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coal combustion, industrial waste and Mo smelting 
had the highest contributions to noncarcinogenic and 
carcinogenic risks. Overall, for effective environmen-
tal management in agricultural soil, the framework of 
SORA was verified as an effective tool in the iden-
tification of the priority control of HMs and their 
sources.
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Introduction

Heavy metal(loid) (HM) pollution in agricultural soil 
is of widespread concern due to the toxicity and bio-
accumulation of HMs and their potential risk to crops 
and human health (Bhuiyan et  al., 2021; Gui et  al., 
2023; Yang et  al., 2018); this is especially true for 
the issue surrounding metal smelters because of the 
much higher risk faced by the soil than in other areas 
(Zhang et  al., 2023a). High concentrations of soil 
HMs are frequently found near smelting sites, includ-
ing As, Cd, Cu, Mn, Ni, Pb, and Zn (Haab et  al., 
2021; Li et  al., 2022, 2023). The National Soil Pol-
lution Survey Bulletin issued by the Chinese govern-
ment indicated that 19.4% of farmland soil exceeded 
Chinese environmental quality standards, especially 
considering inorganic toxic metals in areas sur-
rounding smelting enterprises and parks (Zhou et al., 
2022a). HMs resulting from metal smelting can enter 
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agricultural soil through wastewater discharge, atmos-
pheric deposition and leaching from tailing residues 
(Li et  al., 2023). Through inhalation, ingestion and 
skin contact or bioaccumulation into the food chain, 
these compounds can have various adverse effects on 
human health (Tan et al., 2023; Zhang et al., 2023a). 
It should be noted that, along with the metal smelt-
ing, soil HMs can also derive from soil-forming par-
ent materials, atmospheric deposition, industrial 
waste, inputs of fertilizers and agrochemicals, and 
traffic emissions (Li et al., 2022; Ma et al., 2023). So, 
the key issue in metal smelting area is, which HMs 
are most polluted and which source ranks as the top 
risk contributor? Therefore, effectively identifying 
the sources and assessing the potential risk of HMs 
and different sources surrounding metal smelters is of 
vital importance to control the level of soil pollution 
(Li et al., 2023).

The existence of various polluting metallic ele-
ments due to the geological features and metalloge-
netic processes, complex production and processing 
processes of metallic elements (such as material prep-
aration, smelting, fuming, and refining), and spatial 
transport behaviors of different HMs before soil entry 
make it challenging to accurately identify the sources 
of HMs in soil influenced by multimetal smelting 
activities. At present, multiple methods have been 
developed to trace the sources of HMs in soil, such 
as principal component analysis (Wang et al., 2020), 
positive matrix factorization (PMF) (Li et al., 2023), 
isotope fingerprinting (Wang et  al., 2021a, 2021b), 
machine learning (Shi et al., 2022) and geographical 
detection (Sheng et  al., 2023). Among these meth-
ods, isotope fingerprinting is high-cost and can only 
trace the source of a single or limited metal. Machine 
learning and geographical detectors require a rela-
tively large quantity of data of different independent 
variables on the basis of a large sample size. Princi-
pal component analysis and the PMF model are both 
typical receptor source apportionment models, and 
the PMF model has the advantages of nonnegativity 
constraints on the factor matrixes, error estimations 
(bootstrap, displacement, and bootstrap enhanced 
by displacement), requirement of small sample size, 
no requirement for detailed emission profiles of 
specific sources prior to analysis, and the ability to 
obtain more accurate apportionment results (Jiang 
et al., 2017; Liu et al., 2018; Tan et al., 2023). Spatial 
interpolation analysis by a geographical information 

system (GIS) and statistical analysis (e.g., cluster 
analysis and correlation analysis) are complements 
to source apportionment because some valuable 
information can be obtained, such as the correla-
tion between different metals and the distribution of 
highly polluted areas and hotspots (He et  al., 2023). 
Hence, an integrated method combining source 
apportionment models and statistical analysis is supe-
rior to a single method in identifying the sources of 
soil HMs (Tan et al., 2023).

