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Abstract  The levels, spatial distribution, and 
sources of petroleum hydrocarbons and phthalates 
were assessed in surface sediment samples from the 
urban lagoon of Obhur near Jeddah, the largest city 
on the Red Sea coast of Saudi Arabia. The lagoon 
was divided into the inner zone, middle zone, and 
outer zone based on its geomorphological features 
and developmental activities. n-Alkanes, hopane 
and sterane biomarkers, and unresolved complex 
mixture were the major petroleum hydrocarbon 
compounds of the total extractable organic mat-
ter. Phthalates were also measured in the sediment 
samples. In the three zones, n-alkanes ranged from 

89.3 ± 88.5 to 103.2 ± 114.9 ng/g, whereas the hopane 
and sterane biomarkers varied from 69.4 ± 75.3 to 
77.7 ± 69.9  ng/g and 72.5 ± 77.9–89.5 ± 82.2  ng/g, 
respectively. The UCM concentrations ranged from 
821 ± 1119 to 1297 ± 1684 ng/g and phthalates from 
37.4 ± 34.5 65 ± 68 ng/g. The primary origins of these 
anthropogenic hydrocarbons in the lagoon sediments 
were petroleum products (boat engine discharges, 
boat washing, lubricants, and wastewater flows) and 
plasticizers (plastic waste and litter). The proportions 
of anthropogenic hydrocarbons derived from petro-
leum products in the sediment’s TEOM ranged from 
43 ± 33 to 62 ± 15%, while the percentages for plas-
ticizers varied from 2.9 ± 1.2 to 4.0 ± 1.6%. The pres-
ence and inputs of these contaminants from petro-
leum and plastic wastes in the lagoon’s sediments will 
eventually have an impact on its habitats, including 
the benthic nursery and spawning areas.

Keywords  Obhur lagoon · Saudi Arabia · Red Sea · 
Hydrocarbons · Phthalates · UCM · GC–MS

Introduction

Coastal areas are mostly affected by anthropogenic 
sources from petroleum hydrocarbons (Gao et  al., 
2022; Ndungu et al., 2017; Uddin et al., 2021). These 
sources include onshore oilfield operations, liquid 
released by refineries, accidental spills, petrochemi-
cal plants and shipping, natural oil seeps, and sewage 
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discharges (Alsharhan, 2003; El Nemr et  al., 2004; 
El Sayed, 2002a, 2002b; Rushdi et al., 2009, 2022a). 
Petroleum residues in the Red Sea are largely attrib-
uted to oil tankers and oil terminals (Dicks, 1987; 
El-Sikaily et  al., 2003; Rushdi et  al., 2010), where 
the coastal ecosystems of the Red Sea shorelines 
are seriously contaminated with oil-related products 
(Alhudhodi et al., 2022; Jamoussi et al., 2022; Kostia-
naia et al., 2020; Periáñez, 2020; Rushdi et al., 1994; 
Shetaia et  al., 2016). In the coastal environment of 
Saudi Arabia’s Red Sea, oil pollution can also origi-
nate from sewage, leisure activities, and littering (El 
Sayed, 2002a, 2002b; Wilson et al., 2017). Sewage is 
frequently discharged to the coastal zones, especially 
into nearby lagoons, around large cities such as the 
city of Jeddah (Badr et al., 2009). It is also discharged 
from offshore platforms, ship traffic, tour boats, fer-
ries, and private yachts (Hees, 1977). Transported 
atmospheric particulate matter, wind-resuspended 
soil, and seasonal runoff and floods can significantly 
contribute to petroleum-related products in the coastal 
environment (Rushdi et al., 2010, 2022b). The marine 
life of the distinct ecosystems of the Red Sea coast is 
facing significant danger due to contamination from 
oil-related sources (Batang et al., 2016; UNEP, 1985; 
Ziegler et al., 2016).

Jeddah has a population of about 4.7 million, mak-
ing it the biggest city on the western coast of Saudi 
Arabia. It is projected to reach 5.3 million in 2023 
(WPR, 2023). The city is highly industrialized and 
hosts one of the largest Saudi Aramco refineries. 
However, the presence of other facilities, including 
municipal waste and sewage, electrical power genera-
tion, refinery plants, and desalination, has negative 
effects on the environment along the shoreline (Badr 
et al., 2009). According to (Durmus, 2019), approxi-
mately 40% of the total 1.9 million tons of solid waste 
in the city is organic waste. Unfortunately, some of 
this waste can end up polluting the environment and 
reaching the coastlines through runoff or particulate 
matter transported by wind (Al-Khion, et  al., 2021; 
Al-Lihaibi, et  al., 2019; Rushdi et  al., 2010, 2022a, 
2022b). Plastics, which make up most of the marine 
litter, are a major source of contaminants in the 
marine environment (Diem et al., 2023; Ryan, 2015) 
and have different impacts on marine biota based 
on the size of the plastic litter (Barboza et al., 2019; 
Bellou et  al., 2021). Obhur Creek near Jeddah, also 
known as Sharm Obhur, is a well-known tourist spot 

situated on the western coast of Saudi Arabia. It acts 
as a link between inland and marine ecosystems and 
provides visitors with resorts, harbors, docks, and 
recreational activities like boat trips. Nevertheless, 
the water outflow from the lagoon can introduce land 
source pollutants to the Red Sea.

