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Abstract Urban agriculture should be promoted as
long as the food produced is safe for consumption.
Located in the metropolitan region of Sdo Paulo-Bra-
zil, Santo André has intense industrial activities and
more recently an increasing stimulus to urban gar-
dening. One of the potential risks associated to this
activity is the presence of potentially toxic elements
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(PTEs). In this study, the concentration of PTEs (As,
Ba, Cd, Co, Cu, Cr, Ni, Mo, Pb, Sb, Se, V and Zn)
was evaluated by soil (n=285) and soil amendments
(n=19) in urban gardens from this municipality. Only
barium was above regulatory limits in agricultural
soil ranging from 20 to 112 mg kg~!. Geochemical
indexes (g, C;and E,) revealed moderate to severe
pollution for As, Ba, Cr, Cu, Pb Se and Zn, especialy
in Capuava petrochemical complex gardens. A mul-
tivariate statistical approach discriminated Capuava
gardens from the others and correlated As, Cr and V
as main factors of pollution. However, carcinogenic
and non-carcinogenic risks were below the accept-
able range for regulatory purposes of 10°-107 for
adults. Soil amendments were identified as a possi-
ble source of contamination for Ba, Zn and Pb which
ranged from 37 to 4137 mg kg™, 20 to 701 mg kg™!
and 0.7 to 73 mg kg~!, respectively. The results also
indicated the presence of six pathogenic bacteria in
these amendments. Besides that, the occurrence of
antimicrobial resistance for Shigella, Enterobacter
and Citrobacter isolates suggests that soil manage-
ment practices improvement is necessary.

Keywords Soil - Soil amendments - Health risk

assessment - Antimicrobial resistance - Multivariate
analysis
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Introduction

In Brazil, during the Covid-19 pandemic, food inse-
curity increased due to social inequalities and rein-
forcing national nutritional problems, which can have
health impacts on individual, community and growth
levels at short and long terms. Currently, urban and
peri-urban agriculture are considered a sustainable
alternative (Salomon et al., 2020). Especially, in
developing countries (Nabulo et al., 2012), UA con-
tributes to food security and strengths communities
under vulnerability (Roese & Curado, 2004). On a
global scale, communities have identified urban agri-
culture as a viable option to increase their access to
health, nutrition, quality of life and low-cost fresh
products (Deelstra & Girardet, 2000; Schram-Bijkerk
et al., 2018). Approximately 1.1 billion people are
involved in some type of urban agriculture in the
world (Mougeot, 2015).

However, the introduction of toxic substances
(deliberately or not) and inefficient management prac-
tices in urban environments can cause the degradation
of soil quality, and consequently, affect food secu-
rity, groundwater quality and human health. Poten-
tially toxic elements (PTEs), such as As, Cd, Cu, Pb
and Zn, are often detected in urban soils and in veg-
etables grown on them (Cwielqg—Drabek et al., 2020;
Laidlaw et al., 2018; McBride et al., 2014; Nabulo
et al., 2012; Spliethoff et al., 2016; Wiseman et al.,
2013). These elements can cause ecological risks and
can accumulate in the human body resulting in sev-
eral adverse health effects.

Another risk associated with urban agriculture is
the contamination by pathogenic microorganisms.
Microorganisms can come from the soil itself, from
the manure and fertilization system (for example,
fresh animal waste or non-composted urban waste
that is in direct contact with edible parts of plants),
from irrigation water, or even from incorrect handling
and hygiene in the post-harvest (Urra et al., 2019).
Concern about pathogens in vegetables has increased
due to the increased number of disease outbreaks
caused by the consumption of fresh, whole foods, cut
and minimally processed vegetables (Sant’Anna et al.,
2020).

Eighty five percent of the Brazilian population
lives in urban areas (IBGE-PNAD, 2015) and 23.3%
of the urban families are still suffering from food
and nutrition insecurity (IBGE, 2013). The support
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for urban agriculture became part of the national
policy for poverty reduction and food security guar-
antee from the early 2000s. In 2018, the Ministry of
Social Development launched the National Program
for urban agriculture (Brazil, 2018), which aims to
contribute to the promotion of health and healthy
habits and the food and nutritional security. It was
estimated that there are more than 600 initiatives of
urban and peri-urban food production in the country
for both self-consumption and commercial purposes
(Sant’Anna de Medeiros et al., 2020).

