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Abstract. Both genes and environment are important
determinants of disease. In this paper we model gene-
environment effect modification on the odds ratio
scale ORðGEjDÞ and show how to indirectly estimate
the effect and 95% confidence intervals (CI) for the
simple case of no main genetic and environmental
effects [i.e., ORðG�EjDÞ ¼ ORð �GEjDÞ ¼ 1]. A statistic

is presented to test the null hypothesis ORðGEjDÞ ¼ 1
and to calculate corresponding power, given the odds
ratio for environmental exposure ORðEjDÞ and pop-
ulation genotype frequency (g). Direct extension of the
above model provides a mathematical framework for
estimating confidence bounds in more complex cases
involving partial genetic and/or environmental effects.
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Abbreviations: CI = confidence interval; G6PD = glucose-6-phosphate dehydrogenase; LCI = 95% lower
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Introduction

Epidemiologists long have recognized that for some
diseases, the presence of a certain genotype or
environmental exposure alone may not lead to the
development of disease [1] but that disease can result
from their combined effect. The classic example
relates to the association between phenylketonuria
(PKU) genotype and dietary intake of phenylalanine
in the case of mental retardation [1]. Here, neither
presence of the phenylketonuria genotype nor
consumption of phenylalanine alone affects the risk of
developing disease. Yet, when present in combination,
risk is increased. Similarly, neither glucose-6-phos-
phate dehydrogenase (G6PD) deficiency nor fava
bean consumption alone influences the development
of severe hemolytic anemia. However, the disease may
develop when both factors are present [2]. Erroneous
interpretation concerning the role of environmental or
genetic factors in disease etiology may occur when
failing to account for gene-environment effect modi-
fication [1, 3, 4].

Belowwederiveamethod to statistically testwhether
gene-environment effectmodificationon the odds ratio
(OR)scaleexists inthesimplecasewhennomaingenetic
and environmental effects are present. This method is
based only on the OR of exposure and the population
genotype(e.g.,noindividualgenotypedataarerequired
from the case-control study). Furthermore, no knowl-

edge of two-by-two cell-counts is necessary to compute
a z-statistic or study power.

Methodology

The OR for environmental exposure associated with
disease in the population is defined as

ORðEjDÞ ¼ PðEjDÞ=Pð�EjDÞ
PðEj �DÞ=Pð�Ej �DÞ : ð1Þ

Noting that the OR for environmental exposure and
disease are equivalent [5] and assuming that disease is
rare in both the exposed and unexposed populations
[6], we see Equation (1) simplifies to the expression
for relative risk (RR) of disease, i.e.,

¼ PðDjEÞ
PðDj�EÞ : ð2Þ

Applying the chain rule of probability [i.e.,
PðAjBÞ ¼ PðAjCBÞPðCjBÞ þ PðAj�CBÞPð�CjBÞ� [1]
and assuming that genotype (g) is
independent of environmental exposure [i.e.,
PðGjEÞ ¼ PðGj�EÞ ¼ PðGÞ ¼ g�, Equation (2) may be
rewritten as

¼ PðDjGEÞgþ PðDj �GEÞð1� gÞ
PðDjG�EÞgþ PðDj �G�EÞð1� gÞ

ð3Þ
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¼
PðDjGEÞg=PðDj �G�EÞ
� �

þ PðDj �GEÞð1�gÞ=PðDj �G�EÞ
� �

PðDjG�EÞg=PðDj �G�EÞ
� �

þð1�gÞ
:

ð4Þ

Again invoking the rare disease assumption and
interchanging disease and exposure ORs, Equation
(4) becomes

¼ ORðGEjDÞgþORð �GEjDÞð1� gÞ
ORðG�EjDÞgþ ð1� gÞ ; ð5Þ

where ORðGEjDÞ ¼ PðGEjDÞ=Pð �G�EjDÞ
� �

=
PðGEj �DÞ=Pð �G�Ej �DÞ
� �

and denotes the OR of a gene-
environment effect given disease. Similarly,
ORð �GEjDÞ refers to the OR of an environmental
effect in the absence of a genetic effect and
ORðG�EjDÞ the OR of a genetic effect in the absence
of an environmental effect. The referent group in each
case is the absence of a genetic and environmental
effect (i.e., �G�E). Rearranging Equation (5), a general
expression for the OR of a gene-environment effect is
given as