Studies have shown that long-term exposure to 
HMs, particularly Cd, As, and Pb, increases the risk 
of various diseases and even carcinogenic effects, 
such as liver, kidney, nervous system, blood and bone 
diseases (Li et al., 2023; Tan et al., 2023). Most cur-
rent studies associated with ecological and health risk 
assessment of soil HMs focus on the assessment of 
the elemental content but lack the consideration of the 
risk contributions of different pollution sources (He 
et al., 2023), which is detrimental to effective pollu-
tion prevention and risk reduction and safeguarding 
of the quality of regional agricultural products (Jiang 
et al., 2017). In contrast, the framework of source-ori-
ented risk assessment (SORA), by combining health 
risk evaluation with source apportionment to resolve 
the risk contribution of different pollution sources, 
has been gradually recognized to facilitate the control 
of pollution sources (He et al., 2023; Li et al., 2023; 
Liu et al., 2018; Tan et al., 2023; Zhang et al., 2023a); 
however, the application of this framework in soil 
around metal-smelting industries is still limited.

Therefore, the main objectives of this study were 
(1) to analyze the characteristics of HM pollution in 
agricultural soil around a typical multimetal smelting 
area; (2) to identify the main sources of HMs by an 
integrated approach of the positive matrix factoriza-
tion model, ordinary kriging interpolation and hier-
archical clustering analysis (PMF-OK-HC); (3) and 
to further build the framework of source-oriented 
risk assessment (SORA) to identify the priority con-
trol sources through PMF-OK-HC and probabilistic 
health risk assessment by Monte Carlo simulations. 
Overall, this study provides an effective framework 
for the environmental management of HM-related 
pollution sources in multimetal smelting areas.
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Materials and methods

Study area, sample collection and chemical analysis

The study area is located in western Henan Prov-
ince, Central China, on the southern side of the Yel-
low River (Fig.  1). This area exhibits a continental 
monsoon semiarid climate, with an annual average 
temperature of 14.2  °C and an annual rainfall gen-
erally varying between 400 and 700  mm. The main 
crops grown include wheat, maize and peanuts, 
while apples and forsythia are well-known local farm 
products in terms of their planting area and produc-
tion. Due to its rich mineral resources, this area has 
become a flourishing smelting base for lead (Pb), zinc 
(Zn), gold (Au), silver (Ag), copper (Cu), molybde-
num (Mo), iron (Fe) and aluminum (Al) in China.

A total of 90 soil samples were collected at depths 
from 0 to 20  cm in the agricultural surface layer in 
October 2022. Soil samples were collected by mix-
ing subsamples obtained at 5 points, placed in self-
sealing polyethylene bags and returned to the lab. 
The locations of the sampling points were recorded 
by a global positioning system (GPS). All soil sam-
ples were naturally dried at room temperature and 

thoroughly mixed before sieving with 0.15-mm mesh. 
The soil samples were digested (HCl-HNO3-HF), 
and the concentrations of metallic constituents were 
then determined via inductively coupled plasma‒
mass spectrometry (ICP‒MS), including a total of 
16 metallic constituents, namely, Cd, Pb, As, Cu, 
Cr, Zn, Ni, Al, Sc, Mn, Fe, Ge, Se, Rb, Sr and Mo. 
Quality control was performed by parallel samples 
and standard reference substances (GBW07401). The 
confidence level of the metals analyzed in the stand-
ards was 90%, the relative standard deviation of the 
repeated measurements was less than 10%, and the 
recoveries of the various HMs ranged from 82.5 to 
118.3%. The instrumental detection limits of HMs are 
listed in Table S1.

Pollution assessment

Nemerow integrated pollution index

The Nemerow integrated pollution index (Pn) was 
used to reflect the pollution levels of HMs at each 
site (Nemerow, 1974; Pecina et al., 2021). This index 
highlights the impact of the major HMs and can be 
calculated as follows:

Fig. 1  Location of the 
sampling sites
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where Pi is the single-factor pollution index of HM 
i; Ci is the measured concentration of HM i in the 
soil; BV is the background concentration of HM in 
the study area (Table 1); and Pimax and Piave are the 
maximum and average values of Pi, respectively, for 
all the measured HMs in the soil. The pollution lev-
els were divided into five classes according to the Pn 
value (Table S2).

Geoaccumulation index

The geoaccumulation index (Igeo) is a suitable indi-
cator of the effects of natural variability and anthro-
pogenic factors on the distribution of HMs (Muller 
et al., 1969). Igeo can be calculated as follows:

where Ci is the measured content of soil HM i (mg/
kg); BV is the regional background value of a given 
HM (Table 1); and k is the correction factor, generally 

(1)Pi = Ci∕BVi

(2)Pn =

√

(

Piave

)2
+
(

Pimax

)2

2

(3)Igeo = Log2

[

Ci

k × BVi

]

chosen as 1.5. The pollution levels of the HMs were 
divided into seven classes according to the Igeo value 
(Table S3).

