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Abstract  The dam failure of the Córrego do Feijão 
Mine (CFM) located in Minas Gerais State,  Brazil, 
killed at least 278 people. In addition, large exten-
sions of aquatic and terrestrial ecosystems were 
destroyed, directly compromising the environmental 
and socioeconomic quality of the region. This study 
assessed the pollution and human health risks of soils 
impacted by the tailing spill of the CFM dam, along 
a sample perimeter of approximately 200 km. Based 
on potential ecological risk and pollution load indi-
ces, the enrichments of Cd, As, Hg, Cu, Pb and Ni 
in soils indicated that  the Brumadinho, Mário Cam-
pos, Betim and São Joaquim de Bicas municipali-
ties were the most affected areas by the broken dam. 
Restorative and reparative actions must be urgently 
carried out in these areas. For all contaminated areas, 

the children’s group indicated an  exacerbated pro-
pensity to the development of carcinogenic and non-
carcinogenic diseases, mainly through the  ingestion 
pathway. Toxicological risk assessments, including 
acute, chronic and genotoxic effects, on people living 
and working in mining areas should be a priority for 
public management and mining companies to ensure 
effective environmental measures that do not harm 
human health and well-being over time.
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Introduction

The growing worldwide demand for ore has led to 
intensive exploitation of these natural resources. 
In recent decades, this has triggered several 
environmental tragedies involving dam ruptures 
(Buch et al., 2020; Lyu et al., 2019; Rico et al., 2008). 
Dams are critical infrastructure in mining, and their 
failures can have catastrophic consequences for the 
environment and human life. Most collapses have 
been associated with exceeding the tailings storage 
capacity in dams, as well as inadequate management 
and lack of structural maintenance (CPRM 2019a; 
Buch et al., 2021, 2023). In Brazil, at least 126 mining 
dams are unstable due to the exceeding of their full 
capacity, making them vulnerable to failure in the 
coming years (Buch et al., 2020; Santos & Oliveira, 
2021). This has been evidenced in the last 8  years, 
with the rupture of two iron ore tailing dams: Fundão 
(on November 5th 2015, in the Mariana Municipality) 
and Córrego do Feijão Mine-CFM (on January 25th 
2019, in the Brumadinho Municipality) both situated 
in the Minas Gerais-MG State (Brazil) and belonging 
to VALE S.A. The CFM dam break released about 12 
million m3 of tailings  into the environment, killing 
278 people (six remain missing) and destroying entire 
villages, as well as areas of aquatic and terrestrial 
ecosystems. The mud of tailings traveled around 
10 km until the Paraopeba River—a major tributary 
of the São Francisco River (CPRM, 2019a). In all, 
the mud traveled more than 300 km, affecting about 
26 municipalities (18 of these directly affected). 
In  terrestrial ecosystems, it has been estimated that 
approximately 1.8 million hectares were impacted 
by the dam collapse, with 300 hectares  of native 
vegetation affected.

Over time, the persistence, reactivity and bioac-
cumulation of metals (predominant components in 
mining tailings) in the  terrestrial environment result 
in ecotoxic effects on flora, fauna and human life, 
leading to physiological and metabolic stress, as well 
as imbalances in biodiversity and the performance of 
its functions within ecosystems (Buch et  al., 2021, 
2023). Trace elements such as arsenic  (As), cad-
mium (Cd), chromium (Cr), nickel (Ni) and lead (Pb) 
may be very dangerous contamination components in 
terrestrial ecosystems, as they are not sensitive to any 
process of decomposition in soils and remain unal-
tered (Buch et al., 2023; Kumar et al., 2022a, 2022b). 

In addition, they are easily transported by chemical, 
physical, or biological processes to other environmen-
tal compartments (Ma et  al., 2020). Mercury  (Hg), 
a  global pollutant, may change its chemical species 
through several processes, including the action of 
microorganisms, which can methylate this element 
and quickly lead to its bioaccumulation and biomag-
nification (Buch et al., 2020; Gupta et al., 2022). Only 
the metal contents of the soil surface horizons do not 
provide extensive indications of pollution. Geochemi-
cal indices may be enlightening when used to indicate 
anthropogenic interference in soil pollution (e.g., ore 
tailings deposition) (Barbieri et al., 2015; Islam et al., 
2015).

Although indices of human health risks are a basic 
approach to assessment, they are widely used, and the 
main global guidelines recommend their applicability 
for prospecting the potential risks of different mate-
rials or chemical substances deposited in ecosystems 
(EPA 2005). The susceptibility of early-life expo-
sure to carcinogens for target groups can help guide 
future decision-making in compliance with environ-
mental measures to mitigate or eliminate such haz-
ards to human health (EPA, 2005). Thus, this study 
assessed the pollution and human health risks of soils 
impacted by the tailing spill of the CFM dam, along a 
sample perimeter of approximately 200 km. This evi-
dence will enable the identification of  critical areas 
of pollution, prioritization of remediation actions, 
and support decision-making in programs for public 
health and environmental preservation and recovery.

Material and methods

Soil samples characterization

The study areas covered a sampling gradient of 
approximately 200  km along the Paraopeba River 
Basin, including sites that were completely affected 
by the mining mudflow from the CFM dam 
rupture and partially affected (contaminated 
after   the  Paraopeba River overflowed due to 
intense rainy periods in the region). Riparian soil 
samples were collected from 11 study areas: Dam 
1 and 2; Pinheiros (Pi), Alberto Flores (AF), Mário 
Campos (MC), Betim (B), São Joaquim de Bicas 
(SJB), Florestal (F), São José da Varginha (SJV), 
Paraopeba (Pa),  and Pompéu (P). Additionally, 
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forest soil samples  (from  non-impacted sites by 
mining activities) belonging to the Cerrado and 
Atlantic Forest biomes were collected in two 
reference  areas: (i) Parque Estadual da Serra do 
Rola-Moça (PESRM) located in the Nova Lima 
municipality in MG State (24  km from the  dam 
rupture) and (ii) Parque Estadual do Sumidouro 
(PES) situated in an Environmental Conservation 
Unit at Pedro Leopoldo and Lagoa Santa 
Municipalities in MG State (130 km from the dam 
rupture). Descriptions of these areas and their 
distances from the CFM dam are found in Table S1. 
The physical-chemical analyses were performed 
according to EMBRAPA (2011) on ten subsamples 
(0–20 cm depth) collected for each area, composing 
a representative grid (20 × 20 m). The soil sampling 
occurred in February 2022. The concentrations 
of Al, As, Cd, Cu, Cr, Fe, Pb, Mn, Ni, Sr, Ti and 
Zn were estimated using Method 3051 (USEPA, 
2007) and analyzed by inductively coupled 
plasma mass spectrometry (ICP-MS) according to 
USEPA (2001), as well as by atomic absorption 
spectrometry using cold vapor atomization for Hg 
according to USEPA (1986). Quality control was 
established in accordance with reference material 
certified São Joaquim 2709, provided by the 
National Institute of Standards and Technology-
NIST (US Department of Commerce). The average 
recovery rates for metals ranged from 85 to 97%.