Santo André is a city of metropolitan region of
Sé@o Paulo (MRSP), Brazil, one of the largest urban
conglomerates in the world, with>20 million
inhabitants (UN, 2019). It is one of the cities of an
automobile industry cluster (so-called ABC) organ-
ized around the Anchieta motorway, which con-
nects Sao Paulo to the Port of Santos (Fernandez-
de-Sevilla and dalla Costa, 2019). The city has a
fleet of more than 500,000 vehicles (DENATRAN,
2019). PTEs emissions from vehicular source can
contaminate urban gardens by atmospheric depo-
sition (Uzu et al., 2014). In the city, there is also
an industrial complex, the Capuava complex, with
125 hectares and 14 chemical plants that produce
polyethylene, naphtha, cement and fertilizers. The
industrialization process began in the 1950’s, with
the construction of a petrochemical refinery. This
refinery produces about 30% of the fossil fuels
consumed in the MRSP (Caumo et al., 2018). Pet-
rochemical plants may be responsible for supply-
ing PTEs to the environment (Manno et al., 2006;
Marques et al., 2020).

This region has experienced an intensifi-
cation of urban agriculture in the last decade
(Amato-Lourenco et al., 2021). It is hypothesized
that this long history of industrial activities and
environmental pollution may cause the accumula-
tion of some PTEs in soils affecting UA and may
pose risk to the urban gardeners. In this scenario,
the present study aimed (i) to evaluate the levels
of PTEs in soils and soil amendments in the urban
gardens of Santo André; (ii) to assess human health
effects in these topsoils; (iii) to investigate the pos-
sible sources of PTEs; (iv) to assess the presence
of pathogenic microorganisms in bed soils and soil
amendments. The findings of the present study may
provide baseline data needed to plan and improve
urban agriculture.
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Material and methods
Site selection

The studied urban gardens were selected at Santo
André, Brazil. The city has about 715 thousand
inhabitants. The sites were selected into urban
perimeter on the surroundings of the industrial area
of Capuava (maximum 10 km of distance) (Fig. 1).
Sites with the following characteristics were
selected: (i) larger than 500 m?; (ii) with commer-
cial purpose; (iii) at least 3 years old of existence;
(iv) well known on the surrounding community.

Sampling

Sampling of soil and soil amendments occurred in the
dry season of 2019. The number of samples varied
widely depending on the number of beds and num-
ber of lettuce heads cultivated per bed, as described
in Table 1.

Three subsamples of topsoil samples (0-20 cm)
were collected with a stainless-steel manual drill
at each point; thus, a composite sample of 2 kg was
produced, following a grid of one sample every three
beds using a zigzag sampling scheme, according to
EMBRAPA (2011) recommendations. Samples were
collected, homogenized, removing demolition waste,
such as brick, tiles, steel, wood, plastic, glass, rubbers
and others. All studied gardens amended their bed
soils, however the kind of amendment (Table 1) and
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Fig. 1 Locations of the selected urban gardens in the city of Santo André
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Table 1 Details of
sampling location, type and
number of samples of the
selected urban gardens of

Santo André

Location Number of samples Description of soil amendments
Soil Soil amend-
ments
Capuava 1 (23°64’ S 46°49' W) 8 3 Local compost pile and spent
mushroom substrate
Capuava 2 (23°64' S 46°48' W) 9 4 Lime and quail manure
Capuava 3% (23°63' S 46°49' W) - 2 Cow manure
Jd Marajoara (23°66’ S 46°49' W) 15 4 Quail and chicken manure
Bairro Jardim (23°65' S 46°64' W) 22 4 Meat and bone meal
Vila Bastos (23°66' S 46°53' W) 14 - -
Bela Vista (23°69' S 46°52' W) 17 2 Local compost pile
Total 85 19

the amount applied was very diverse among the sites.
Circa of 250 mg of soil amendments samples were
collected directly from the piles or storage containers.
All samples were packed in plastic bags and immedi-
ately taken to laboratory.

Sample preparation and analysis

Soil and soil amendments samples were dried at
40 °C until constant weight and sieved to provide
the<2 mm and<150 pm size fractions. About
400 mg of soil samples (<2 mm) from at least 3 sam-
ples per site were analyzed for the following param-
eters: texture, pH, organic matter content, cation
exchange capacity, potential soil acidity (H+ Al),
exchangeable cations (K, Ca, Mg and P), sum of
bases (SB) and base saturation (V%) determined by
the methodology proposed by Camargo et al. (2009).
About 500 mg of soil and soil amendment were pre-
digested for 48 h with 10 mL of sub-boiled concen-
trated HNO; (Synth, Diadema, Brazil). Then, the
samples were heated in a digesting block at 175 °C
for 15 min according to USEPA 3051A method (Ele-
ment, 2007), with some modifications according to
Segura et al. (2016) and Suda and Makino (2016).
The digested samples were diluted to 50 mL with
type 1 water and then, fivefold diluted.

