likely to contribute to higher risk of childhood co-mor-

bidity of diarrhoea, pneumonia and fever, and other

opportunistic infections. Variabilities in socio-economic

status and sanitation may also explain the spatial variation

in childhood co-infections. The World Bank report of

2000, reported that districts in the southern part of the

country were worst-off as regards deprivation [32]. Our

analysis showed a clear geographical clustering of high risk

in the four disease combinations in these areas.

Having accounted for spatial heterogeneity, the paper

also provides evidence that individual risk factors influence

the pattern of the disease. The results show that age of the

Table 5 Regression coefficient

summaries for the best model

(Model 5) fitted to data on

children mono-morbidities of

fever, diarrhoea and pneumonia

a Calculated from posterior

medians; ROR-Relative odds

ratio; CI-Credible interval

Fever Diarrhoea Pneumonia

RORa 95%CI ROR 95%CI ROR 95%CI

Age

0–5 months 1.47 (1.20, 1.83) 2.35 (1.76, 3.19) 1.23 (0.98, 1.50)

6–11 months 2.84 (2.39, 3.47) 6.98 (5.49, 9.02) 1.35 (1.12, 1.64)

12–23 months 2.24 (1.90, 2.64) 5.72 (4.55, 7.18) 1.33 (1.12, 1.57)

24–35 months 1.65 (1.40, 1.96) 1.92 (1.50, 2.47) 1.10 (0.92, 1.29)

36–59 months 1.00 1.00 1.00

Crowded

No 1.00 1.00 1.00

Yes 0.95 (0.83, 1.08) 1.04 (0.88, 1.22) 0.98 (0.85, 1.11)

Own net

No 1.00 1.00 1.00

Yes 0.85 (0.72, 1.02) 0.84 (0.67, 1.04) 1.02 (0.86, 1.22)

Use net

No 1.00 1.00 1.00

Yes 0.89 (0.75, 1.00) 0.72 (0.58, 0.89) 0.68 (0.58, 0.81)

Vitamin A

No 1.00 1.00 1.00

Yes 1.21 (1.06, 1.38) 0.96 (0.81, 1.13) 1.12 (0.99, 1.28)

Residence

Rural 1.20 (1.01, 1.45) 1.16 (0.92, 1.46) 1.48 1.24, 1.76)

Urban 1.00 1.00 1.00

Weight-for-Age 0.90 (0.84, 0.95) 0.77 (0.71, 0.83) 1.01 (0.95, 1.08)
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child and place of residence (rural or urban) are important

predictors not only for the co-morbidities but also for

single diseases. The effect of age is particularly interesting.

Generally children at all ages were at increased risk,

however children who were of an age where they were

likely to be weaned (6–23 months) appeared to be at the

greatest risk. Very young infants (0–5 months) may have

been breastfed, and therefore protected by maternal

immunity, and older children were less at risk of disease,

probably because of acquired immunity. The results

emphasize the need for interventions targeted at this group

[7], and may include micronutrient supplements, e.g.

vitamin A, and use of insecticide treated nets, and com-

bined interventions would be cost-effective to implement

[7]. Rural areas and poor neighbourhoods are particularly

vulnerable and deserve attention when scaling-up inter-

ventions [1].

Our modelling approach to co-morbidity used the mul-

tinomial model, however, it is possible to analyse the

spatially clustered binary outcomes using multivariate

spatial models [8, 9, 15, 16]. Although both the multi-

nomial and multivariate approaches allow simultaneous

analysis of events, the multivariate model evokes the

multivariate CAR model [15, 16]. The advantage of mul-

tinomial models is that we are still working within the

univariate formulation only that the response is multi-cat-

egorical. Another attractive feature of this approach is that

it offers a separate treatment of co-morbidities versus a

control group (the ‘‘none’’ category). Thus the interpreta-

tion of the fixed effects in easy because we are able to

quantify the effect of the covariates on each disease and on

the combined diseases and compare them with the none

category.

This study may be seen as dwelling on some measure

of ‘‘severity’’, and a similar multinomial approach has

been used to map Schistosoma mansoni-hookworm co-

infection [10]. However, the multinomial approach does

not model the geographical correlation between diseases,

which may be of interest in other epidemiological inves-

tigations. Another disadvantage is that as the number of

dependent variables increase, say beyond three diseases,

the number of categories to be estimated also expand

rapidly, making it difficult to estimate and interpret the

results. This is where the multivariate spatial approach

may offer many advantages. We are currently investigat-

ing the use of multivariate spatial models to analyse pat-

terns of childhood co-morbidity and associated covariates

while controlling for the estimated correlation among the

diseases, with spatial correlation modelled by the geosta-

tistical approach. A good starting point is WinBUGS [33],

which provides better off-the-shelf MCMC fitting of these

models. In fact, one may adapt the sample code currently

available in the package.

In our analysis, spatial correlation was modelled using

the CAR prior, however, this is sensitive to the hyperprior

specification of the the variance r2
h. Similar behaviour

applies to the variance components of the exchangeable

prior r2
/, and sensitivity analysis should be performed as

carried out in this analysis. However, use of weakly

informative prior distributions, for moderate to large

datasets, is likely to produce more stable estimates [34, 35].

Gelman [36] proposes use of other priors on the variance

such as the uniform prior, e.g. U(0.001, 1000), or more

informative prior such as a truncated t-distribution, which

are well behaved than the inverse-Gamma distribution

under hierarchical models.

The data used in this analysis was based on self-reported

accounts by mothers. Self-reported illnesses suffer some

limitations. The outcomes are dependent of the mothers’

recall, and may lead to bias, although, limiting the recall

period to 14 days reduces the bias [37].

In conclusion, this analysis investigated geographical

patterns of childhood morbidities of fever, diarrhoea

and pneumonia, adjusting for individual-specific risk

factors. While there are several other studies that

considered childhood morbidity, our analysis demon-

strated that a number of diseases, i.e., fever, diarrhoea

and pneumonia epidemiologically overlap and that the

pattern is spatially structured. The emphasis is that over

and above individual-specific risk factors, latent and

unobserved risk factors directly influence childhood

co-morbidity.

Although this spatial analysis is not exhaustive and

does not involve use of all data collected, it is hoped that

the spatial analysis will assist in policy development and

planning, advocacy, resource allocation, implementation

and monitoring and evaluation. Currently a number of

interventions for these common illnesses, for example that

of fever and pneumonia, are being implemented and

mostly these are being applied separately. Cost-effective

implementation of control can be achieved if some of

these interventions are applied in an integrated manner,

probably through simultaneous spatial targeting of

resources. In fact, the Integrated Management of Child-

hood Illnesses strategies now recommend multi-faceted

targeting of interventions. The geographical impact of

location when implementing interventions must be rec-

ognized as it affects the epidemiology of diseases or

interventions coverage.
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