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Abstract. Bias is ubiquitous in research. The advent
of the molecular era provides a unique opportunity to
study the consequences of bias with large-scale
empirical evidence accumulated in the massive data
produced by the current discovery-oriented scientific
effort, rather than just with theoretical speculations
and constructs. Here I discuss some empirical evi-
dence about manifestations of bias in molecular epi-
demiology. Bias may manifest as either heterogeneity
or as deviation from the true estimates. The failure to
translate molecular knowledge and the failure to
replicate information are some typical hallmarks of
bias at action. The acquired knowledge about the

behaviour and manifestations of bias in molecular
fields can be transferred back also to more traditional
fields of epidemiology and medical research. Getting
rid of false claims of the past is at least as important
as producing new scientific discoveries. In many
fields, the observed effects sizes that circulate as
established knowledge are practically estimating only
the net bias that has operated in the field all along.
Issues of plausibility (in particular biological plausi-
bility), replication, and credibility that form the the-
oretical basis of epidemiology and etiological inference
can now be approached with large-scale empirical
data.
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Introduction

Bias may be broadly defined as any deviation from
the truth. It could involve the distortion, negation, or
suppression of the truth. The ‘‘truth’’ is by default
unknown and at best being sought, so what we see
and measure is the composite of the truth and various
biases. Bias in scientific measurement can be con-
scious, subconscious, or unconscious. It can affect
single measurements, sets of measurements, datasets,
whole studies, sets of studies, scientific domains, and
science across many domains. By extrapolation, it
can also penetrate human activities beyond scientific
limits. One may create theories about bias or may
study its consequences. Epidemiology has been the
scientific discipline par excellence to be concerned
with theories of bias. We have solid and robust the-
ories on confounding, misclassification, and infor-
mation biases. We have long lists of different sorts of
biases [1]. However, beyond theory, it is the conse-
quences of bias that we measure, witness, and even-
tually suffer. In biomedicine in particular, not only
scientists, but also people (both healthy people and
patients) truly suffer unfortunately from the conse-

quences of bias. Besides theory, it would be greatly
informative to learn from bias empirically.

‘‘Molecular bias’’ may be a provocative title. I use
this term here to discuss the manifestations of bias in
the newer molecular era of biomedicine. What is
special, if anything, about bias in the molecular era?
First, there is an exponential increase in the available
data with apocalyptic promises of bio-information.
Second, we increasingly recognize that we are dealing
with quanta of mostly small-effect risk factors. Third,
we are increasingly adopting discovery-oriented,
hypothesis-free approaches trying to accommodate
the capabilities of massive data production. Under
these circumstances where tons of data is available,
empirical data on bias become very wealthy and can
more than match theoretical considerations in giving
us insights about how bias operates and manifests
itself. Thus, the new age offers a perfect opportunity
of measuring and witnessing, and hopefully not suf-
fering, the consequences of bias.

Bias at action

Bias may arise from a huge variety of sources, even
for the simplest scientific question. Bias components
interact and may cancel out among themselves or
strengthen each other. The composite bias may
eventually manifest in two ways: as heterogeneity in
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the results of variously biased studies; or as a net
deviation in the results of variously biased studies and
their summaries. For those initiated in evidence-
based medicine, it is implicit that the typical example
of a summary exercise is provided by a meta-analysis
[2, 3].

Heterogeneity due to bias may be confused with
genuine biological and etiological diversity. On the
other hand, net diversion from the true estimates
cannot and should not be confused. The problem is
that we never know the true estimates, we never have
a perfect gold standard for what is true. Thus, one
needs to come up with some operative rules to detect
bias through its consequences.

These rules cannot be perfect and they need to be
continuously appraised, revised, and refined with
more evidence. However, one major hint for the
presence of bias may be that something does not
work, as it was supposed to work based on early data,
evidence and reasonable expectations.

Such ‘‘bias at action’’ is exemplified by the failure
of translational efforts for major basic science dis-
coveries [4, 5]. Medical progress depends on impor-
tant discoveries from basic biomedical research.
Among 101 highly-promising basic science publica-
tions that made clear promises in 1979–1983 that they
would have imminent clinical or public health trans-
lation, only 27 had an RCT published within the next
20–25 years, 19 had a ‘‘positive’’ RCT, and only 5 are
currently in clinical use [4]. Of these five, only 1 really
has made a large clinical impact [4].