PMF source apportionment analysis

The PMF model is a typical receptor source appor-
tionment model based on the least squares method 
(Jiang et al., 2017; Liu et al., 2018; Paatero & Tapper, 
1994). In the PMF model, the original concentration 
matrix (Eij) is decomposed into a factor profile matrix 
(Aik), a contribution matrix (Bkj) and a residual error 
matrix (εij). εij can be obtained by minimizing the 
objective function Q, and in the case of a minimal Q 
value, the PMF model outputs the optimization result. 
The PMF model can be expressed as follows:

where Eij is the concentration of the jth element in 
soil sample i; Aik is the contribution of the kth source 
to soil sample i; Bkj is the concentration of the jth 
element in source k; σij is the uncertainty in the jth 

(4)Eij =

p
∑

k=1

AikBkj + �ij

(5)Q =

n
∑

i=1

m
∑

j=1

(

�ij

�ij

)2

Table 1  Statistics of the 
HM concentration (mg/kg) 
and exceedance rate

BV denotes the background 
values of the HMs in 
the study area (HNDSS, 
2004; CNEMC, 1990); 
exceedance rate 1 is 
based on the BV values 
as a reference standard; 
RSV denotes the risk 
screening values of HMs 
derived from the Soil 
Environmental Quality 
Risk Control Standard 
for Soil Contamination 
of Agricultural Land 
(GB 15618-2018); and 
exceedance rate 2 is based 
on the RSV as a reference 
standard. CV Coefficient of 
variation

HMs Range Mean BV CV (%) Exceedance 
rate 1 (%)

RSV Exceedance 
rate 2 (%)

Cr 62.2 ~ 109 74.2 64.4 11.5 92.2 250 0.0
Ni 25.3 ~ 55.0 30.0 28.4 12.3 66.7 190 0.0
Cu 25.2 ~ 578 101 22.2 112 100 100 23.3
Zn 65.6 ~ 449 110 87.6 51.5 60.0 300 2.2
As 6.9 ~ 64.6 25.5 12.4 76.7 67.8 25.0 32.2
Cd 0.2 ~ 7.1 1.3 0.078 82.1 100 0.6 76.7
Pb 29.0 ~ 3721 487 22.5 154 100 170 57.8
Al 16,787 ~ 57,139 32,796 6.34 33.5 100 – –
Sc 12.8 ~ 26.5 18.4 11.63 12.3 100 – –
Mn 569 ~ 1026 690 531 10.4 100 – –
Fe 25,492 ~ 53,757 32,668 2.79 15.4 100 – –
Ge 1.9 ~ 2.7 2.3 1.7 8.4 100 – –
Se 5.6 ~ 42.6 21.3 0.201 41.9 100 – –
Rb 69.0 ~ 128 95.3 94 10.3 54.4 – –
Sr 101 ~ 306 163 160 23.5 43.3 – –
Mo 0.2 ~ 6.6 1.1 0.78 84.1 60.0 – –
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element in sample i; n is the number of soil samples; 
and m is the number of chemical elements.

When the concentration of chemical elements is 
lower than or equal to their corresponding method 
detection limits (MDLs; refer to Table S1), the uncer-
tainty can be calculated as:

Conversely, it can be calculated as:

where σ is the relative standard deviation and c is the 
elemental concentration.

The concentrations of 16 elements and their uncer-
tainty data were substituted into the PMF model. 
The total mass of the metals was defined as the total 
variable (SUM). The fitting performance for each 
element was evaluated by the combination of cat-
egories, signal-to-noise ratio (S/N), and coefficient 
of determination (r2) (Table  S4), and many samples 
exhibited residuals beyond + 3 and − 3, while the spe-
cies of Ni and Ge were categorized as weak species 
(Table S4). The number of factors ranging from 3 to 6 
was examined by checking the Q value and the resid-
ual analysis, and then a total of 200 base model runs 
were employed under different numbers of factors. 
For each PMF model employed, the lowest Q value 
(robust) was chosen as the optimal solution. After-
ward, fpeak analysis of this solution was performed to 
evaluate the rotational ambiguity (Table  S5). Model 
uncertainties were estimated by the displacement and 
bootstrap techniques (Table S6, Table S7). Finally, a 
4-factor analysis model yielded an invariably optimal 
solution.