The elements were determined using an induc-
tively coupled with a single quadrupole mass spec-
trometer (ICP-MS Agilent 7900, Hachioji, Japan).
A multi-element stock solution (10 mg L") (Perkin
Elmer, USA) was used to prepare the calibration
curve according to Paniz et al. (2018) and internal
standard Ge 10 mg L™ were also used. Sandy Clay
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Soil reference material—CRM 049 (Sandy Clay 1,
Sigma-Aldrich RTC, Salisbury, UK) and Trace Ele-
ments in Multi-Nutrient Fertilizer certified refer-
ence material- CRM 695 (NIST, Gaithersburg, MD,
USA) were used throughout the analysis for method
accuracy. The results of the analysis of the CRMs
were statistically consistent with the certified values
(Table S1). The detection limit obtained for each ele-
ment are showed in Table S1.

Microbiological analysis

For microbiological analyses, 40 g of soil and soil
amendments samples from beds were collected ran-
domly from different locations in the field. Then, they
were immediately put into sterile 50-ml falcon tubes,
transported in an ice chest with ice gel units to the
laboratory and stored at 8 °C. A total of 21 samples
were collected.

Bed soils and soil amendments samples were cul-
tured in MacConkey agar (Oxoid, Basingstoke, UK)
plates which were incubated at temperature of 37 °C
during 18-24 h. After bacterial growth, different
colonies from each plate were selected and the iden-
tification of bacterial genera was performed by bio-
chemical assays with EPM, MILi and Simmons cit-
rate (Ewing, 1986; Toledo et al., 1982a, 1982b) to
confirm the presence of Enterobacteriaceae family.
The bacterial isolates were stored in Brain Heart Infu-
sion (BHI) (Difco, USA) plus 20% glycerol (Sigma-
Aldrich, St-Louis, USA) media at— 80 °C.

The antimicrobial susceptibility of bacterial iso-
lates was determined using the disk-diffusion in
agar method, as recommended by the Clinical and
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Laboratory Standards Institute guidelines (CLSI, 2008;
CLSI, 2018). The following antimicrobial agents were
used: amoxicillin-clavulanic acid (AMC), aztreonam
(ATM), cefepime (FEP), cefotaxime (CTX), ceftazi-
dime (CAZ), cefoxitin (CFO), chloramphenicol (CLO),
ciprofloxacin (CIP), fosfomycin (FOS), gentamicin
(GEN), imipenem (IMP), nalidixic acid (NAL), nitro-
furantoin (NIT), norfloxacin (NOR), tetracycline (TET)
and trimethoprim sulfamethoxazole (SXT). All anti-
microbial used were from Oxoid. Enrofloxacin (ENO)
was also tested because this antimicrobial is commonly
used in veterinary clinics. E. coli strain ATCC 25922
was used as a quality control for antimicrobial suscep-
tibility testing.

Contamination indexes

Soil contamination by some PTEs in urban gardens
was estimated using the geoaccumulation index (/geo)
(Miiller, 1969), according to Eq. 1.

C}’l
Iy, = log, 1.SB— H

n

where Cn is the total concentration of an element in
the tested soil and Bn is the respective concentra-
tion of the element in the reference environment
from CETESB (Environmental Protection Agency
of the State of Sdo Paulo, Brazil) soil quality val-
ues were used (CETESB, 2016). The constant 1.5
was used to compensate minor natural and anthro-
pogenic fluctuations. The calculated results were
compared to the seven classes proposed by Miiller
(1969): Igeo <0, unpolluted; 0<Igeo<1, unpolluted
to moderately polluted; 1 </geo <2, moderately pol-
luted; 2 <Igeo<3, moderately to severely polluted;
3<Igeo <4, severely polluted; 4 <Igeo<5, severely
to extremely polluted; /geo > 5, extremely polluted.

Soil contamination by some PTEs was also assessed
by single element contamination factor, C{ (Eq. 2), sin-
gle element potential ecological risk, E! (Eq. 3) and
potential ecological risk index. RI (Eq. 4), proposed by
Hakanson (1980).

Ci
i 0-1
G @
E =T/x( 3)

RI=)'E O]

where C,’ is the quality reference value from Sio
Paulo State (CESTES, 2016), Cio_1 is the mean con-
centration of the PTE in question. T, is the toxic
response factor for the given PTE (Ba=Zn=1<Cr
=V=2<Co=Cu=Ni=Pb=5<As=10<Cd=30
), only these ten studied elements Tr value are in the
literature (Hékanson, 1980). Four qualitative termi-
nologies are used to describe the contamination fac-
tor: Cf<1, low contamination; 1 <Cf<3, moderate
contamination; 3 <Cf<6, considerable contamina-
tion and Cf>6, very high contamination. For sin-
gle element potential ecological risk, the evaluation
results are divided into 5 grades: Er <40, low poten-
tial ecological risk; 40 <Er <80, moderate potential
ecological risk; 80 <Er< 160, considerable potential
ecological risk; 160 <Er <320, high potential ecolog-
ical risk; and Er>320, very high potential ecologi-
cal risk. The RI: potential ecological risk index; the
evaluation results are divided into 5 grades: RI< 150,
low ecological risk; 150<RI<300, moderate eco-
logical risk; 300<RI< 600, considerable ecological
risk; 600 <RI< 1200, very high ecological risk; and
RI> 1200, extremely high ecological risk.