The concentrations and contribution of anthro-
pogenic petroleum hydrocarbons and plastic-related 
compounds in the sediment of the lagoon are still 
unknown. Therefore, the main objectives of this work 
are to: (1) determine the levels and spatial distribu-
tion of n-alkanes, hopanes, steranes, and phthalates in 
sediments from Sharm Obhur on the Red Sea coast 
of Saudi Arabia; (2) identify their potential sources in 
the sediments based on biomarkers and geochemical 
indices; and (3) describe their possible environmental 
impacts.

Experimental

Study area, sampling sites, and sample preparation

The study area (Fig. 1) is Obhur Lagoon (also locally 
known as Sharm Obhur). It is located about 35  km 
north of Jeddah City and is around 11 km long and 
1.5  km wide, with a depth of 35  m near its mouth 
on the Red Sea and about 6 m near the head (Rasul, 
2015). Sharm Obhur is a highly favored recreational 
spot in Jeddah, known for its abundance and popu-
larity. It is connected to the Red Sea proper through 
a narrow outlet, spanning 264  m in width, situ-
ated at its southwestern end. According to Basaham 
et  al., (2006), the hydrographic structure displays 
a two-layer flow pattern at its entrance. The incom-
ing water is low in salinity and occurs at both sur-
face and intermediate depths. The outgoing water is 
more saline and found at the bottom. The water tem-
perature and salinity range from 24.4  °C to 32.2  °C 
and from 39.10 to 40.2 between winter and summer, 
respectively (Alsaafani et  al., 2017; Basaham & El-
Shater, 1994). The inflow of surface water from the 
sea to the lagoon is about 30 psu salinity, whereas the 
outflow of deep water to the sea from the lagoon is 
about 39 psu (Abdulla & Al-Subhi, 2020; Albarakati, 
2009; Alsaafani et  al., 2017). The amount of water 
coming into the area varies between approximately 
151 m3/sec in November and 302 m3/sec in February. 
Similarly, the amount of water flowing out of the area 
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ranges from about 151  m3/sec in November to  402 
m3/sec in February (El-Rayis & Eid, 1997).

Surface sediment samples from forty-two stations 
were collected from the lagoon in May 2014 (Fig. 1) 
by Van Veen grab samplers where thirty stations cov-
ering and representing the different zones and the 
entire lagoon were selected and chemically analyzed. 
The samples were stored in ice boxes and transferred 
to a freezer in the lab after 4–5 h. About 10 g from 
each sediment sample was taken by a clean spat-
ula, defrosted, and dried at room temperature, then 
ground and sieved to obtain < 125 µm fine particles. 
We divided the lagoon into three zones based on its 
physical feature and developmental activities (Fig. 1). 
They were the inner inland zone (IZ), middle zone 
(MZ), and outer zone (OZ).

Extraction and Instrumental analysis

150  mL precleaned beakers were used for the sedi-
ment sample extraction. About 5  g of each sieved 
sediment sample was extracted with a mixture of 
dichloromethane (DCM = 30  ml) and methanol 
(MeOH = 10  ml) three times (15  min each) using 
ultrasonic agitation (Rushdi et  al., 2014a, 2014b, 
2018). A filtration unit containing an annealed glass 

fiber filter was used to remove the sediment particles. 
First, the filtrate was concentrated by a rotary evap-
orator and then reduced to about 200  µL by a flow 
of dry nitrogen gas. Then, the volume of the total 
extract was corrected to exactly 500  µL by adding 
DCM:MeOH (3:1, v:v) mixture.

Gas chromatography-mass spectrometry (GC–MS) 
with a Hewlett-Packard 6890 GC coupled to a 5975 
Mass Selective Detector (Agilent) was used for total 
extract analysis. An Agilent DB-5MS fused silica 
capillary column (30 m long, 0.25 mm internal diam-
eter, and 0.25 um film thickness) and helium as car-
rier gas were used. The setting of the GC oven tem-
perature was 65 °C with an initial hold for 2 min, then 
increased to 310 °C at 6 °C/min and isothermal final 
hold for 20  min. The ion source energy for the MS 
was the electron impact mode at 70  eV. The mass 
spectrometric data were acquired using the ChemSta-
tion data system.