Probabilistic health risk assessment

The USEPA risk assessment model (USEPA, 2011) 
was used to quantify the carcinogenic and noncarci-
nogenic risks of the soil HMs. Regarding noncarcino-
genic risks, the HMs include As, Cd, Cu, Cr, Ni, Pb, 
Zn and Mn, while regarding carcinogenic risks, the 
HMs include As, Cd, Cr, Ni and Pb. Different expo-
sure pathways of oral ingestion of soil particles, inha-
lation of soil particles and dermal contact with soil 
were considered for the adult and child populations in 
health risk assessment.

(6)unc = 5∕6MDL

(7)unc =

√

(� × c)2 +MDL2

The noncarcinogenic risk can be obtained as:

where  ADDing,  ADDinh, and  ADDderm denote the 
average daily exposure of HMs via the ingestion, 
inhalation, and dermal contact pathways, respectively, 
mg/(kg-d); C denotes the content of HMs (mg/kg); 
EF is the exposure frequency, d/a; ED is the exposure 
duration (year); BW is the body weight (kg); AT is 
the average exposure time (day);  HQi is the noncarci-
nogenic risk for HM i; and RfD is the reference dose 
mg/(kg-d) of HM. Moreover, HI is the sum of the HQ 
values for all HMs. HQ ≤ 1 or HI ≤ 1 indicates a low 
noncarcinogenic risk, while HQ > 1 or HI > 1 indi-
cates a high noncarcinogenic risk and requires atten-
tion (NHCPRC, 2021).

The carcinogenic risk can be obtained as:

where LADD is the lifetime average daily exposure 
dose, mg/(kg-d); LT is the lifetime exposure time; 
 SFi is the slope factor (kg-d/mg); CR is the car-
cinogenic risk of a given HM; and TCR is the sum 
of the CR values for all HMs. The other parameters 

(8)ADDing =
C × Ring × EF × ED

BW × AT
× 10−6

(9)ADDinh =
C × Rinh × EF × ED

PER × BW × AT

(10)

ADDderm =
C × SA × AF × ABS × EF × ED

BW × AT
× 10−6

(11)HQi = ADDi∕RfDi

(12)HI =
∑

HQi

(13)LADDing =
C × Ring × EF × ED

BW × LT
× 10−6

(14)LADDinh =
C × Rinh × EF × ED

PER × BW × LT

(15)

LADDderm =
C × SA × AF × ABS × EF × ED

BW × LT
× 10−6

(16)CRi = LADDi × SFi

(17)TCR =
∑

CRi
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were the same as those in the above noncarcinogenic 
risk assessment. Generally, a CR or TCR lower than 
1 ×  10–6 indicates that there is no obvious carcino-
genic risk, a CR or TCR between 1 ×  10–6 and 1 ×  10–4 
indicates that exposure to HMs may cause negative 
effects on human health, and a CR or TCR higher 
than 1 ×  10–4 indicates a potentially severe cancer risk 
that requires caution (NHCPRC, 2021).

Probabilistic health risks were determined by 
Monte Carlo simulations (Oracle® CrystalBall (ver-
sion 11.1.2.4)). The descriptions and values of the 
above parameters are listed in Table S8. The param-
eters of the chronic reference dose (RfD, mg/(kg-d)) 
and slope factor (SF, (kg-d)/mg) for each HM are 
given in Table  S9. The parameters were obtained 
via 10,000 Monte Carlo simulations to ensure robust 
results.

Data analysis

Statistical analysis was performed in SPSS 22.0 (IBM 
Corp. Armonk, NY). Origin 9.1 software (OriginLab, 
Northampton, MA) was used to generate graphs. A 
hierarchical clustering heatmap was analysed by the 
“pheatmap” package in R studio. Maps of the study 
area and interpolation analysis (ordinary kriging) of 
the HM concentrations were performed in ArcGIS 
10.2 software.