This translation failure in the communication of
basic, preclinical, clinical and public health sciences
shows composite bias operating at large and at a
broad range. Bias should not be seen narrowly as
erroneous measurements or exaggerated studies. As I
mentioned above, it also incorporates the suppression
of the truth, and the negation of the truth. Some of
these discoveries may have been simply based on
wrong or exaggerated data and inferences. However,
others may have been true but never managed to
translate themselves to something useful and tangi-
ble. Interestingly, the strongest predictor for the
translation of basic science discoveries to clinical
trials in this empirical evaluation was the involvement
of the industry [4]. We already have a hint for some
biased selection here on what moves forward in
science.

Major postulated problems of molecular research

Research in the molecular era has to meet several
challenges. There is a huge number of biological
factors that can now be targeted by research efforts
[6, 7]. Their effect sizes are likely to be small or very
small. Sample sizes have not increased considerably
compared with the past, while the complexity of the
research questions has. Case–control studies of a

couple of dozen or a couple of 100 people are still the
norm, while a typical experiment may allow testing
hundreds and thousands of ‘‘risk factors’’ with effect
sizes that would require thousands of subjects to have
adequate power for detecting each of them alone. At
the same time, the old epidemiology problems of
confounding and misclassification are still operating
in the molecular era.

All of these problems and limitations may
eventually manifest themselves as lack of replication
validity in the proposed molecular findings [7, 8].
However, one of the great advantages of the molec-
ular revolution is the ability to study bias with large-
scale data. This can be useful in itself. Moreover, it
can also offer insights on how bias may operate also
in more traditional clinical and epidemiological
disciplines.

A typical example is studies assessing genetic risk
factors. There are over 10,000 publications of such
studies already (e.g. one may examine the accumu-
lated database at the Human Genome Epidemiol-
ogy Network website [9] at www.cdc.gov/genomics/
hugenet) and an unknown number of unpublished
studies. The number as well as the complexity of
targeted risk factors increases rapidly. Median sam-
ple sizes are in the range of 250 subjects though [10].
It should not be surprising thus that many of the
postulated genetic effects for complex common dis-
eases are refuted by subsequent evidence. In fact, a
common scenario is to observe a large genetic effect
in the first study that is nevertheless dissipated
gradually towards the null as more data accumulate
from additional studies on the same association [8].
Early findings of epidemiological associations in
molecular genetics apparently have no predictive
ability against the findings of subsequent research on
the same associations [11].

Diminishing effects and refutations in traditional

research disciplines

This paradigm of diminishing effect sizes can give us
also insight for more traditional research disciplines.
Non-replicated diminishing effects can occur also
with traditional research designs, including random-
ized controlled trials that have typically been ranked
as high-level evidence in making recommendations.
An empirical evaluation of 100 meta-analyses of
mental health related interventions, shows that for
pharmacotherapies, it has been far more likely for
effect sizes to diminish rather than increase with the
appearance of newer trials [12]. Even the most influ-
ential clinical research published in the top journals
may often be refuted [13]. Among highly-cited articles
published in 1990–2003 and receiving over 1000
citations by 2004, 5 of 6 efficacy findings based on
non-randomized trials were already contradicted or
found to be exaggerated by 2004. Moreover, efficacy
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findings were already contradicted or found to be
exaggerated in 9 of 39 interventions [13]. Many of
these contradictions such as the impact of various
vitamins on cardiovascular or cancer mortality [14],
or the effect of hormone replacement therapy on
coronary artery disease in postmenopausal women
[15] have stirred extensive debates.

Contradictions and refutations have been seen as
something extravagant and unnatural that is shaking
the foundations of epidemiology and clinical medi-
cine. In fact, contradictions and refutations are
simply the natural course of science. Instead of de-
monizing their catastrophic effects, we should em-
brace them as great opportunities to learn about how
bias is operating and manifesting itself. In this regard,
molecular epidemiology can give us 100- or 1000-fold
more examples of contradictions and refutations that
traditional epidemiology and clinical research has
done to-date. We have lots to learn from these data.

Refutations provide empirical credibility to the
notion that any epidemiologic or other association is
tentative and science is a work-in-progress. Large
scale testing can give us empirical evidence not only
about postulated associations that are refuted. Con-
versely, in selected cases, associations may eventually
be proven to be important despite the fact that
early studies had provided inconclusive or even
seemingly null results [8].

How many analyses?