ORðGEjDÞ ¼ ORðEjDÞ½ORðG�EjDÞgþ ð1� gÞ�
�

�ORð �GEjDÞð1� gÞg ð6Þ

Considering the simple case when ORðG�EjDÞ ¼
ORð �GEjDÞ ¼ 1, we see that

ORðGEjDÞ ¼ ½ORðEjDÞ � 1þ g�=g; ð7Þ
where½jORðEjDÞj � 1� � g� per the above unity con-
straints on the joint conditional probabilities. A 95%
normal theory confidence interval (CI) [7, 8] for
Equation (7) is given as

exp

�
logf½ORðEjDÞ � 1þ g�=gg

� 1:96 �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
varflogf½ORðEjDÞ � 1þ g�=gg

p �

ð8Þ
Treating (g) as fixed and using a first-order Taylor
series expansion and the Cramer–Rao lower bounds,
we see that [7, 9]

Var
n
logf½ORðEjDÞ � 1þ g�=gg

o
ð9Þ

ffi d logf½ORðEjDÞ � 1þ g�=gg
d½ORðEjDÞ�

� 	2
�Var½ORðEjDÞ�

ð10Þ

ffi ORðEjDÞ2 � 1

a
þ1
b
þ1
c
þ1
d


 �� �
= ORðEjDÞ�1þgf g2;

ð11Þ
whereVar[OR(E|D)] was estimated using the method
of Fleiss [10] and a is the number of diseased individ-
uals with environmental exposure, b the number of

non-diseased individuals with environmental expo-
sure, c the number of diseased individuals without
environmental exposure, and d is the number of non-
diseased individuals without environmental exposure.

Substituting the results of Equation (11) into
Equation (8), an estimate for the 95% CI for
ORðGEjDÞ may be written as

exp

(

logf½ORðEjDÞ � 1þ g�=gg:

� 1:96 �
ORðEjDÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
aþ 1

bþ 1
c þ 1

d

� 
q

ORðEjDÞ � 1þ gf g

)

: ð12Þ

In situations where (g) cannot be considered fixed, the
‘‘Delta’’ method [11] may be easily extended to
estimate the variance.

Next, we express the 95% CI for ORðGEjDÞ in
terms of the 95% lower confidence limit (LCL) for
ORðEjDÞ. By definition [8], the 95% LCL for
ORðEjDÞ is given as

LCL¼ORðEjDÞ � exp �1:96 �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

a
þ 1

b
þ1

c
þ 1

d


 �s( )

:

ð13Þ

) logðLCLÞ¼ log½ORðEjDÞ��1:96

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

a
þ 1

b
þ1

c
þ 1

d

r

ð14Þ

)
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

a
þ 1

b
þ 1

c
þ 1

d

r

¼ log½ORðEjDÞ�f

� logðLCLÞg=1:96: ð15Þ

Substituting Equation (15) into Equation (12), the
95% CI for ORðGEjDÞ may be rewritten as

exp

(

logf½ORðEjDÞ � 1þ g�=gg

�ORðEjDÞ � log½ORðEjDÞ� � logðLCLÞf g
ORðEjDÞ � 1þ gf g

)

: ð16Þ

Further, if the pivotal statistic [7]

Z¼ ORðEjDÞ�1þgf g� log ½ORðEjDÞ�1þg�=gf g

ORðEjDÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
aþ 1

bþ 1
cþ 1

d

� 
q

�������

�������
;

ð17Þ
where Za=2 denotes the critical region of the standard
normal distribution, then the null hypothesis that
ORðGEjDÞ ¼ 1 may be rejected at the a-level of
significance. The power corresponding to this test
statistic [5] is given as
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¼
�����
ðza=2Þ�fORðEjDÞ�1þgg�log ½ORðEjDÞ�1þg�=gf g

ORðEjDÞ� log½ORðEjDÞ��logðLCLÞf g

�����

�za=2;