Results and discussion

Concentrations of HMs in agricultural soil

The mean concentrations of Cr, Ni, Cu, Zn, As, Cd 
and Pb were 74.2 mg/kg, 30.0 mg/kg, 100.6 mg/kg, 
110.3 mg/kg, 25.5 mg/kg, 1.3 mg/kg and 486.5 mg/
kg, respectively (Table 1). Compared to the BVs, the 
exceedance rates for most metals were high (even 
reaching 100% for some metals), including 16.7 and 
21.6 times higher rates than the corresponding BV 
values for Cd and Pb, respectively, and even thou-
sands of times higher rates than the corresponding 
BV values for Fe and Al. This occurs because the 
study area is a high-background metal area. Com-
pared to the screening values of agricultural land, the 
exceedance rate of Cd was the highest, at 76.7%. The 
exceedance rate of Pb was also high, at 57.8%, while 
the exceedance rates of As, Cu and Zn were lower, 

at 32.2%, 23.3%, and 2.2%, respectively. The contents 
of Cu and Pb greatly fluctuated, with coefficients of 
variation (CVs) of 112% and 154%, respectively, 
while Cr and Ni showed the least fluctuation, with 
CVs lower than 15%. The high CV values indicate 
high spatial heterogeneity and verify that some of the 
sampling points may have been notably influenced 
by pollution sources. In previous studies (Zhou et al., 
2023), relatively high CV values of Cd, As, Pb, Cu 
and Zn were found and verified that these HMs were 
strongly influenced by external inputs such as mining 
activities, vehicle exhaust, smelting waste, pesticides 
and fertilizers.

Evaluation of HM pollution

The Pn index value at the different points was 
15.7 ± 21.7 (mean ± standard deviation), reaching the 
heavy pollution level overall (Fig.  2a) because the 
study area is rich in metallic mineral resources and 
has high BVs for the metals. Igeo (Fig. 2b) showed that 
97.8% of the soil samples did not exhibit Cr and Mn 
pollution (Igeo ≤ 0), 15.6% and 2.1% of the soil sam-
ples exhibited no to moderate Zn and As pollution 
(0 < Igeo ≤ 1), 40% and 20% of the soil samples were 
heavily polluted by Cd and Pb (3 < Igeo ≤ 4), respec-
tively, and 5.2% and 11.5% of the soil samples were 
extremely polluted by Cd and Pb (Igeo > 5), respec-
tively. Li et  al. (2023) found that long-term nonfer-
rous industrial activities resulted in high Igeo values 
(2–8) of As, Cd and Pb in surrounding agricultural 
and woodland soils in Southwest China (Li et  al., 
2023).

Source apportionment of HMs

As shown in Fig. 3 (red marks), some elements were 
significantly correlated (p < 0.01), such as the groups 
of Cu–Pb‒Zn and Al–Sc–Cr–Mn–Fe–Ni–Rb‒Sr; 
the higher the correlation, the stronger the homol-
ogy. Furthermore, the HC analysis in Fig.  3 shows 
that these metals can be divided into 3–5 categories, 
indicating a potential common source of the metals in 
the same category. The study area contains abundant 
metallic mineral resources and densely distributed 
nonferrous metal smelters. Different types of metal-
lic smelters have various processing procedures, pol-
lutant emissions, and discharge paths. Before HMs 
migrate into soil, their transportation characteristics 
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may also be influenced by regional topographical 
conditions and meteorological conditions. In contrast, 
considering the associated nature of intermetals from 
polymetallic ores and the similar transport pathways 
before entering soil (Huang et  al., 2023), auxiliary 

information on the type and distribution of industrial 
enterprises, topographical and geomorphological 
conditions, and meteorological conditions were also 
introduced into PMF analysis. Finally, four sources 
were identified and are shown as follows.

Fig. 2  Spatial distribution of the Nemerow pollution index (a) and geoaccumulation index of HMs (b)
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Factor 1 exhibited a notably high contribution of 
As (63.8%) and minor contents of other elements 
(lower than 20%). As is a typical tracer of coal com-
bustion (Liu et al., 2018), and a large amount of coal 
is required as power during the smelting of minerals, 
of which the process may release substantial amounts 
of As (Zhang et al., 2023c). The study area is located 
in the valley of Yellow River (China) with an altitude 
of approximately 300 m, while the elevation increases 
to more than 2000 m on both sides of the valley. The 
prevailing winds in the area are predominantly in 
the directions of east and west (Fig. S2). Therefore, 
atmospheric deposition of As from coal combustion 
in smelting industries was speculated to be the major 
source of soil As (Zhang et al., 2023b).