Three years ago, in a naı̈ve calculation, I estimated
that there are 100 trillion possible analyses in the field
of gene-disease associations alone [9]. Today, I would
need to update this estimate by increasing it by at
least 10 fold. This is only one circumscribed field of
molecular epidemiology. The total number of epide-
miological analyses that can be undertaken in much
higher, possibly in the range of many quadrillions or
even quintillions. Moreover, this number is increasing
rapidly, as our ability to measure biological param-
eters improves and scientific efforts expand.

Indirect evidence and plausibility

Molecular science also provides a great opportunity
to address empirically what is the predictive value of
indirect evidence. By indirect evidence I mean
evidence not stemming from the data and analyses-
at-hand, but from other lines of inference. In any
epidemiologic question that can be posed in the
molecular era, there is also the possibility to amass
biological and functional information about its
overall significance. How pertinent is this informa-
tion?

Scientists always make inferences based not only
on the data at hand but also by corroborating from

other lines of evidence, not only from their field, but
also from different fields. Looking back at the Dis-
cussion sections of some old epidemiology papers
about traditional risk factors, these other lines of
reasoning may sound incongruent at present. Much
of the supporting external evidence on the plausibility
of the epidemiological findings has been abandoned,
refuted, or dismissed. In particular ‘‘biological plau-
sibility’’ becomes key in molecular epidemiology,
since the probed associations in the molecular era are
by definition closer to the biology of health and
disease – in theory at least. So is it going to be better
now that we come ‘‘closer’’ to the biology?

Biological plausibility can be a fertile ground for
bias. We now have an excellent opportunity to study
this at a large-scale. Scientists may invoke biological
plausibility for almost any finding and any associa-
tion, especially if this is done after the fact. Just in the
year 2002 studies were published addressing the
relationship of the APOE epsilon polymorphism [9]
with about 40 different diseases and conditions, many
of which had very little in common. It is tough to
presume that truly there is some valid plausibility for
all, or even a few, of these postulated associations.
Biological plausibility seems to be the aspect where
the imagination of scientists works at its best. In this
aspect, it can be very creative. At the same time, it
may be like a room of distorting mirrors: even if you
place a simple brick in the middle, you can see dozens
of monsters depicted all around. This can easily cre-
ate and sustain a scientific literature of phantoms.

We need to amass data on the extent of this bias and
on how much we can gain from indirect evidence [16].
Using our large accumulated databases, we may be
able to address questions about the positive and
negative likelihood ratios conferred by various lines of
indirect evidence, especially biological evidence [17].

Ubiquitous and topic-specific indicators of bias

As I mentioned upfront, bias may present in many
different ways and often the most important ones to
consider are specific to the scientific question.
Unfortunately, there is no perfect recipe about
detecting bias efficiently. However, one could think of
some ubiquitous indicators that might be useful to
probe in a routine basis across molecular evidence, as
it accumulates on a specific question.

First, bias may produce heterogeneity in the results
of different studies on the same research questions.
This will be tough to differentiate from heterogeneity
that is due to genuine variability, but it is worthwhile
documenting heterogeneity routinely as evidence
accumulates. This is a lesson that has been learnt
already from traditional medical research, including
clinical trials [18, 19].

Second, bias may produce different effects in
studies of various characteristics that make them less
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or more susceptible to biases. There are two param-
eters that can always be considered in any type of
epidemiological study regardless of the question that
it addresses. These are the mass of the evidence and
the time of the evidence. One may always examine
whether small studies (or studies with greater impre-
cision in their effect estimates) differ in their results
from larger studies. The presence of such differences
has been often translated as synonymous of publi-
cation bias [20]. This is a gross misrepresentation [19].
Such differences could represent any type of bias, or,
again, any type of genuine heterogeneity. Regarding
time, one may always examine whether the early
studies on a specific research question differ from the
results of subsequent studies [8, 21, 22]. One may
evaluate whether there are changes in the total evi-
dence over time [8, 21, 22]. Science is cumulative and
changes in the evidence are suggestive of bias – or,
again, genuine heterogeneity.

An empirical evaluation of gene-disease
association studies shows that although it is very
common to detect significant gene-disease associa-
tions when several studies accumulate, in the large
majority of these cases, there are also hints of heter-
ogeneity or bias: study results differ beyond chance,
larger studies disagree with smaller ones, and/or later
studies disagree with earlier ones [23]. This means
that these associations are often underlying hetero-
geneity or bias. Interestingly, discrepancies in time
are relatively independent of discrepancies in mass,
suggesting that these two parameters offer comple-
mentary views.