Health risk assessment

For results obtained in the soil samples, the risk
assessment was divided into non-carcinogenic (haz-
ard quotient (HQ)) and carcinogenic risks (CR),
considering three exposure routes: ingestion and
inhalation and dermal according to the methodol-
ogy proposed by Gabarrén et al. (2017) and Hu et al.
(2017) based on The US Environmental Protection
Agency methodology (USEPA, 2004) and using the
selected parameters (Table S2). The details of the
methods were provided in the supplementary materi-
als. The carcinogenic risk was calculated only for As,
Co, Cr, Ni and Pb and non-carcinogenic risk was esti-
mated for all studied PTEs.

Data analysis method

In order to obtain information about the possible
sources of the PTEs, the concentration of the ele-
ments was evaluated by principal component analy-
sis (PCA) and Pearson’s correlation. Statistical
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significance levels were expressed as p <0.05. Prin-
cipal component analysis (PCA), a multivariate sta-
tistical test, was performed to assess multivariate
relationships.

PCA has been used to identify natural geochemi-
cal origins and anthropogenic sources. The dataset
consisted of a matrix with 85 cases (collection points)
and 13. Data were normalized and rotated (normal-
ized varimax), grouping parameters. Only eigenval-
ues > 1 were considered in this study. Group loading
values >0.50 were used with high or strong correla-
tion. Before performing PCA analysis, Kaiser-Meyer-
Olkin (KMO) and Bartlett’s tests of sphericity are
performed to check the suitability of the datasets.
In the current study, the overall KMO value for our
data was meritorious (KMO=0.818) and Bartlett’s
Test of Sphericity was significant (Chi®=1826.433,
p<0.001, df=78) which rejects the hypothesis the
variable matrix is an identity matrix. That give us
confidence, the variables are significantly correlated
and suitable to factor analysis (Steiner& Grieder,
2020).

Hierarchical Cluster analysis (HCA) was per-
formed in the data set. The values were normalized.
Ward’s method was used as a procedure of cluster-
ing. Euclidean distance was applied to measure simi-
larity and the statistical significance of the clusters
formed was checked by the linkage distance (dlink),
expressed as the percentage of the range from the
maximum to the minimum distance (dmax) in the
data set, Dlink/Dmax X 100. A dendrogram illustrates
clustering of the similar variables (PTEs) considering
the hierarchical structure. All statistical analyzes were
performed using Statistica software version 7.0 (Sta-
tistica (Tulsa, USA).

Results and discussion
Soil results

Table S3 shows soil (0-20 cm) physical-chemical
parameters of six studied gardens. Most samples
consisted of neutral soils, with pH ranging from 5.3
to 7.6 and the lowest values (5.9 +0.6) were found
at Capuava 1 garden. The samples showed content
of clay between 224 and 547 g kg~!, with an aver-
age of 362 g kg™!, high sand content ranging from
305 to 646 g kg~! and, in general, a median silt
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content, with an average of 200 g kg~!. The soil tex-
ture varied from loam to clay soil, with a predomi-
nance of sand clay loam soil. This type of soil has
a low potential for PTEs retention when compared
to clay soils, present predominantly in the gardens
of Bairro Jardim and Vila Marajoara. The content
of organic matter (OM) varied widely from 21 to
68 g kg™, the highest values were observed at Cap-
uava 1 (average of 61.3 g kg™').

The cation exchange capacity (CEC), which
expresses the capacity of soil to retain cations, pre-
sented an average of 152 mmolc dm™. The base
saturation presented was high in all gardens, varying
between 88 and 96% and the soil can be classified,
according to the current Brazilian soil classification
system (SiBCS), as eutrophic soil (V>50%) (Solos,
2013). The concentrations of exchangeable phos-
phorus in the vegetable garden soil were all above
120 mg dm™3, which is considered a minimum suffi-
cient value for productive cultivation (Van Raij et al.,
2011). The univariate ANOVA statistical test, with
95% confidence interval, was applied to the results
presented in Table S3 and revealed that there are
significant differences between the parameters in the
areas, except for pH and exchangeable P.

The frequency distributions of concentrations
of PTEs measured in the garden soil samples are
described in Table 2. The data are not normally dis-
tributed (Kolmogorov—Smirnov test, p<0.010) for
most elements, except for As, Cr and Ni. Median
(50th percentile) were lower than mean concentra-
tions for Ba, Cd, Co, Cu, Mo, Pb, Sb, Se and Zn and
higher for V.