Factor 2 exhibited a relatively high contribution 
to several metals (ranging from 45 to 65%), includ-
ing Al, Fe, Mn, Sc, Cr, Ni, Rb, Sr, and Ge, except 
for HMs with a strong influence originating from 
anthropogenic and industrial activities, such as Cd, 
Cu, Pb, Mo and As. Fe and Al are widely present in 
the Earth’s crust and are the main elements in soil 
dust (Xiao et  al., 2023), which is a natural source 
of soil-forming parent material. Cr, Mn, and Ni are 
often used as indicators of natural sources of soil 
HMs (Li et al., 2023; Liang et al., 2017). Considering 
that the study area has high geological BVs for these 
metals and that the spatial distribution of these met-
als is relatively homogeneous, a smaller influence of 
regional industrial sources was identified. Therefore, 
this factor could be interpreted as a soil parent mate-
rial source.

Factor 3 was characterized by high loadings of Pb 
(75.0%), Cu (60.5%), Mo (37.1%) and Zn (30%). Cu 
and Pb in soils are strongly influenced by anthropo-
genic sources such as smelter dust deposits, slag and 
tailings (He et al., 2023; Zhou et al., 2022a). Accord-
ing to the survey, the proven reserves of Cu and Pb 
metal ores in the area are high, distributed across 
several large smelters. From the pollution index of 
 Igeo (Fig.  2b), these metals were deeply influenced 
by anthropogenic pollution. The spatial distribu-
tion (Fig. S1) also showed highly polluted areas sur-
rounding the smelters. Due to the past use of leaded 
gasoline, tire wear and lead-containing antidetonants, 
lubricants and engines, Cu, Pb and Zn have become 
indicators of emissions from transportation (Jiang 
et  al., 2017; Liu et  al., 2023a; Wang et  al., 2020). 
Considering that the main road (G310) is inside the 

study area, traffic emissions may also be one of the 
main sources of these metals. Therefore, this factor 
could be identified as a source of metal smelting and 
traffic emissions.

Factor 4 exhibited a relatively high contribution 
of Cd (54.9%), Se (48.2%), and Mo (38.7%). Cd was 
spatially concentrated around the smelters. Cd can 
be released as tailing waste due to primitive associ-
ated crude smelting processes and inefficient recovery 
methods, followed by leaching, release and eventual 
deposition in nearby soil (He et  al., 2023; Li et  al., 
2022). The HMs contained in dry smelting slag are 
unstable and can easily be leached, causing pollution. 
In addition, accounting for the main road (G310) for 
raw material transportation, it is reasonable that spills 
during transportation could lead to raw materials or 
waste residues entering nearby agricultural soil under 
the effect of dust. The study area also contains abun-
dant molybdenum ore deposits. From the regional 
survey, a large molybdenum smelter (Zhong-Shan 
molybdenum smelter) is located on the western side 
of the sampling area, with an annual production of 
approximately 30,000 tons of molybdenum oxide and 
20,000 tons of ferromolybdenum. The spatial distri-
bution of the Mo concentrations (Fig.  S1) showed 
that high values are located around this smelter. 
Therefore, this factor could be explained as industrial 
waste and Mo smelting (Fig. 4).

Health risk assessment of HMs

The noncarcinogenic and carcinogenic risks of HMs 
for different groups (adults and children) were esti-
mated by health risk assessment and Monte Carlo 
simulations associated with three exposure path-
ways, namely, direct oral ingestion, inhalation of 
suspended soil particles and dermal exposure (Fig. 5 
and Table  2). Considering the risk attributed to the 
different exposure pathways (Fig. S3), oral ingestion 
was the prominent pathway over inhalation and der-
mal contact for both the noncarcinogenic and carcino-
genic risks, which is consistent with previous studies 
conducted near smelting sites (He et al., 2023; Zhou 
et al., 2022a).

In terms of the noncarcinogenic risk (Fig.  5 and 
Table 2), the HI values (mean) for adults and children 
were 1.51 and 1.85, respectively, and the probability 
of exceeding the threshold (HI > 1) reached 12.0% 
and 52.9%, respectively. The noncarcinogenic risks 



Environ Geochem Health (2024) 46:59 

1 3

Page 9 of 14 59

Vol.: (0123456789)

Fig. 4  Contribution spectrum of the different sources and corresponding contribution

Fig. 5  Probability distribution of the noncarcinogenic risk (HI) and carcinogenic risk (TCR) of HMs
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of HMs for adults and children could be ranked as 
Pb > As > Mn > Cr(VI) > Cd > Cu > Ni > Zn, with Pb 
and As dominating the noncarcinogenic risk. The 5th 
percentile value is usually considered the lowest haz-
ard, while the 95th percentile value is considered the 
worst scenario. The 95th HI values notably exceeded 
the threshold (HI > 1), with values of 1.58 and 5.99 
for adults and children, respectively, indicating that 
the HMs in the study area posed a notable noncarci-
nogenic risk that cannot be ignored.