Successive extremes

The Proteus phenomenon [24] is another interesting
behaviour of the accumulating molecular evidence. In
molecular epidemiology, it is very common to see an
early succession of the most extreme opposing esti-
mates of effect followed by studies that show inter-
mediate results. Typically, the study with the most
prominent effect size is published first. This is
immediately followed by the study that shows the
most opposite effect ever observed. This creates
extreme between-study heterogeneity in the results of
these early studies. Many studies then follow that
report results that are intermediate between these two
extremes. The between-study variance diminishes and
the summary data across all studies seem to gravitate
towards some consensus.

The rapid succession of extreme opposites may be
due to the fact that molecular epidemiology results
can be generated very rapidly currently. Once a new
epidemiological association in proposed, many investi-
gators can try to replicate it extremely rapidly. Just as
the team that finds the strongest association may
have an advantage to publish its results first, the team
that finds the most contradictory finding may also

have an advantage for rapid publication. It could
even be that the contradictory data are already
available in some cases. This is a speculation of
course, but given the massive information produced
currently, this may become a common situation,
unless a mechanism is set to allow the transparent
dissemination of all produced results. According to
this scenario, the contradictory results have already
been obtained in the past, but their investigators
don’t deem them important to disseminate. Then the
extreme association gets published. The contradic-
tory data assume value due to their contradictory
nature and thus they gain priority for writing up for
publication and for getting published!

When the future has already happened

Under these circumstances, a dreadful evolution of
science may be envisioned where many ‘‘new’’ scien-
tific theories have been already tested and rejected in
the past – but simply this is not widely known. This
becomes known only when someone claims to have
found something. The future has already happened.
Is this just science fiction? Even if in the extreme
form, this is probably not true (until now at least), we
have increasing evidence that scientific data are not
always visible: there are readily available, available,
hidden, very well hidden, and disappeared data. The
process by which a piece of scientific data finds itself
in each of these categories can be complex and topic-
specific, but the presence of these categories of visi-
bility is becoming increasingly apparent in some fields
such as the literature of molecular prognostic factors
[25].

Effect size = net bias

Scientists and the public are typically interested on
what is likely to be true, what association is impor-
tant, what treatment works, etc. Certainly this is
important to peruse, but it can also be illuminating to
estimate what is not true and how much the net bias
is. For research fields where there is a very intense
research activity on thousands, millions, and billions
of information items, but only a few of them lead to
fruitful ‘‘true’’ discoveries, the vast majority of the
findings will be false positive. Consider radio
astronomy signals in the search for extraterrestrial
intelligence. To-date all the signals received are con-
sidered to be noise (bias) due to various artefacts. If
there is no extraterrestrial intelligence after all, all the
signals would be simple bias. Even if extraterrestrial
intelligence does exist, and a couple of signals even-
tually turn out to be true leads, still the very vast
majority of the signals would simply be bias.

Back to epidemiology and biomedicine, in fields
with extremely large amounts of information and no
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or few true positives (‘‘needles in a haystack’’), the
effect sizes of all the identified false positive findings
are estimates of the net bias that has been exercised in
each one of them [26]. The distribution of these effect
sizes provides an accurate description of the magni-
tude and behaviour of the net bias in the field at large.
The few true findings will be negligible within this sea
of false positives. Under such circumstances, if the
expected effect size is denoted by h and there are n
biases hi (i=1,. . ., n) operating in the same or differ-
ent directions (some increasing and some decreasing
the observed effect), it is fair to say [26] that

h ¼ Rei

or in simple words

Effect size = net bias

Thus, disciplines that find larger effect sizes (those
that incidentally are scientifically considered more
successful) are simply more biased than others that
find smaller effect sizes. Similarly, in the same scien-
tific discipline, the most successful and appreciated
studies are simply the ones that suffer the worst net
bias. Furthermore, as I have shown previously, it can
be proven [26] that the post-study odds of a true
finding are small:
� When effect sizes are small
� When studies are small
� When the field is ‘‘hot’’ (many teams work on it)
� When there is strong interest in the results
� When databases are large
� When analyses are more flexible
To-date most biomedical studies have been small
anyhow and most effect sizes that we chase in epi-
demiology and biomedicine are also small. Besides
these two characteristics, all the other characteristics
listed above are all attributes of what would be con-
sidered an active, interesting, stimulating, promising
scientific field nowadays. This is largely a faithful
picture of modern science.