The mean concentrations of elements detected in
soil samples ranked in the following order: Zn>Ba>
V> Cr>Cu>Pb>As>Ni>Co>Mo>Se>Cd>Sb.
PTEs results were compared with the local environ-
mental protection agency (Environmental Protection
Agency of the State of Sdo Paulo, Brazil) (CETESB,
2016) (Table 2). The quality reference (QRV) repre-
sents the natural concentrations of chemical elements
in soils without anthropic influence; the prevention
value (PV) represents a sort of alert and the interven-
tion value for agricultural (AIV) soils represents the
threshold value. The PV and AIV were established
based on human health risk (CETESB, 2016). The
spatial variation of the PTEs in the studied urban
gardens are represented in Fig. 2, except for Co,
Mo and Sb because these elements were detected in
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concentration ranges below quality reference values
and presented very narrow variability.

The soils of the studied urban gardens presented
content values above the QRV for almost all elements,
except for Co, Mo and Sb, whose concentration val-
ues are not shown in Fig. 3. In addition, values above
the PV were observed for As, Ba, Cr, Cu, Pb, Se and
Zn and above the agricultural VI for Ba in the case of
the Capuava 1 garden. The areas around the Capuava
Petrochemical Complex were those that presented, in
general, higher levels of PTEs, especially for Ba, Cu,
Pb, Se and Zn (Fig. 2).

In a similar study in soils of three urban gar-
dens from the metropolitan region of Belo Hori-
zonte, Dala-Paula et al. (2018) reported values
of concentration of Cu (27.9+13.9 mg kg™!), Pb
(19.4+7.7 mg kg™) and Cd (0.16+0.03 mg kg™")
lower than those observed in the mean values of the
gardens studied in Santo André, 51+37 mg kg™';
30+20 mg kg~! and 0.4 +0.2 mg kg~!, respectively.

Studies concerning concentrations of PTEs in
soils in the MRSP are scarce. Therefore, the con-
centration values of As, Ba, Cr and Zn obtained in
the soils of this study, collected in the urban region
of Santo André, were compared to the study car-
ried out by Figueiredo et al. (2011). In this study, the
authors evaluated PTEs contents in superficial soils
collected in different public parks in the city of Séo
Paulo, 20 km far from Santo André. These parks in
Sdo Paulo are located in different scenarios of urban
zoning (central, residential and industrial areas). In 9
of the 12 parks studied by the authors, the levels of
Ba concentration exceeded the residential VI of CET-
ESB (2016) and the reported concentration range
was 284 to 1022 mg kg~!, which is higher than that
observed in the soils of the gardens of Santo André
(19-1000 mg kg™!).

The highest values of Ba in our study were
observed in the Capuava 1 area (Fig. 2), which is
located less than 30 m from the petrochemical com-
plex, in high-traffic vehicular routes and next to a
vehicle radiator grinder. Arsenic concentrations
found in the soil of the gardens ranged from 8.5 to
21 mg kg~!, these values were higher than those
reported in the parks of Sdo Paulo (1.2-16 mg kg™")
(Figueiredo et al., 2011). The highest content of As
were observed in Bairro Jardim (Fig. 2), which is a
neighborhood closer to the central region of the city.
It is possible to observe in Fig. 2 that the pattern of

distribution of this spatial element was similar to that
observed for Cr and V, suggesting that these elements
come from the same source.

Chromium values observed in the soils from our
studied ranged from 24 to 89 mg kg~' and were higher
than those observed in the soils of urban parks in Sao
Paulo (21-70 mg kg™'). Regarding Zn, the values
observed in Santo André vary from 30+ 383 mg kg™
and were higher than those observed by Figueiredo
et al. (2011), which range from 15 to 179 mg kg~..
Thus, it is possible to infer that despite the munici-
pality of Santo André being less populous and with
a much smaller vehicle fleet than a municipality in
Sdo Paulo, the concentration levels of As, Cr and Zn
elevates in the soils of urban gardens were higher
than those reported in Sdo Paulo soils in a region with
high vehicular traffic and industrial sources of atmos-
pheric pollution.

Comparing our results with those of other urban
gardens soils in the world it emerges that Cu, Cd
values are higher than those observed in Melbourne
(Laidlaw et al., 2018), Sheffield (Weber et al., 2019)
and Toronto (Wiseman et al., 2013) (Table 2). How-
ever, Co, Ni, Pb, Sb and Zn values observed in soils
from our study are below those reported in the inter-
national studies described in Table 2.

The levels of As (23.93-44.33 mg kg™') and Cr
(86.67-160.67 mg kg~") observed in Sheffield, Eng-
land, UK, were also higher than those observed in
our results, probably due to this city has a long his-
tory of industrial activities and environmental pollu-
tion (Weber et al., 2019). Therefore, it is possible to
conclude with these comparisons that there is a need
to locally assess the levels of application of PTEs,
because observations made for other regions cannot
be generalized.