In terms of the carcinogenic risk (Fig.  5 and 
Table 2), the TCR values for adults and children were 
4.65E−05 and 7.94E−05, respectively, with prob-
abilities of exceeding the thresholds of 9.2% and 
24.9%, respectively, while the carcinogenic risks 
of HMs for adults and children could be ranked as 
Ni > As > Cr(VI) > Cd > Pb. The 95th percentile TCR 
values for adults and children were 1.27E−04 and 
2.19E−04, respectively, exceeding the thresholds 
(TCR > 1.0E−04), with Ni and As posing the highest 
carcinogenic risk, which is a major concern.

Both the noncarcinogenic and carcinogenic risks 
were significantly higher in children than in adults, 
which is consistent with previous studies (Gorka 
et al., 2022; Liu et al., 2023b; Yang et al., 2019; Zhou 
et al., 2022a); in addition, children are more vulner-
able to toxic substances than adults because their 
hand-to-mouth behavior, physiological characteristics 
and exposure times are different from those of adults, 

while children possess higher intake rates, exposure 
frequencies and smaller body sizes and are more 
likely to be exposed to HMs in contaminated soil. 
Therefore, it is particularly important to give attention 
to the oral ingestion behavior of children to protect 
their health (Gorka et al., 2022).

Source-oriented health risks

Source-oriented risks were assessed by combining 
health risk assessment and source apportionment to 
identify the sources that dominate the health risk of 
HMs for priority control (He et  al., 2023). Because 
the trend of the risk for children was the same as that 
for adults, only the results for the adult population 
are described. As shown in Fig.  6a, the noncarcino-
genic risks of the four sources and the contributions 
followed the decreasing order of coal combustion 
(36.4%), industrial waste and Mo smelting (30.5%), 
metal smelting and traffic emissions (17.7%), and soil 
parent material (15.4%). Considering the contribution 
of different metals, As in coal combustion was the 
top contributor, with contributions reaching 33.0%, 
and Cd in industrial waste and Mo smelting also con-
tributed a risk of 18.5%. Regarding the carcinogenic 
risk (Fig.  6b), the decreasing order of the sources 
was industrial waste and Mo smelting (42.0%), metal 
smelting and traffic emissions (22.1%), soil par-
ent material (18.7%), and coal combustion (17.2%). 

Table 2  Noncarcinogenic 
and carcinogenic risk of 
HMs based on Monte Carlo 
simulations

SD standard deviation, CI 
confidential interval, HQ 
hazard quotient, HI hazard 
index, CR carcinogenic risk, 
TCR  total carcinogenic risk

Risk HMs Mean SD 95%CI

Adult Children Adult Children Adult Children

HQ As 6.35E−02 5.52E−01 1.17E−03 9.38E−03 2.13E−01 1.80E+00
Cd 7.74E−04 3.77E−02 9.22E−06 8.95E−04 2.48E−03 1.35E−01
Cr(VI) 1.06E−E−02 5.94E−02 1.23E−04 8.72E−04 3.19E−02 1.84E−01
Cu 1.92E−03 1.63E−02 5.40E−05 3.98E−04 6.33E−03 5.27E−E−02
Mn 2.99E−01 1.65E−01 3.99E−03 1.92E−03 9.73E−01 4.50E−01
Ni 1.10E−03 9.27E−03 7.98E−06 6.35E−05 2.55E−03 2.01E−02
Pb 1.29E−01 1.00E+00 3.39E−03 2.64E−02 5.02E−01 3.85E+00
Zn 2.89E−04 2.34E−03 2.67E−06 2.10E−05 7.51E−04 5.89E−03

HI Total 5.06E−01 1.84E+00 6.30E−03 3.01E−02 1.58E+00 5.99E+00
CR As 9.80E−06 2.13E−05 1.80E−07 3.62E−07 3.29E−05 6.96E−05

Cd 1.56E−06 3.73E−06 1.87E−08 4.27E−08 5.02E−06 1.14E−05
Cr(VI) 3.53E−06 4.19E−06 4.82E−08 8.55E−08 1.20E−05 1.60E−05
Ni 3.08E−05 4.82E−05 3.19E−07 5.71E−07 8.68E−05 1.31E−04
Pb 8.41E−07 2.01E−06 2.23E−08 5.53E−08 3.26E−06 7.62E−06