Geochemical indices

Data from the study areas were used to calculate 
the geochemical indices. Background values were 
obtained from the median values of the Paraopeba 
River Basin, based on a data survey carried out 
by CPRM (Portuguese acronym for Company of 
Research of Mineral Resources—Geological Survey 
of Brazil) in monitoring years (since 2009) that pre-
ceded the dam rupture (CPRM). Baseline values were 
based on actual trace metal concentrations from the 
two reference areas, which are more dependent of the 
parent geological/source material.

The enrichment factor (EF) was estimated accord-
ing to Kemp and Thomas (1976) (Eq. 1) to discrimi-
nate natural and anthropogenic sources of metals in 
soils. Aluminum was used for normalization due to 
its lithogenic and conservative features.

where Mi is the interest metal.
Pollution load index (PLI) was calculated from the 

individual metal values of contamination factor (CF) 
according to Eqs.  (2 and 3) described in Qing et  al. 
(2015).

The  Potential Ecological Risk index (PER) was 
estimated according to Hakanson et al. (1980), based 
on ecological risk (ER), Eqs. 4 and 5.

where TR is the “toxic-response” factor for a given 
metal (As = 10, Cd = 30, Cr = 2, Cu = 5, Hg = 40, 
Ni = 5, Pb = 5 and Zn = 1; for Al, Fe and Mn, there are 
no TR values in the literature, thus not allowing the 
calculation of ER; CF is the contamination factor.

Human health risk assessment

Due to the contact of target groups (adults and chil-
dren) with soil contaminated by mine tailings, for 
each entry situation of metal(loid) (through three 
exposure pathways: ingestion, dermal contact and 
inhalation), the absorbed dose was calculated. Aver-
age daily intake (ADI) of toxic metals via ingestion 
(ADIing), inhalation (ADIinh) and dermal contact 
(ADIderm) for target groups were based on values 
from the guidelines and Exposure Factors Handbook 
of US Environmental Protection Agency (USEPA, 
1989, 1997, 2001, 2002 and 2011), which were 
described in Table S2 and determinate by Eqs. 6 to 8

where CS is the chemical concentration in a particu-
lar exposure medium (mg  kg−1), CoF is the conver-
sion factor; IR is the ingestion rate (mg  day−1), ExF 

(1)EF =

(

M
i
∕Al

)

sample
(

M
i
∕Al

)

Background or Baseline values

(2)CF =
C
i

B
i

(3)PLI =
(

CF1 × CF2 × CF3 ×………CF
n

)
1

n

(4)ER = TR × CF

(5)PER =
∑

ER

(6)ADIing =
CS × CoF × IRs × ExF × ED

BW × AT
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is the exposure frequency (day per year−1), ED is the 
exposure duration (year), BW is the body weight of 
the exposed individual (kg), and AT is the time period 
over which the dose is averaged (day).

where PEF is the particle emission factor (m3kg−1).

where SA is the exposed skin surface area (cm2), AF 
is the adherence factor (mg/cm2-day), and ABS is the 
dermal absorption factor (unitless).

The dose absorbed by a person represents the 
amount of metal(loid) that can affect human health; 
correlating the human body weight and exposure time, 
which is based on available toxicological data (Cocãrţã 
et al., 2016).

Non‑carcinogenic risk assessment

Non-carcinogenic hazards are typically character-
ized by the hazard quotient (HQ), according to Eq.  9 
(USEPA, 1989):

where RfD (mg  kg−1  day−1) is the maximum daily 
dose of a metal from a specific exposure pathway, for 
both adults and children.

The hazard index (HI) is the sum of HQs and means 
of the total risk of non-carcinogenic elements via three 
exposure pathways for a single element, Eq. 10.

Carcinogenic risk assessment

Carcinogenic risks are estimated by calculating the 
probability of an individual developing cancer. The 
slope factor (SF) converts the estimated daily intake of 
a toxin averaged over a lifetime of exposure directly to 
the incremental risk of an individual developing cancer 
(USEPA, 1989), Eqs. 11 and 12.

(7)ADIinh =
CS × ExF × ED

PEF × BW × AT

(8)

ADIDermal =
CS × SA × AF × CoF × ABS × ExF × ED

BW × AT

(9)HQ =
ADI

i

RfD

(10)HI =
∑

HQ =
∑ ADI

i

RfD

where RI is the carcinogenic risk; TRI is the total 
carcinogenic risk; and SF is the carcinogenicity 
slope factor over a lifetime (mg  kg−1  day−1). Carci-
nogenic risk values ranging from 1 × 10–6 to 1 × 10–4 
are defined as an acceptable risk for human health 
(USEPA, 2001).

Statistical analysis

Analysis of variance (ANOVA) followed by Dun-
nett’s post hoc test (p < 0.05) was applied using the 
software Minitab®17.1.0. Data homoscedasticity and 
normality were checked by Bartlett’s and Kolmogo-
rov–Smirnov’s tests, respectively (p < 0.05). The 
Spearman correlation and principal component analy-
ses (PCA) were applied to integrate concentrations of 
13 metal(loid)s and environmental and human vari-
ables for soil samples from the 13 study areas using 
multivariate analysis through Canoco 5 software. 
Matrix cluster analysis was used to classify the sam-
ples into distinct groups by integrating all the data, 
which was generated by statistical packages of open-
source software R.

Results

Physicochemical soil parameters

Based on granulometric composition, the texture 
varied from sandy loam (in the areas of Dam 1 and 
2, Pi, AF, MC, B, SJB, F and Pa) and silt loam (in 
the SJV and P areas). In the reference areas (PESRM 
and PES), the sandy clay texture prevailed (Table 1). 
The areas impacted by CFM tailings indicated an acid 
pH (ranging from 3.5 to 4.2). The lowest values were 
noted in areas closest to the broken dam. The refer-
ence areas showed the highest pH values (4.9 ± 0.4 
and 5.7 ± 1.0 for the PESRM and PES, respectively). 
For these areas, there were also the lowest average 
values of soil bulk densities (= 1.35 ± 0.3  g  cm−3 
for the  PESRM area and of 1.30 ± 0.4  g  cm−3 for 
the  PES). In impacted areas, the average values 
of bulk density ranged from 2.05 to 4.21  g  cm−3 

(11)RI = ADI
i
× SF

i

(12)TRI =
∑

RI =
∑

ADI
i
× SF

i
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(Table 1). The highest bulk densities were related to 
areas nearby CFM dam areas.

Metal concentrations are shown in Fig.  1. In the 
affected areas, the order of metal concentrations 
(from high to low) was Fe > Mn > Al > Cu > Zn > C
r > Pb > Ni > As > Sr > Cd > Hg. The highest values 
were found in areas of Dam 1 and 2; Pi, AF, MC, B 
and SJB, whose municipalities are located closer to 
the broken dam areas. In reference areas, none of 
the metal(loid)s exceeded the guideline values from 
Brazilian normative (COPAM-MG and CONAMA) 
and for others environmental directives recognized 
worldwide for soil quality assessment. For more com-
parative details, see Table S2. In impacted areas, the 
concentrations of As Cd, Cu, Hg, Pb and Zn exceeded 
the maximum allowable contents of metals in soils 
defined by COPAM-MG 166 (2011). According to 
CONAMA 420 (2009), all the areas contaminated 
by CFM tailings exceeded the limiting values of Cu 
and almost all areas exceeded  the As levels (except 
the F, SJV, Pa and P areas). However, for Cd, Hg, Pb 
(except the Dam 1 and Dam 2 areas) and Zn concen-
trations, no area indicated  an exceedance. For both 
Brazilian normatives (COPAM-MG and CONAMA), 

the Cr contents were higher than threshold values 
only in the Dam 1, Dam 2 and B areas. Ni exceeding 
values were noted in the Dam 1, Dam 2, Pi and AF 
areas (according to CONAMA 420, 2009) and Dam 
1, Dam 2, Pi, AF, MC, B and SJB areas (based on 
COPAM-MG 166, 2011).