Contamination indexes

The geoaccumulation index of elements in the soil
was calculated for those that have guiding values for
soil (CETESB, 2016). However, the results presented
in Fig. 3 correspond to the elements that presented
minimally some points with Igeo>0, as following:
As, Ba, Cd, Cr, Cu, Ni, Pb, Se and Zn. Considering
the median obtained for each element, the soil of the
studied gardens can be classified as: unpolluted to
moderately polluted by Ba, Cd, Cr, Cu, Cd and Zn
for almost all the studied gardens; with the exception
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of Capuava 1, which was moderately to severely pol-
luted by Ba and moderately polluted by Cu and Pb.
Igeo indicated that all gardens presented moderate
pollution by As and Se, except for the garden of Cap-
uava 1, which presented moderate to severe pollution
by Se.

The single element contamination factor (Table 3)
indicated a very high contamination by Ba and Zn
and a considerable contamination by Cu in Capuava
1 soils. According to this index moderate to consid-
erable contamination of soil by Ba, Cr and Zn was
also observed in almost studied gardens, except in
Bela Vista Garden, which Cr contamination was
considered low. Moderate contamination by Pb was
observed in soils of Capuava 1 and Vila Bastos. No
concerning for a single element potential ecological
risk was observed, but Capuava 1 soil are in a mod-
erate potential ecological risk (Table 3), followed by
Capuava 2. Thus this indexes reinforce that the prox-
imity to the Petrochemical plant represent a potential
input of PTEs in gardens soils.

Soil amendments results

The concentrations of PTEs in the soil amendments
collected are presented in Table 4. Consistent with
the results of collected soils, the median concentra-
tions of elements detected in soil amendments ranked
in the following order: Zn>Ba>Cu>V>Cr>Pb>
Ni>Co>As>Mo>Se>Cd>Sb. soil amendments
with the highest total PTEs concentration ranked
in the following order: Spent mushroom substrate
(SMS)>Local compost pile (Capuava 1)>Quail
manure (Capuava 2)=Cow Manure=Meat bone
meal > Chicken manure=Quail manure (Jd. Mara-
joara) > Castor cake=Lime>Local compost pile
(Bela Vista).

Overall, the two soil amendments collected in
Capuava 1 (SMS and local compost pile) were those
with the highest total concentration of PTEs. SMS
refers to the biomass waste generated from mush-
room production (Hanafi et al., 2018) and it has
been used as fertilizer (Grimm & Wosten, 2018).
SMS composition varies according to geographi-
cal location and also according to mushroom species
(Grimm & Wosten, 2018). Studies reporting Ba con-
tent in SMS are scarce. Kalembasa and Wisniewska
(2009) reported a lower content of Ba (52.5 mg kg™})
than ours in Italian SMS. The PTEs content of SMS

determined within this study is compared to levels
reported in previous studies which it verifies that the
Ba and Zn levels are elevated, while Cd and Cu is
invariably lower that those reported in other countries
(Kalembasa & Wisniewska, 2009; Jordan et al., 2008;
Medina et al., 2012).

When comparing our findings with other stud-
ies of soil amendments (Table 4) a notable differ-
ence is seen regarding the levels of Ba and Mo in soil
amendments samples, the levels of these elements are
elevated in soil amendments of Santo André (Alfaro
et al., 2017; Han et al., 2013; Margenat et al., 2020;
Paradelo et al., 2020).

Brazilian legislation (Brazil, 2016 and 2019) maxi-
mum allowed values in soil amendments are 15, 10
and 200 mg kg~! for As, Cd and Pb, respectively. In
meat bone meal sample, As content (31 mg kg™
was above the Brazilian legislation (15 mg kg™
(Table 4).

Despite these results of PTEs levels, it is known
that some organic compounds can decrease the bio-
availability of PTEs in soils for plants through vari-
ous mechanisms, such as precipitation, complexa-
tion, redox reactions, ion exchange and electrostatic
interaction (Margenat et al., 2020; Palansooriya et al.,
2020). However, the misapplication of these com-
pounds may be contributing to increase the supply of
PTE:s in the soil of urban gardens in Santo André and
also may pose risk for the gardeners’ health.

We noticed a limited knowledge about the best
practices for management and application of these
amendments in the studied gardens and the garden-
ers may be unaware about the risks of misapplication.
In fact, rates of application, incorporation practices
into the soil, maturation status and storing proce-
dures of these compounds were very distinguished
across the gardens. In Brazil, the government allows
some soil amendments to be used for crop nutrition,
with specifications clearly defined by appropriate
regulation (Brazil, 2016 and 2019). The partnership
between governments, universities and representa-
tive institutions plays a strategic role in promoting
risk awareness and knowledge about soil testing and
fertilization.