TCR Total 4.65E−05 7.94E−05 4.57E−07 8.44E−07 1.27E−04 2.19E−04
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Furthermore, Cd emission from the source of indus-
trial waste and Mo smelting was the dominant risk 
contributor of 33.1%. In addition, Cd from the source 
of metal smelting and traffic contributed 18.6% of the 
risk. Therefore, with the aim of environmental man-
agement, As in coal combustion (Wang et al., 2021a, 
2021b; Yan et  al., 2022) and Cd from metal smelt-
ing-related emissions (Micó et al., 2006; Yang et al., 
2019) should be the most critical objectives to control 
in agricultural soils in the study area.

However, there are still some limitations of this 
study, such as the behavior and fate of metals dur-
ing the smelting processes and the lack of informa-
tion related to other influencing variables (physical 
and chemical properties of soil, emission feathers of 
smelting industries, agricultural and inhabits activi-
ties). Apart from the integrated approach (i.e., PMF-
OK-CH) used in this study, there are some robust 
auxiliary solutions. Stable isotope and multi-isotope 
tracing techniques, such as Pb isotopes (204Pb, 206Pb, 
207Pb and 208Pb), are widely used isotope tracing ele-
ments in soil analysis (Cheema et  al., 2020). Some 
rare element (e.g., 203Tl/205Tl) isotopes can be used to 
determine the behavior of metals at different stages of 
smelting processes (Vanˇek et al., 2018; Zhou et al., 
2022b); Pb–Sr isotope compositions have been used 

to analyze the sources of metal pollution in urban 
soils (Sun et al., 2018); and Sr‒Nd‒Pb isotopes have 
been employed to trace sediment sources (Deng et al., 
2021; Wu et  al., 2022). In addition, machine learn-
ing models provide the advantages of managing the 
complex nonlinear relationships between soil HMs 
and environmental variables and identifying the key 
influencing factors, which supplies valuable informa-
tion in source apportioning (Ru et al., 2016; Shi et al., 
2022; Zhang et  al., 2021). For example, Shi et  al. 
(2022) used a conditional inference tree algorithm 
and revealed that the influence of altitude on soil Cr, 
Cu, Hg, Ni and Zn, as well as of soil pH on Cd, indi-
cated their primary origin of natural processes. By 
applying a random forest algorithm to identify the key 
role of environmental variables, Yang et  al. (2021) 
revealed that the distance to the nearest industrial 
site was the most important factor (accounting for the 
largest proportion of the total variation) in determin-
ing Cd and Cu concentrations, which indicated that 
atmospheric deposition of industrial waste smoke and 
dust is an obvious potential source of Cd and Cu in 
surrounding agricultural soils, while the distance to 
the nearest road accounted for most of the variations 
in the concentrations of both Pb and Zn, suggesting 
that road traffic is an important source of both metals. 

Fig. 6   Source-oriented health risks of the different sources
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In future research, the PMF model will be combined 
with isotope tracer technology and machine learn-
ing to further trace the pollution sources of soil more 
accurately.

Conclusion

HMs in agricultural soils around a nearby multimetal 
smelting area were systematically analyzed and it was 
determined that Cd and Pb were heavily polluted due 
to their high exceedance rates of screening values of 
agricultural land. Based on an integrated approach 
of PMF-OK-CH, the sources of HMs and their con-
tributions were identified as soil parent material 
(56.6%), industrial waste and Mo smelting (24.0%), 
metal smelting and traffic emissions (12.8%), and 
coal combustion (6.7%). The probabilistic health 
risk assessment showed that both noncarcinogenic 
and carcinogenic risks were higher for children than 
for adults, with the proportion of values exceeding 
the thresholds (HI > 1 and TCR > 1.0E−04) in chil-
dren vs. adults reaching 52.9% versus 12.0% for the 
noncarcinogenic risk and 24.9% versus 9.2% for the 
carcinogenic risk. Then, the framework of source-ori-
ented risk assessment (SORA) was built and showed 
that coal combustion dominated the noncarcinogenic 
risk (36.4%), while industrial waste and Mo smelting 
contributed the most to the carcinogenic risk (42.0%). 
Overall, Cd and As and their related sources should 
be treated as a priority in this multimetal smelting 
area.
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