Geochemical indices

The enrichment factor was classified as follows: < 1—
background concentration; 1 to 2—depletion to mini-
mal enrichment; 2 to 5—moderate enrichment; 5 to 
20—substantial enrichment; 20 to 40—very high 
enrichment; and > 40—extremely high enrichment 
(Bam et al., 2011). Overall, the EF values were higher 
when determined using the baseline values from the 
reference areas (especially for As, Cd, Cu, Hg, Ni and 
Pb contents), showing slightly higher EF on the basis 
of PES values, except for Mn, Sr and Zn contents, 
which were higher when evaluated by background 
values (Fig.  2). From the PES baseline values, the 
Cd and Pb concentrations indicated very high enrich-
ment values. Moderate metal enrichment factors were 
observed for Cr, Fe and Mn concentrations from the 
baseline values (PES and PESRN). The EFs of As, 
Cd and Hg determined from the background values 
showed substantial enrichment levels, whereas Cu, 
Mn, Ni, Pb and Zn presented moderate enrichment; 
Cr presented depletion to minimal enrichment; and 
Fe contents suggest background concentration, pos-
sibly from parental material. In general, the order of 
average EF values of metals was Cd >​ Pb ​> Hg​ > A​s > ​
Cu >​ Cr ​> Ni​ > M​n​ > ​Fe ​> Zn.

According to contamination degree, the PLI may 
be classified as unpolluted (PLI ≤ 1), unpolluted to 
moderately polluted (1 ≤ PLI ≤ 2), moderately pol-
luted (2 ≤ PLI ≤ 3), moderately to highly polluted 
(3 ≤ PLI ≤ 4), highly polluted (4 ≤ PLI ≤ 5), or very 
highly polluted (PLI > 5) (Tomlinson et  al., 1980, 
Chen et al., 2015). The PLIs calculated for metal(loid)
s from background values (3.27 to 5.85) showed the 
lowest values when compared to those from the base-
line values, which ranged from 6.71 to 12.6 (Fig. 3). 
However, all investigated areas were classified as 
highly polluted environments.

The highest ecological risk values were noted 
for Cd and Hg (Fig.  4). The sequence of met-
als (from highest to lowest) was: Cd > Hg > As > 
Pb > Ni > Cu > Cr > Zn (Fig.  4). PER values were 

Table 1   Physicochemical soil parameters from 13 areas, 
after collapse of Córrego do Feijão Mine dam in Brumadinho 
Municipality (Minas Gerais State. Brazil)

The values are shown as means (n = 6). Acronyms: BD 
bulk density; Dam 1 and 2 refers to dam areas; Pi Pinheiros; 
AF Alberto Flores; MC Mário Campos; B Betim; SJB São 
Joaquim de Bicas; F Florestal; SJV São José da Varginha; Pa 
Paraopeba; P Pompeu; PESRM Parque Estadual da Serra do 
Rola-Moça; PES Parque Estadual do Sumidouro

Areas Sand Silt Clay BD pH
% % % g/dm3

Dam 1 66 ± 10.0 18 ± 4.2 16 ± 6.9 3.07 ± 0.5 3.6 ± 0.3
Dam 2 64 ± 8.2 22 ± 2.9 14 ± 5.8 4.21 ± 0.9 3.5 ± 0.8
Pi 62 ± 11.1 19 ± 6.7 19 ± 5.2 3.41 ± 1.7 3.8 ± 0.6
AF 55 ± 7.8 22 ± 4.5 23 ± 6.3 3.27 ± 0.5 4.0 ± 0.8
MC 52 ± 8.6 23 ± 3.9 25 ± 5.5 3.12 ± 0.3 3.5 ± 0.4
B 58 ± 7.3 20 ± 4.2 22 ± 6.4 3.76 ± 0.2 3.2 ± 0.2
SJB 57 ± 8.2 23 ± 6.2 20 ± 6.7 2.74 ± 0.7 4.1 ± 0.2
F 56 ± 8.8 19 ± 4.0 25 ± 4.9 2.41 ± 0.4 4.2 ± 0.2
SJV 44 ± 7.7 24 ± 3.4 32 ± 4.4 2.59 ± 0.9 3.9 ± 0.5
Pa 54 ± 6.4 29 ± 6.5 17 ± 3.8 2.31 ± 0.9 3.7 ± 0.8
P 47 ± 7.9 16 ± 3.9 37 ± 4.9 2.05 ± 0.8 3.8 ± 0.6
PESRM 39 ± 5.5 17 ± 4.7 44 ± 7.6 1.35 ± 0.3 4.9 ± 0.4
PES 29 ± 6.2 26 ± 2.6 45 ± 7.2 1.30 ± 0.4 5.7 ± 1.0
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Fig. 1   Total metal(loid) concentrations (n = 6) from the 13 
sampling areas. Dam 1 and 2 refers to dam áreas; Pi Pinhei-
ros; AF Alberto Flores; MC Mário Campos; B Betim; SJB São 

Joaquim de Bicas; F Florestal; SJV São José da Varginha; Pa 
Paraopeba; P Pompeu; PESRM Parque Estadual da Serra do 
Rola-Moça; PES Parque Estadual do Sumidouro

Fi​g. ​2 ​  Enrichme​nt ​fac​tors of metal(loid)s in​ so​ils​, based on 
background and b​aseli​ne values. Dam 1 and 2 refers to dam 
áreas; Pi Pinheiros; AF Alberto Flores; MC Mário Campos; B 
Betim; SJB São Joaquim de Bicas; F Florestal; SJV São José 

da Varginha; Pa Paraopeba; P Pompeu; PESRM Parque Estad-
ual da Serra do Rola-Moça; PES Parque Estadual do Sumi-
douro
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considered as: low or slight (PER < 150), mod-
erate (150 ≤ PER < 300), considerable or strong 
(300 ≤ PER < 600) and very high or very strong 
(PER ≥ 600). PER values based on PES and 
PESRM baseline values ranged from 772 to 1475 
and 1110 to 2103, respectively (Fig.  4). Hence, a 

very strong level of potential ecological risk may be 
attributed to all areas impacted by CFM tailings. In 
comparison with those found by background values, 
the PERs ranged from 481.9 to 886.3; the SJB, Flo, 
SJV, Pa and P areas indicated a strong PER; how-
ever, in the Dam 1 and 2, Pi, AF, MC and B areas 
were observed very high PER values (PER > 600).