ð18Þ

Zpower ¼ Z � Za=2: ð19Þ

Example

A study in a hypothetical population is being
planned to ‘‘directly’’ estimate the OR for effect
modification between arsenic exposure (E) and the
genotype for slow acetylation (G), given that the
study participants have been diagnosed with skin
cancer (D). Suppose that a recent retrospective
study of 250 cases and 250 controls in the same
population as the proposed study observed a 1.7-
fold ORðEjDÞ [95% CI: 1.1, 2.9] for skin cancer
among participants exposed to arsenic compared
with those not exposed. Although participants were
not genotyped for slow acetylation in the latter
study, other published reports have noted that the
genotype frequency for slow acetylation (g) in this
population is approximately 70%. Using the above
OR, 95% CI, and (g) values in Equations (7) and
(16) and assuming that neither arsenic exposure nor
the presence of the slow acetylator polymorphism
alone increase the OR for skin cancer, we ‘‘indi-
rectly’’ estimate ORðGEjDÞ ¼ 2:0 (95% CI: 1.2,
3.4). The null hypothesis ORðGEjDÞ ¼ 1 is rejected
at the a=0.01 level of significance. However, the
new case-control study based upon the above
parameters and sample size only would have pow-
er = 72.9% to detect ORðGEjDÞ � 2:0 at the
a=0.05 level of significance, indicating that a larger
sample size would be needed to be powered at the
standard level of 80% (e.g., a false null finding in
the new case control study could be due to a small
sample size). A sample of approximately 345 cases
and 345 controls would be required in the new
study to achieve ‡80% power, given that all other
parameters are held constant.

Sensitivity analysis

The sensitivity to the assumption of no main effects is
shown in Table 1, given specific values of ORðEjDÞ,
ORðG�EjDÞ;ORð �GEjDÞ, and (g). Partial genetic and/
or environmental effects can greatly influence
ORðGEjDÞ. For example, when ORðEjDÞ ¼ 3:0;
ORðG�EjDÞ ¼ 2;ORð �GEjDÞ ¼ 2:0, and ðgÞ ¼ 0:01;
ORðGEjDÞ ¼ 105 versus 201 in the absence of
genetic and environmental main effects. Further,

above unity ORs for gene-environment effect modi-
fication may be present even though a null OR for
environmental exposure is observed in a case-control
study [e.g., ORðEjDÞ ¼ 1:0;ORðG�EjDÞ ¼ 5:0;
ORð �GEjDÞ ¼ 2:0; ðgÞ ¼ 0:50;ORðGEjD ¼ 4:0�.

Discussion

Failing to account for gene-environment effect mod-
ification could conceal effects of genotype on risk of
disease and lead to misleading interpretation of study
results [1, 12, 13]. Inconsistent associations across
studies between a disease and a suspected risk factor
could be due to heterogeneity in the studied popula-
tion with respect to unknown gene-environment
effect modification [14]. The presence of gene-envi-
ronment effect modification also may affect study
power and indicate that a larger sample size is
required when planning a new study.

Several limitations should be considered when
indirectly estimating gene-environment effect modifi-
cation. Bias of an unknown magnitude may result if
the rare disease assumption is violated. However, bias
of this type is common to all cumulative incidence
case-control studies when disease risk is high between
both the exposed and/or unexposed populations [6]
When environmental exposure is influenced by
genetically controlled behavioral determinants, as
may be true in the case of alcohol consumption, it is
conceivable that genotype may not be independent of
environmental exposure, i.e., PðGjEÞ 6¼ PðGj�EÞ. Only
environmental factors that are well established as
independent of underlying genetic factors should be
considered when indirectly estimating gene-environ-
ment effect modification. Further, ‘‘indirect’’ estima-
tion of gene-environment effect modification is only
meaningful in the simple case presented if a true joint
‘‘biologic’’ effect exists between (G) and (E), and no
main genetic and environmental effects are present.
Nonetheless, this model emphases the broader
importance of gene-environment effect modification
in the interpretation of study results.

In contemporary research, with considerable
advances in molecular genetic techniques, the
method presented here provides a framework to
evaluate the joint genetic effect for individual reac-
tion to pharmaceutical agents, response to medical
treatment, and susceptibility to other environmental
factors (e.g., physical, chemical, biologic) [1].
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