Autonomy vs. registration, and the pyramid

of credibility

Much of the problem arises from the very advantages
of the best mode of scientific thinking. Science at its
best is highly creative and independent, even fiercely
individualistic and competitive. Scientific thinking
often tends to be selective, flexible, even undisciplined,
in the quest for meaningful information. Efforts for
transparency, discipline, and structured, comprehen-
sive reporting of information may seem to go against
this blessed autonomy. It is not possible to put all
scientific information into stereotyped boxes, this
could be devastating to free thought. However, there
must be some way to keep track of what is happening.

Upfront study registration has been adopted for
randomized clinical trials, as a means for minimizing

publication and reporting biases and maximizing
transparency [27]. This is very reasonable, and hope-
fully it will have a beneficial effect on clinical research
and its credibility. Clinical trial investigators cannot
complain that their ideas are stolen by being forced to
say upfront that they are doing a study and convey to
fellow scientists how they are doing it and what they
expect to measure and how. Some thinkers have
reached the point to claim that clinical trials should
not even published in scientific journals; they should
only be registered fully initially as protocols, and,
when finished, along with their results [28].

However, for molecular research, upfront
registration in public of all ideas is counter intuitive
and goes against the individualistic spirit of discovery
in basic research. Nevertheless, instead one could aim
for registries of investigators and data specimen col-
lections [29]. These could be inclusive networks of
investigators working on the same disease, field and
set of molecular factors. These networks could pro-
mote better methods and standardization in their
field, maintain the research freedom for individual
participating teams and help create a mentality where
there would be thorough and unbiased testing of
proposed hypotheses with promising preliminary
data on large-scale comprehensive databases [29].
Due credit would be given to investigators for both
‘‘positive’’ and ‘‘negative’’ findings and all data would
be transparently available. There are already several
examples of such comprehensive networks and we
need to peruse further this mode of operation [29, 30].

As data accumulate on molecular research
questions, we should also increasingly acknowledge
that they are only providing a work-in-progress. At
any time point, a large portion, perhaps the majority,
or even the vast majority, of proposed or even (ten-
tatively) accepted findings in a research field will
simply be false positives, the result of bias [26, 31].
We need to learn not only from the big successes, but
primarily from the big failures of discovery-oriented
research, for example in microarrays or proteomics
[32–35].

A few of these findings will be replicated though
and this should lead to further and further replication
until they reach a high enough credibility level. For
questions where humans are put at risk to answer
them, equipoise for expected benefits vs. risks to
humans will need to be considered each time an effort
is designed to improve the credibility level. However,
for most research questions in the molecular era, this
point of concern where this kind of equipoise is vio-
lated is unlikely to be reached for the majority of
research questions.

It may end up being mostly an issue of resources
and allocation of scientific priority. As the potential
for measuring increases geometrically, there will be
competition on whether one should focus on getting
more and more new measurements that have become
feasible or trying to replicate again and establish
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some of the older observations. To-date, scientific
circles, biomedical journals, grants agencies, and even
the lay public strongly support flash innovation
rather than careful confirmation. If this spirit con-
tinues to prevail, we will end up with tons of non-
replicated and often even unchallenged findings
forming the corpus of a very unreliable ‘‘science’’.

We need to learn to live with tons of bias floating
around, simply we should not put too much credi-
bility on these pieces of information, but take them
for what they are: interesting, preliminary, evolving,
in-progress, challenging, stimulating investigations,
most likely closer to bias than to the truth. The
credibility pyramid already has a large basis of find-
ings of low credibility and a narrow top of findings
with high credibility [31]. The base of the pyramid will
probably continue to become broader and broader.

Closing points

I hope I have made a convincing (even if biased!)
point that whatever we measure may be biased. Bias
is ubiquitous. This is fine, provided we recognize the
problem and grasp this fantastic, energizing oppor-
tunity to work with bias and to study it. Scientific
findings should be ascribed a credibility level that is
different from and goes beyond their formal statisti-
cal significance from statistical hypothesis testing
[26]. In the past, we had few research findings, while
currently we have too many research findings.
Therefore, getting rid of tentative-but-wrong research
findings should become at least as important as
finding new ones. Finally, the new era can also offer
us insights on the credibility of findings in traditional
epidemiology disciplines where bias was mostly the
focus of theoretical speculation until now.
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