Fig. 3   Pollution load index from the 13 study areas. Dam 1 
and 2 refers to dam áreas; Pi Pinheiros; AF Alberto Flores; MC 
Mário Campos; B Betim; SJB São Joaquim de Bicas; F Flo-

restal; SJV São José da Varginha; Pa Paraopeba; P Pompeu; 
PESRM Parque Estadual da Serra do Rola-Moça; PES Parque 
Estadual do Sumidouro

Fig. 4   Index of potential ecological risk from the 13 study 
areas. Dam 1 and 2 refers to dam áreas; Pi Pinheiros; AF 
Alberto Flores; MC Mário Campos; B Betim; SJB São 

Joaquim de Bicas; F Florestal; SJV São José da Varginha; Pa 
Paraopeba; P Pompeu; PESRM Parque Estadual da Serra do 
Rola-Moça; PES Parque Estadual do Sumidouro
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Human health risk assessment

Non-carcinogenic risk (HQ) values greater than 1 
means that the exposed population is likely to expe-
rience adverse effects related to metals (Faiz et  al., 
2012; Qing et al., 2015). For all metal(loid)s from all 
areas (except for reference areas), the HQ values of 
a specific via exposure pathway were less than 1, in 
groups of adults and children. In the children’s group, 
for all affected areas, the HQ values of Pb (1.355 to 
5.481) exceeded the limits, indicating a high predis-
position to non-carcinogenic effects. In the adult’s 
group, the HQ values ranged from 0.00024 (Zn) to 
0.805 (Pb) and from 0.0016 (Zn) to 5.481 (Pb) in 
the children’s group (Table 2). The order of the HQs 
observed for both groups was: Pb > As > Cr > Ni > H
g > Cd > Zn. The highest HQ rates decreased as the 
areas moved away from the dam, both for adults and 
children. Considering the three exposure pathways 
together (through hazard index -HI values, which is 
the HQ sum) for all metal(loid)s from all affected 
areas, the children’s group presented high health 
risks to non-carcinogenic effects (HI > 1; from 1.91 
to 6.49). HIs in adults did not indicate a propensity 
to non-carcinogenic diseases (less than 1; from 0.29 
to 0.95). In addition, a decrease in the HI values can 

be observed as the affected areas move away from the 
dam failure areas (Table 2). In the reference areas, HI 
values were 0.04 (PES) and 0.05 (PESRM) for adults 
and 0.028 (PES) and 0.035 (PESRM) for children 
(Fig. 5). On average, for most of the metals, the main 
exposure pathway that highest contributed to the haz-
ard quotient (HQ) was the ingestion (94%) followed 
by the dermal exposure representing 4.5% and the 
inhalation (less than 1%).

Values of RI lower than 1 × 10–6 suggest there 
is no significant carcinogenic risk, while RI val-
ues > 1 × 10–4 imply serious and unacceptable car-
cinogenic risks. To simplify the understanding of 
this index in the study areas, values can be seen in 
Table  3. RI values for adults ranged from 2.5 × 10–7 
(Pb) to 1.4 × 10–4 (Ni). For children, RI values ranged 
from 1.7 × 10–6 (Pb) to 6.0 × 10–4 (Ni). Adult TRIs 
ranged from 1.7 × 10–4 to 3.2 × 10–4. In children, 
the TRI values ranged from 7.5 × 10–4 to 1.5 × 10–3 
(Fig.  5). The ingestion was the main exposure route 
(60% and 73% for adults and children, respectively) to 
the carcinogenic risks, whereas the dermal exposure 
represented an average of 40% and 27% for adults and 
children, respectively, and inhalation about less than 
1% for both. All study areas except the reference areas 
presented TRI of metal(loid)s greater than 1 × 10–4 

Table 2   Non-carcinogenic risks of metals for adults and children

HQ is the hazard quotient; HI is the hazard index representing the sum of HQs; Dam 1 and 2 refers to dam áreas; Pi Pinheiros; AF 
Alberto Flores; MC Mário Campos; B Betim; SJB São Joaquim de Bicas; F Florestal; SJV São José da Varginha; Pa Paraopeba; P 
Pompeu; PESRM Parque Estadual da Serra do Rola-Moça; PES Parque Estadual do Sumidouro

Study areas Adult Children

HQ HI HQ HI

As Cd Cr Hg Ni Pb Zn As Cd Cr Hg Ni Pb Zn

Dam 1 0.105 0.001 0.038 0.001 0.002 0.805 0.00037 0.95 0.715 0.010 0.256 0.007 0.017 5.481 0.003 6.49
Dam 2 0.137 0.001 0.036 0.001 0.002 0.727 0.00040 0.91 0.936 0.009 0.247 0.008 0.017 4.952 0.003 6.17
Pi 0.128 0.001 0.034 0.001 0.002 0.775 0.00037 0.94 0.870 0.008 0.228 0.006 0.015 5.274 0.003 6.40
AF 0.121 0.001 0.033 0.001 0.002 0.605 0.00031 0.76 0.824 0.007 0.222 0.005 0.014 4.115 0.002 5.19
MC 0.081 0.001 0.031 0.001 0.001 0.411 0.00027 0.53 0.554 0.007 0.209 0.006 0.010 2.795 0.002 3.58
B 0.094 0.001 0.035 0.001 0.002 0.495 0.00038 0.63 0.638 0.005 0.241 0.004 0.014 3.371 0.003 4.28
SJB 0.077 0.001 0.023 0.001 0.002 0.299 0.00025 0.40 0.522 0.005 0.153 0.005 0.010 2.035 0.002 2.73
F 0.059 0.001 0.018 0.001 0.001 0.201 0.00029 0.28 0.401 0.006 0.122 0.004 0.009 1.368 0.002 1.91
SJV 0.068 0.001 0.020 0.001 0.001 0.198 0.00026 0.29 0.461 0.005 0.136 0.004 0.009 1.350 0.002 1.97
Pa 0.070 0.001 0.023 0.001 0.001 0.197 0.00025 0.29 0.475 0.005 0.159 0.006 0.009 1.343 0.002 2.00
P 0.066 0.001 0.019 0.001 0.001 0.199 0.00024 0.29 0.448 0.004 0.127 0.005 0.009 1.355 0.002 1.95
PESRM 0.009 0.000 0.006 0.000 0.000 0.035 0.00013 0.05 0.064 0.000 0.041 0.001 0.002 0.237 0.001 0.35
PES 0.009 0.000 0.006 0.000 0.000 0.024 0.00014 0.04 0.063 0.000 0.043 0.000 0.002 0.164 0.001 0.27
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Fig. 5   Hazard index (HI) for the non-carcinogenic risks 
and the total carcinogenic risk (TRI) of metals, in adults 
and children. Dam 1 and 2 refers to dam áreas; Pi Pinheiros; 
AF Alberto Flores; MC Mário Campos; B Betim; SJB São 

Joaquim de Bicas; F Florestal; SJV São José da Varginha; Pa 
Paraopeba; P Pompeu; PESRM Parque Estadual da Serra do 
Rola-Moça; PES Parque Estadual do Sumidouro
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Table 4   Spearman correlation matrix related to environmen-
tal and human variables: metal concentrations (Al, As, Cd, 
Cr, Cu, Fe, Hg, Mn, Ni, Pb and Zn), granulometry (silt, sand 

and clay), bulk density (density), pH, and PER after dam col-
lapse of Córrego do Feijão Mine in Brumadinho municipality 
(Minas Gerais State, Brazil), (p < 0.05)