Source identification and relationships between PTEs

To define clearly dominant or discrete sources of
PTEs in urban gardens soils is difficult, due to the
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complex temporal scale and spatial distribution of
distinct inputs of PTEs. Data set was evaluated by
multivariate statistics. The first factor represents
64.54% (Fig. 4.a) of the data variation and indicated

a directly strong (>0.7) proportional association of
Ba, Cd, Co, Cu, Mo, Ni, Pb, Sb, Se and Zn in the
Ist and 4th quadrants. Therefore, this suggests that
these elements are from the same source, probably

10 (a) O (b) Location
@ Bairro Jardim
0.8 Cr v 2 [ Bela Vista
@ Capuaval
[ Capuava 2
A O @ Jardim Marajoara
b 1 [ vila Bastos
2 @
~N ~N
3 5 .: @) OC
: : O
. O 0 @o Oﬁ
0.4 O %
2 ( )@
-0.6
-0.8 3 D
-1.0
-1.0-0.8 -0.6 -0.4 -0.2 0.0 0.2 0.4 06 0.8 -10 -8 -6 -4 2 0 2
Factor 1 Factor1
120 — — —_
(c) Capuava 1 (d) Capuava 2 (e) Marajoara
100
o
o
. 80
x
£ 60
o
2
£ 40
=}
20
0 == e th
Mo Se Cd N Cr Zn V Mo Ba Se N Zn Cr V Pb Ni Ba Mo Se Co V
Cu Sb Pb Co Ba As Pb Cd Sb Cu Co As Cd Zn Sb Cu As Cr
120
- (f) Vila Bastos (g) Bairro Jardim (h) Bela Vista
o
o
. 80
x
£ 60
8
=2
£ 40
e
"] 5 ey ]
Cd Zn Se Cu Sb As V Pb Cd Sb Se Cu As V Ba Cd Mo Co Pb Zn V
Pb Mo Ba Ni Co Cr Mo Zn Ni Ba Co Cr Se Cu Ni Sb As Cr

Fig. 4 Principal component analysis with (a) Factor 1 ver-
sus Factor 2 and (b) Factor 1 versus Factor 2 loading plots by

gardens. (c), (d), (e), (f), (g) and (h) Dendrogram obtained by

@ Springer

cluster analysis of the concentrations of elements determined
in the soil of urban gardens in Santo André



Environ Geochem Health (2024) 46:36

Page 150f20 36

from Capuava Petrochemical complex particulate
matter and from soil amendments. This assumption
was reinforced by the PCA representation by cases
(Fig. 4.b) where samples from Capuava urban garden
were discriminated in the same quadrants (1st and 4th
quadrants).

At same time, factor 2 discriminated samples by
its contents of As, Cr and V and represents 18.53%
(Fig. 4.a). Then, Marajoara, Bairro Jardim and Vila
Bastos urban gardens were placed in the Ist and 2nd
quadrants due to the higher levels of these elements
(Fig. 4.b). As mentioned before, Santo André is in a
region of many automobiles and auto-parts industries,
such as General Motors, Volkswagen, Mercedes-
Benz, Scania and others. Thus, the region has a long
history of foundries and metallurgical process compa-
nies which contributes to As, Cr and V (alloys ele-
ments) inputs in the environment (Freire et al., 2021;
Lange et al., 2017).

The same associations observed in PCA were iden-
tified in the hierarchical dendrograms of each urban
garden (Fig. 4c-h). For example, in Capuava 1 garden
(Fig. 4c) two main groups were identified. The first
group by Cd, Co, Cu, Cr, Mo, Ni, Pb, Sb, Se and Zn,
which can be associated to the petrochemical complex
and vehicular sources. In the second group, a remark-
able association between Ba and Zn can be attributed
to the inputs caused by spent mushroom substrate
(Table 4). For the majority of urban gardens, cluster
analysis showed a common association between As,
Cr and V, as discussed above for PCA findings. Inter-
esting, for Vila Bastos garden (Fig. 4f), Pb, Cd and Zn
were discriminated from other elements, a very com-
mon association in soils polluted by fine particular
matter, in heavy industrialized environments (Smieja-
Krdl et al., 2022). The cluster obtained for Bela Vista
(Fig. 4h) showed a district pattern compared to other
gardens, since As, V, Cr, Zn, Pb an Sb were corre-
lated in one cluster and Ba, Se, Cd, Cu, Mo, Ni and
Co in another cluster. This garden showed the lowest
concentrations levels of PTEs and is the furthest from
Capuava petrochemical complex and nearest garden
from Anchieta motorway, suggesting that these asso-
ciations are more probably related to atmospheric
vehicular pollution.