Al As Cd Cr Cu Fe Hg Mn Ni

As 0.782
p-Value 0.002
Cd 0.727 0.868
p-Value 0.005 0.000
Cr 0.738 0.929 0.845
p-Value 0.004 0.000 0.000
Cu 0.705 0.945 0.819 0.973
p-Value 0.007 0.000 0.001 0.000
Fe 0.647 0.896 0.780 0.962 0.984
p-Value 0.017 0.000 0.002 0.000 0.000
Hg 0.624 0.852 0.792 0.836 0.858 0.877
p-Value 0.023 0.000 0.001 0.000 0.000 0.000
Mn 0.430 0.677 0.578 0.699 0.751 0.757 0.772
p-Value 0.142 0.011 0.039 0.008 0.003 0.003 0.002
Ni 0.749 0.934 0.912 0.956 0.956 0.940 0.825 0.721
p-Value 0.003 0.000 0.000 0.000 0.000 0.000 0.001 0.005
Pb 0.741 0.907 0.951 0.890 0.863 0.841 0.781 0.567 0.945
p-Value 0.004 0.000 0.000 0.000 0.000 0.000 0.002 0.043 0.000
Sr 0.579 0.824 0.720 0.885 0.912 0.896 0.692 0.748 0.890
p-Value 0.038 0.001 0.006 0.000 0.000 0.000 0.009 0.003 0.000
Ti 0.678 0.839 0.946 0.833 0.830 0.784 0.740 0.676 0.900
p-Value 0.011 0.000 0.000 0.000 0.000 0.002 0.004 0.011 0.000
Zn 0.672 0.846 0.890 0.879 0.852 0.797 0.637 0.492 0.896
p-Value 0.012 0.000 0.000 0.000 0.000 0.001 0.019 0.087 0.000
Sand 0.619 0.828 0.919 0.795 0.825 0.814 0.797 0.704 0.922
p-Value 0.024 0.000 0.000 0.001 0.001 0.001 0.001 0.007 0.000
Silt  − 0.296  − 0.298  − 0.528  − 0.278  − 0.160  − 0.174  − 0.258  − 0.086  − 0.391
p-Value 0.326 0.323 0.064 0.357 0.601 0.569 0.394 0.780 0.187
Clay  − 0.503  − 0.792  − 0.768  − 0.798  − 0.878  − 0.883  − 0.852  − 0.815  − 0.867
p-Value 0.079 0.001 0.002 0.001 0.000 0.000 0.000 0.001 0.000
Dens 0.766 0.874 0.951 0.890 0.841 0.813 0.822 0.641 0.918
p-Value 0.002 0.000 0.000 0.000 0.000 0.001 0.001 0.018 0.000
pH  − 0.557  − 0.715  − 0.729  − 0.823  − 0.787  − 0.792  − 0.727  − 0.570  − 0.757
p-Value 0.048 0.006 0.005 0.001 0.001 0.001 0.005 0.042 0.003
HI Ad 0.780 0.940 0.852 0.978 0.951 0.929 0.839 0.735 0.956
p-Value 0.002 0.000 0.000 0.000 0.000 0.000 0.000 0.004 0.000
HI ch 0.799 0.956 0.874 0.973 0.956 0.934 0.872 0.748 0.962
p-Value 0.001 0.000 0.000 0.000 0.000 0.000 0.000 0.003 0.000
TRI Ad 0.452 0.791 0.742 0.720 0.824 0.802 0.806 0.732 0.786
p-Value 0.121 0.001 0.004 0.006 0.001 0.001 0.001 0.004 0.001
TRI Ch 0.771 0.956 0.857 0.984 0.967 0.940 0.830 0.715 0.967
p-Value 0.002 0.000 0.000 0.000 0.000 0.000 0.000 0.006 0.000
PER 0.669 0.883 0.883 0.900 0.883 0.894 0.939 0.598 0.878
p-Value 0.012 0.000 0.000 0.000 0.000 0.000 0.000 0.031 0.000
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Table 4   (continued)

Al As Cd Cr Cu Fe Hg Mn Ni

PLI 0.757 0.960 0.856 0.982 0.977 0.966 0.895 0.700 0.955
p-Value 0.003 0.000 0.000 0.000 0.000 0.000 0.000 0.008 0.000

Pb Zn Sand Silt Clay Density pH HI Ad HI ch TRI Ad TRI ch PER

As
p-Value
Cd
p-Value
Cr
p-Value
Cu
p-Value
Fe
p-Value
Hg
p-Value
Mn
p-Value
Ni
p-Value
Pb
p-Value
Sr 0.802
p-Value 0.001
Ti 0.914
p-Value 0.000
Zn 0.885
p-Value 0.000
Sand 0.916 0.795
p-Value 0.000 0.001
Silt  − 0.551  − 0.295  − 0.516
p-Value 0.051 0.328 0.071
Clay  − 0.724  − 0.699  − 0.869 0.155
p-Value 0.005 0.008 0.000 0.614
Dens 0.912 0.901 0.864  − 0.466  − 0.759
p-Value 0.000 0.000 0.000 0.108 0.003
pH  − 0.737  − 0.784  − 0.609 0.028 0.625  − 0.776
p-Value 0.004 0.002 0.027 0.927 0.022 0.002
HI Ad 0.896 0.879 0.809  − 0.298  − 0.781 0.923  − 0.825
p-Value 0.000 0.000 0.001 0.323 0.002 0.000 0.001
HI ch 0.912 0.868 0.834  − 0.298  − 0.801 0.929  − 0.831 0.995
p-Value 0.000 0.000 0.000 0.323 0.001 0.000 0.000 0.000
TRI Ad 0.736 0.626 0.834  − 0.129  − 0.878 0.632  − 0.611 0.698 0.736
p-Value 0.004 0.022 0.000 0.674 0.000 0.021 0.027 0.008 0.004
TRI Ch 0.907 0.890 0.823  − 0.298  − 0.798 0.907  − 0.803 0.995 0.989 0.736
p-Value 0.000 0.000 0.001 0.323 0.001 0.000 0.001 0.000 0.000 0.004
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(especially Cr, Ni and As), therefore being considered 
as unacceptable for human health (Fig. 5).

The Spearman correlation analysis showed that all 
metal(loid)s concentrations (Al, As, Cd, Cr, Cu, Fe, 
Hg, Mn, Ni, Pb and Zn) are positively and strongly 
correlated to each other, except Al and Mn, where 
the correlation was not significant (p value = 0.14), 
Table  4. All metal(loid)s showed a strong positive 
correlation with sand contents and a strong nega-
tive correlation with clay contents, except Al, which 
showed a moderate positive correlation with sand 
contents and a moderate negative correlation with 
clay contents. The soil bulk density showed a strong 
positive correlation with all metals and the sand con-
tent, and a strong negative correlation with the clay 
content. The pH showed a strong negative correlation 
with most metals and with sand content. On the other 
hand, bulk density had a strong positive correlation 
with trace elements and a negative correlation with 
clay and pH. Except Al and Mn, all trace elements 
showed a strong correlation with the HI, TRI, PER 
and PLI indices. The indices also showed a strong 
positive correlation with each other and with sand, 
bulk density and a strong negative correlation with 
clay and pH.

The PCA biplot two-dimensional has provided a 
model of component analysis that clearly separates 
into clusters (Fig.  6). Correlating the variables from 
environmental and human data with metal(loid)s and 
13 study areas, this indicated that about 90% of the 
data variance can be explained by the main compo-
nents representing 84% and 6% the secondary compo-
nents. The reference areas were associated with soil 
pH, particle size of clay and silt. The areas closest to 
collapsed dam areas, like Dam 1, Dam 2, Pi, AF, MC 
and B, were more correlated to the metal concentra-
tions, bulk density and human indexes. Areas that 
were partially affected by the CFM dam failure such 
as SJB, F, SJV, Pa and P did not show such an evident 
correlation with the variables.

Through cluster correlation analysis, it was possi-
ble to verify that the reference areas are significantly 
different from the areas that were totally and partially 
affected by the dam failure (Fig.  7). Areas close to 
the dam failure areas such as Dam 1, Dam 2, Pi, AF, 
MC and B were significantly similar to each other and 
were distinct from all the other areas. The partially 
affected areas (SJB, F, SJV, Pa and P) were similar to 
each other.

Table 4   (continued)

Pb Zn Sand Silt Clay Density pH HI Ad HI ch TRI Ad TRI ch PER

PER 0.878 0.779 0.818  − 0.378  − 0.807 0.883  − 0.763 0.867 0.889 0.757 0.872
p-Value 0.000 0.002 0.001 0.202 0.001 0.000 0.002 0.000 0.000 0.003 0.000
PLI 0.905 0.861 0.824  − 0.272  − 0.821 0.900  − 0.813 0.977 0.982 0.762 0.982 0.934
p-Value 0.000 0.000 0.001 0.370 0.001 0.000 0.001 0.000 0.000 0.002 0.000 0.000

Fig. 6   Bi-dimensional ordination of principal component 
analyses. Variables such as metal concentrations (Al, As, 
Cd, Cr, Cu, Fe, Hg, Mn, Ni, Pb and Zn), granulometry (silt, 
sand, clay), bulk density, pH, PER, PLI, Hazard Index Adult 
(HI Ad), Hazard Index Children (HI ch), total carcinogenic 
risk Adult (TRI Ad) and total carcinogenic risk children (TRI 
ch) were used to assess the potential risk of mine tailings in 
soils after dam collapse of the Córrego do Feijão Mine, in Bru-
madinho Municipality (Minas Gerais State, Brazil)
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Discussion

The number of catastrophic mine tailing dam failures 
is increasing globally. This reinforces the urgency in 
environmental protection actions given the complex 
interaction between a mine, its local operations and 
surrounding communities. The absence of public, 
timely, multi-scale information about the multiple 
dimensions of this interaction appears to be a com-
mon feature in the management of tailings dams 
by mining companies (Owen et  al., 2020, Islam & 
Murakami, 2021). As with natural tragedies, indus-
trial tragedies involve serious disruption to the func-
tioning of a community or a society due to hazard-
ous events interacting with conditions of exposure, 
vulnerability and capacity, leading to human, mate-
rial, economic and/or environmental losses and 
impacts (UNDRR, 2017; Owen et  al., 2020). Cur-
rently, there are still few studies about the impact of 
mine tailings on terrestrial ecosystems (Buch et  al., 
2020; Davila et al., 2020). A minority of research is 
tangible to the present study, especially in reference 
to soils impacted by the CFM dam collapse (Siqueira 
et al., 2022; Buch et al., 2023). Based on geochemical 
data reported in this study, the soil properties indicate 
changes in them and their quality after tailing depo-
sition. Overall, the soil from the areas is very acidic 
and presents a high soil bulk density (> 1.75 g cm−3). 
This implies a limitation to the root development and 
implicitly in poor soil conditions for biological devel-
opment (fauna) hindering, e.g., the passage of air and 
water favored by rooting.

Mine tailings have a wide variety of mineralogi-
cal components rich in trace metals and these can 
suffer geochemical evolution controlled not only 
by the original ore paragenesis, but also depending 
on the mineral processing techniques and weather-
ing conditions (Lemos et al., 2021). Since the eight-
eenth century, mining activities have been carried out 
in the Minas Gerais State (Brazil), where the CFM 
dam is situated. The tailing dispersion over time in 
this region has attracted strong worldwide attention 
and aroused great concern for aquatic and terrestrial 
ecosystems due to metal-pollution and degradation 
(Buch et al., 2021; Davila et al., 2020). Furthermore, 
the recurrence in dam failures has caused intensive 
impacts on local economic-social reflecting at the 
national level (Buch et al., 2023). In the face still of 
such situations, the region has strong agricultural and 
livestock activities, causing concern in relation to the 
soil quality, which may indirectly affect human health 
(by the indirect consumption/ingestion) (Bonanomi 
et al., 2019). In this study, the As and Cd concentra-
tions in samples from Bumadinho areas exceeded 
the threshold values established by CONAMA and 
COPAM-MG, which have been analogous to those 
found in water and sediments (CPRM, 2019b; Ver-
gilio et  al., 2020; Thompson et  al., 2020), however 
contrasting to those reported by Siqueira et al., 2022, 
whose values were below the detection limits. In the 
areas of total and partial contamination, the same 
similarity observed in the soils for Cr, Cu, Hg, Ni and 
Pb values, which were above to those established for 
soil quality, has also been evidenced in water bodies 
affected by CFM mud after their collapse (CPRM, 
2019b; Teramoto et al., 2021; Pacheco et al., 2022).

The enrichment factor, suggest that in the 11 
impacted areas (in partial or total levels), prevails a 
strong anthropogenic interference due to the CFM 
dam rupture, despite regional geogenic contribu-
tions. In these study areas, the enrichment of Cd, As, 
Hg, Cu, Pb and Ni in riparian soils was from 2 to 40 
times greater than the levels found in years prior to 
failure. Similarly, anomalous contents of Fe and Mn 
have also been reported in the literature in sediment 
and water samples, as a consequence of the CFM 
dam collapse (Thompson et al., 2020; Pacheco et al., 
2022). In almost ubiquitous behavior in riparian soils 
located around dam failure sites, as well as in flood-
plain soils and other soil types close to rivers and 
other river corridors, they tend to mobilize potentially 