Table S4 presents the results of Pearson’s cor-
relations between the PTEs concentrations and the
soil characterization parameters. Acidity is consid-
ered a key parameter in the mobility of elements

in soils, however in this study pH did not signifi-
cantly correlate with PTEs and this may be related
to the small variation of the pH value between the
samples. The elements Ba, Cd, Cu, Mo, Ni, Se, Sb
and Zn correlated with OM. The elements Ba, Co,
Cu, Ni, Se, Sb and Zn correlated significantly with
CEC. Therefore, organic compounds commonly
used by farmers added to soil may also result in
an increase of CEC. The sand fraction correlated
inversely with As content, and directly with Cd
and Pb content, indicating that the latter two may
be associated with a natural origin or, most prob-
ably from fine particulate matter. Arsenic correlated
directly with clay contents, indicating that the areas
that presented higher clay contents were able to
accumulate this element the most.

Risk associated with the presence of PTEs in the soil

Table 5 shows the concentration of PTEs in the soil
of urban gardens in Santo André corresponding to
the 95th percentile (Csoil), the toxicity values (RfD
and FC), the chronic daily doses (DDC), the hazard
quotients (HQ), hazard indices (HI), carcinogenic
risks (CR), total carcinogenic risk probabilities
(TCR) obtained for adults, that is, the risk to which
urban gardeners are exposed.

For most PTEs, the results obtained for the non-
carcinogenic risk quotient indicated that the route
of exposure that contributed most to the total risk
was the oral route, followed by dermal absorption
and finally the route by inhalation of soil particles,
except for Ba and Cd, for which the inhalation route
contributed more than the dermal route. The oral
route of exposure to PTEs in urban soils is the most
common (Gabarrén et al., 2017).

The non-carcinogenic hazard index (HI) results
obtained for all PTEs, considering adults, were less
than 1.0, therefore, health risks are not expected
to occur (USEPA, 1989). The order of HI values
for the PTEs observed was As>Cr>Ba>Pb>
Cu>Ni>Zn>Sb>Co>V>Cd. The total car-
cinogenic risk values obtained for all PTEs were
below the acceptable range for regulatory pur-
poses of 10°°-107* (Ross, 2009) for adults. The
decreasing order of TCR for PTEs observed was
Cr> As>Ni>Pb> Co.
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Microorganisms in bed soils and soil amendments

The microbial results revealed the identification of 6
bacterial genera (Table 6) and 8 isolates were uniden-
tified. Around 30% of non-animal amendments sam-
ples were contaminated either with Serratia or Kleb-
siella genera; however, no antimicrobial resistance
was observed. Animal amendments that were positive
for at least one microorganism accounted for 37.5%
of this type of sample, and four bacterial genera were
isolated. Among them, resistance to TET and NIT
was identified for Citrobacter and Enterobacter gen-
era was resistant to CFO. Antimicrobial presence in
animal manures was reported previously and may
be related to the resistance observed in our findings
(Bloem et al., 2017).

Fifty percent of the bed soil samples showed at
least one bacterial genera. Shigella isolate demon-
strated the broadest spectrum of antimicrobial resist-
ance, being resistant to three antimicrobials (SXT,
FOS and NAL). Citrobacter isolate was resistant to
CFO, while Klebsiella isolate did not present any
resistance.

Conclusion
Our findings showed an enrichment of some PTEs in

the soils of some gardens, but at concentration levels
below the agricultural intervention values established

Table 6 Identification of bacterial genera and antimicrobial
susceptibility

Sample type Bacterial isolates  Resistance

Non-animal amendment  Serratia sp. None
Klebsiella sp. None

Animal amendment Citrobacter sp. TET, NIT

Escherichia sp. None
Enterobacter sp. CFO

Shigella sp. None

Bed soil Shigella sp. SXT, FOS, NAL
Citrobacter sp. CFO
Klebsiella sp. None

TET tetracycline, NIT nitrofurantoin, CFO chloramphenicol,
SXT trimethoprim sulfamethoxazole, FOS Fosfomycin, NAL
nalidixic acid, CFO cefoxitin

None means sensibility for all antimicrobials tested in this
study

by the local environmental protection agency, except
for Ba. The multivariate analysis of the data revealed
that some PTEs are important discriminators of urban
pollution inputs and may provide valuable information
for mitigation strategies. Results also revealed that the
organic matter directly influences the geochemistry of
PTE:s in the soils of these gardens. Some organic com-
pounds used in these gardens showed high levels of As,
Ba, Pb and Zn. The risk assessment revealed that gar-
deners are not subject to health damage from exposure
to PTEs. However, pathogenic and resistant microor-
ganisms were identified in soil beds and amendments.

To our knowledge, these are the first data from
PTEs urban soils in this region; however, our study
does not include isotopic analytical determination to
assure the origin of PTEs in these urban gardens.

Despite of the hostile environmental situation of
the studied region, the results herein showed an opti-
mistic scenario in the soils of urban gardens of Santo
André. Future studies to investigate PTEs in the food
produced in these areas are strongly recommended.
The studies about the atmospheric deposition of these
elements can also contribute to the mass balance and
source identification.
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