Fig. 7   Dendrograms obtained by cluster analysis, discriminat-
ing by the similarity among the 13 study areas after collapse 
of the Córrego do Feijão Mine, in Brumadinho Municipality 
(Minas Gerais State, Brazil)
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toxic elements, indicating outlier than natural values 
(Li et  al., 2014). Chemically, this can be explained 
by the higher affinity of the most metal(loid)s with 
Fe oxyhydroxides and organic material, a component 
which is very high in these soils, resulting in greater 
adsorption and cohesion (Grybos et al., 2007; Kabata-
Pendias, 2011). The failure of the Pb–Zn mine dam 
in Chenzhou (China on 25 August 1985) caused by 
heavy rains inundating the Dong River valley resulted 
in soils anomalous concentrations of metal(loid)s (Liu 
et al., 2005). As happened in the region after collapse 
of CFM dam, a large volume of mine tailings from 
Chenzhou dam was deposited in soils, strips of farm-
land 400 m wide along both river banks were covered 
with a 15-cm-thick layer of mining sludge. Even dec-
ades after failure of Chenzhou dam, the unremediated 
soil showed element concentrations far in excess of 
the Chinese soil maximum allowable concentration 
standard (Liu et al., 2005; Lyu et al., 2019). The dis-
persion of pollutants may be higher and increase its 
toxicity over time, when it is influenced by highly 
mobile and variable environmental components such 
as rainfall. In this context, areas that were partially 
affected by the collapse of CFM dam, which did not 
receive direct deposition of tailings, were contami-
nated due to overflow of the Paraopeba river under 
intense periods of rain, indicating also the highest 
metal(loid)s contents in riparian soils when compared 
with the preexisting concentrations (Mendes et  al., 
2023). The difficulty measuring the environmental 
risks after CFM tailings deposition in the Paraopeba 
River channel due to contamination substantial fluc-
tuates in function of season has been related in the lit-
erature (Teramoto et al., 2021; Mendes et al., 2023). 
It has also been supposed that the total and dissolved 
concentrations of metals increase during the rainy 
season by resuspension, associated with larger stream 
flows that tend to remobilize sediments and tailings 
from the stream bed, raising the surface area available 
for interactions, especially chemical and biological 
(Lebron et al., 2020; Teramoto et al., 2021).

Pollution load and potential ecological risk indices 
also expressed an analogous tendency to pollution 
by mine tailings in soils, confirming for the studied 
areas, the current status of high pollution and of very 
strong risks to biological communities (local fauna 
and flora). Generally, sites near to collapsed dam 
areas are the most polluted both in soils and in water 
bodies, due to the greater intensity of the spilling 

tailing waves and to the more concentrated volume 
of pollutants received (Custodio et  al., 2020; Khos-
ravi et  al., 2019; Ordóñez et  al., 2011). Although it 
seems obvious that areas closest to sources of pollu-
tion tend to be the most affected, over time the oppo-
site can also be expected by particular reasons inher-
ent to local characteristics, e.g., topography, rainfall, 
moisture, biological activity, anthropic interferences, 
management, land use and various natural attenuating 
factors (Buch et  al., 2021). Exogenous and intrinsic 
factors directly influence to chemical species changes 
in soils the mobility, resulting in distinct effects on 
mobility, bioavailability and biomagnification of Cd, 
Pb, Hg, As, Cr and Ni (USEPA, 2001; Kabata-Pen-
dias, 2011; Luo et al., 2012; Buch et al., 2021). Metal 
ions in soil solution generally are more available for 
a variety of processes, including plant uptake and 
transport; however, metal ions in the solid phase may 
become available if environmental conditions change 
(Balali-Mood et al., 2021). Mining regions naturally 
presents metal(loid)s concentrations from the parental 
lithology and mining activities (e.g., along decades 
or centuries like this study demonstrates) (Parviainen 
et  al., 2022; Rana et  al., 2021). In soils, dissolution 
kinetics may be one of the main factors control-
ling the availability of mineral-derived metal ions 
(Chaturvedi et  al., 2007; Rashed, 2010). Generally, 
the elemental and sulfide forms of a metal are less 
soluble in biological fluids (e.g., in mammalian spe-
cies: gastrointestinal tract fluid, sweat, or fluid in the 
alveoli of the lungs) and hence less bioavailable than 
the oxide, hydroxide, carbonate, and sulfate forms of 
the same metal. However, notable exceptions to this 
rule of thumb exist, such as the elevated pulmonary 
and dermal bioavailability of elemental mercury; the 
low solubility of nickel oxides (in the range of nickel 
sulfide); and the low solubility of chromium hydrox-
ide, the most prevalent form of chromium in soils 
(Kabata-Pendias, 2011).

Regarding the human health risk assessment found 
in this research, the values of HQ indices for the 
metal(loid)s exceed limits values considered safe for 
the development of non-carcinogenic diseases, espe-
cially for the children’s group. For this group, the 
integration and individual interpretation of the three 
exposure pathways (HIs) indicated the children as tar-
get organism more sensitive to effects of mine tailings 
in soils. Studies evaluating floodplain soils contami-
nated with iron ore tailings also indicated for metals, 
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HQ’s values greater than 1 for children (Davila et al., 
2020; Buch et al., 2022). In communities from mine 
regions, the greater toxicity propensity of children has 
been observed from 7 to 25 times, when compared to 
adults groups Qing et al, 2015; Cocãrţã et al., 2016; 
Adimalla, 2020; Kumar et  al., 2022a, 2022b). The 
possible associated reasons are related to a higher rate 
of child absorption and sensitivity (e.g., hemoglobin 
affinity to heavy metals) (Adimalla, 2020; Kumar 
et  al., 2022a, 2022b); greater vulnerability to the 
ingestion of hazardous materials due to their behav-
ior, since the brain and nervous system are still being 
formed and do not have sufficient capacity to identify 
and/or distinguish materials that provide a danger 
alert (Kumar et al., 2022a, 2022b); and physiological 
conditions, which tend to be more frail than adults, 
as well as higher respiration rates per unit of body 
weight and increased gastrointestinal absorption of 
some substances (enHealth, 2012; Isley et al., 2022). 
Regardless of the mining region, anywhere in the 
world, the people’s susceptibility to non-carcinogenic 
adverse effects is the same, like hyperpigmentation, 
keratosis and vascular complications (Gore et  al., 
2022; Kumar et al., 2022a, 2022b).

Under a geochemical point of view, the variability 
in the hazard index may be associated with inherent 
factors (such as geogenic and anthropogenic) to the 
mine types (Li et  al., 2014; Liu et  al., 2005). In the 
case of mines from Pb–Zn, Mn and W (tungsten), 
the HI values greatly exceed 1, whereas from Cu, Au 
(gold) and Fe the HI values present values up to 1 (Li 
et  al., 2014). Such data underpin our findings about 
low HI values, once the mining activity of the region 
is iron ore extraction.

Here, it is necessary to emphasize that HQ and RI 
indices are separately calculated for each metal. Nev-
ertheless, they are components of a mixture like the 
mine tailings (whose composition is of extreme varia-
tion in terms of quantity and chemical element diver-
sity). Thus, the safety level to health should consider 
not only the isolated toxicity of a particular element, 
but also the joint and integrated effect between the 
components of a mixture (e.g., by aditism and syner-
gism processes) (Zhang et al., 2012; Zhu et al., 2007).

In respect to the carcinogenic risks for adults and 
children groups, all areas affected by CFM tailings 
(except reference areas) indicated danger to health 
due to presence of As, Cd, Cr, Ni and Pb in soils. This 
propensity is consistent with geochemical studies in 

mine type different, which evidenced As high contri-
bution to the carcinogenic index, showing an As con-
tribution average of 5.8 × 10−4 (7.6 × 10 − 4) in mine 
antimony, 1.3 × 10−5 (6.9 × 10−6) in coal, 4.7 × 10−5 
(7.1 × 10−5) in copper, 1.1 × 10 − 5 (7.7 × 10−6) in 
gold, and 1.7 × 10−4 (2.0 × 10−4) and in lead–zinc 
mining areas (Li et  al., 2014). Recent studies in 
three villages close to the Rio Tinto district (South-
west Spain) situated close to a huge Cu mining com-
pany (one of the largest in the world) investigated 
the impact on health of this type of mining. The area 
faces a complex issue of atmospheric pollution result-
ing from mining processes, leading to dust contain-
ing predominantly As/Pb, alongside noteworthy Cu 
and Zn concentrations and a significant contribution 
of the mine to particulate matter pollution together 
with other external sources. Carcinogenic assess-
ments of metals by inhalation indicated maximum 
permissible levels of exposure to particulate matter 
into the atmosphere (Boente et  al., 2023). In human 
and animal organisms, the input of metal(loid)s by 
direct ingestion has been identified as the main expo-
sure route in soils contaminated by mine tailings 
(Adimalla, 2020; Buch et al., 2023). However, these 
elements may be input in organisms via indirect by 
enriched crop ingestion, which is strongly adsorbed 
by soil solution, soil particles as well as plant roots 
and on the surface of leafy vegetables (Buch et  al., 
2023; Deng et al., 2019; Kabata-Pendias, 2011).

The soil and water contamination by mining 
waste from more than 160,000 mines abandoned in 
the Western USA (Arizona, California, Colorado, 
Idaho, Montana, Nevada, New Mexico, Oregon, 
South Dakota, Utah, Washington, and Wyoming) 
has generated along time chronic damage discrep-
ant by metal(loid)s in Native American communities 
(Lewis et  al., 2017). In abandoned areas with gold 
mine tailings from South Africa, the carcinogenic 
risks derived the contaminated soils have been con-
sidered very high both for children of 3 × 10−2 (As) 
and 4 × 10−2 (Ni) and for adults of 5 × 10−3 (As) and 
4 × 10−3 (Ni) (Ngole-Jeme & Fantke, 2017). In this 
African region, the aggravating to the high potential 
toxicity of metals is associated with the nutritional 
debility and to HIV virus prevalence, contributors to 
the impairment immune systems (Emmanuel et  al., 
2018; Ngole-Jeme & Fantke, 2017).

Interactions between metal(loid)s and organ-
isms extra and intracellularly induce adverse 
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effects (Ding et  al., 2022). Chemical groups on 
the cell surface can bind extracellular metal(loid)
s, which interfere with the cellular uptake of nutri-
ents, in addition to causing structural damage to 
cells (Kumar et  al., 2022a, 2022b). Assessments 
in populations living in the Panasqueira mine area 
of central Portugal found a higher internal dose of 
elements such as As, Cr, Pb, Mn, Mo, and Zn in 
exposed individuals (Coelho et al., 2014). Further-
more, metal(loid)-contamination in the Panasque-
ira mine area induced genotoxic damage in indi-
viduals working in the mine or living beings in 
the area (Coelho et al., 2014). Long-term exposure 
to metal(loid)s may have toxic effects on various 
organ systems and cause various clinical symp-
toms. The target of these elements, such as As 
and Cd, is bone tissue which results in toxic and 
chronic effects (Lewis et  al., 2017). Various stud-
ies from the literature has demonstrated the level 
of metals in the blood of people from communities 
that inhabit regions where mining activities pre-
dominate (Gil et al., 2006; Lewis et al., 2017; Adi-
malha and Wang, 2018; Paulelli et al., 2022). Such 
evidence has been especially noted in the popula-
tion of Brumadinho-MG, Brazil (in the same region 
studied of this paper) in blood and urine samples, 
showing high levels of As, Cd, Hg and Pb (Mota 
et al., 2022; Paulelli et al., 2022). The intense and 
continuous disorder caused by metal (loid)s in the 
biological organism has been widely related to 
innumerable acute and chronic diseases (Bienert 
& Tamas, 2018; Rehman et  al., 2022). Severe 
oxidative damage may be induced by metal(loid)
s when they enter cells through non-specific che-
miosmotic metal uptake systems or certain trans-
porters (Bienert and Tamás, 2018; Kumar et  al., 
2022a, 2022b). Intracellular metals can replace 
metal cofactors in active centers of enzymes, 
causing in denaturation and inactivation of these 
enzymes (Balistrieri et  al., 2018). DNA damage 
may be induced by intracellular metals decreasing 
the DNA content and destroying the DNA structure 
(Ding et al., 2022; Tibane & Mamba, 2022).

There is no doubt that the economic benefit 
of mining activities is exorbitantly high. How-
ever, the risk to human and environmental health 
accompanies this proportion. Targeted remedia-
tion techniques must be implemented urgently 
and are needed to mitigate carcinogenic potential 

risks posed by mining tailings to human health and 
to ecological. Since such “silent,” long-term and 
intensive impacts tend to unbalance populations of 
animal and plant species, extinguishing them and 
interfering with the food chain and the functional-
ity of ecosystems (Buch et  al., 2021; Mota et  al., 
2022; Ngole-Jeme & Fantke, 2017; Paulelli et  al., 
2022).

Conclusion

Indices of human health and geochemical data  con-
gruently reinforce evidence of high pollution levels, 
potential ecological risks and propensities to develop 
non-cancerous and cancerous diseases for the local 
community in all areas. Future contributions derived 
from these data will allow deeper analysis and sub-
jective less of the complex effects of metal(loid)s in 
different biological species through (eco)toxicologi-
cal studies (in terrestrial ecosystem dwellers). This 
information is in process of publication by the same 
authors of this paper. In addition, it will provide a 
basis for more specific investigations about certain 
exogenous and endogenous factors inherent to the 
synergistic and summative processes that occur in 
such regions.

In all areas affected by CFM tailings, metal val-
ues exceed those established by Brazilian guidelines 
for soil quality for at least two elements. These val-
ues also exceed the maximum values allowed in other 
countries to maintain soil quality without causing 
damage to human and ecological health. The findings 
confirm a substantial anthropogenic contribution to 
metal enrichment in riparian soils as a consequence 
of the CFM dam collapse. Spearman correlation 
matrixes and PCA analysis emphasize serious con-
tamination, especially associated with As, Cd, Cr, 
Hg, Ni and Pb, suggesting that the areas most com-
promised by the negative soil quality are those closest 
to the dam break areas (Dam1, Dam 2, Pi, AF, MC 
and B). However, this does not disregard or attenuate 
the observed pollution impacts in the other areas of 
the study.

It is interesting to point out that even after five 
years since the CFM dam failure,  intensive changes 
caused in the soil properties still remain unchanged, 
and natural attenuation has not been  evidenced 
in the investigated areas. Furthermore, so far no 
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interventionist recovery measures in these areas have 
been employed and implemented.

 The propensity for the development of diseases as 
a consequence of prolonged exposure to environmen-
tal matrices contaminated with metals poses risks to 
human health. Effective policies for the management 
of mine tailings must be required by the local popu-
lation to the competent environmental bodies. Thses 
together with mine companies must be held respon-
sible for the inherent risks, ensuring collective health 
and environmental preservation/restitution.
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