Identification, quantification, and quality control

The hydrocarbon compounds identification was 
based on the similarity of the retention times of 
each compound with the external standard and the 
GC–MS data. The identifications of n-alkanes, 
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Fig. 1   Location map showing the sampling sites of the inner zone (IZ), middle zone (MZ), and outer zone (OZ) in the Obhur 
lagoon, Saudi Arabia
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hopanes, steranes, and phthalates are based princi-
pally on GC retention times and their key ion pat-
terns and mass spectra (i.e., key ion fragmentograms 
m/z 85, 191, 217/218, and 149, respectively). The 
quantification was performed from the GC profiles 
utilizing the external standard method with authentic 
compounds of each homologous series (Rushdi et al., 
2006, 2010, 2014a). The external standards were 
n-alkanes (C8–C40 (90–100%); SupelcoR -Sigma-
Aldrich, USA)), hopanes (17α(H),21β(H)-hopane, 
C30H52; (90–100%); SupelcoR -Sigma-Aldrich, 
USA)), and bis(2-ethylhexyl)phthalate; (100%), 
Sigma-Aldrich, USA). The average response factors 
were computed for each compound. The peak areas 
of the compounds derived from the TIC traces were 
used for quantifications.

During the course of this study, the quality con-
trol consisted of analytical chemistry and biomarker 
method application. n-Tetracosane-d50 was added 
to both the fiber filter and sediment samples to test 
recoveries, which were 92.8% and 72.9%, respec-
tively, and the measured concentrations were adjusted 
accordingly. We measured the limit of detection 
(LoD) and limit of quantification (LoQ) the same 
way with the samples where the least-square method 
was applied to fit the relative responses of the differ-
ent standards versus their concentrations. The corre-
lations were significant with correlation coefficients 
(R2 = 0.91–0.98). The LODs were 0.04–0.7 ng/µL for 
n-alkanes, 0.1–1.5 ng/µL for Hopane, and 0.1–1.6 ng/
µL for phthalate. We have tested all reagents and sol-
vents used for extraction for possible contaminations. 
Procedural blanks were examined to assess back-
ground contamination introduced by laboratory prac-
tices. Throughout the entire procedure, we further-
more performed blank extracts after batches of three 
samples.

Results and discussion

The sediment samples had a range of total extract-
able organic matter (TEOM) concentrations from 
119 to 5924  ng/g (Fig.  2a). The average values 
were 1428 ± 1448  ng/g for the inner/inland zone 
(IZ), 1982 ± 1710  ng/g for the middle zone (MZ), 
and 2080 ± 2229  ng/g the outer zone (OZ), as 
shown in Table  1, and Fig.  3a. The data revealed 
that there were significant amounts of hydrocarbon 

compounds, including biomarkers, present in the 
TEOM (Table 1.). The detected compounds included 
n-alkanes, hopane and sterane biomarkers, phthalates, 
and an unresolved complex mixture (UCM) of highly 
branched and cyclic hydrocarbons (Table 1 and SM1), 
which are the emphasis of the discussion in this work.

The existence, dispersal patterns, amounts, and 
characteristics of homologous series of n-alkanes, 
hopanes, and steranes in the environment can be 
applied to identify their major sources in the environ-
ment (; Bouloubassi et al., 2001; Rushdi et al., 2006, 
2010, 2014a; Simoneit, 1977a, 1984, 1985). There-
fore, similarities are likely between the observed 
organic compound mixtures in the environmental 
samples and the recognized sources of those com-
pounds. Here, merely non-polar hydrocarbons and 
phthalates in the TEOM are explained and discussed.

n‑Alkanes

The sediment samples’ TEOM contained n-alkanes 
ranging from C17 to C34 (Table  1), with the high-
est concentration found at C31 (hentriacontane). 
The total concentration ranged from 5.7  ng/g to 
464.6 ng/g, with average values of 140.6 ± 196.4 ng/g 
in sediments from IZ, 89.3 ± 88.5  ng/g in MZ, and 
103.2 ± 114.9 ng/g in OZ (Table 1 and MS1, Fig. 3b). 
The IZ had the highest concentration range followed 
by OZ and MZ as shown in Fig.  2a, indicating that 
the topography and hydrography of the lagoon, as 
well as human activities around it, impact the distri-
bution of these alkanes. These concentrations were 
relatively similar to the levels measured in Jiaozhou 
Bay of China (0.5–8.2 µg/g; Wang et al., 2006), Gulf 
of Suez-Egypt (34–553 ng/g; El Nemr et  al., 2014), 
Yellow River estuary-China (0.356–0.572  mg/kg; 
Wang et  al., 2018), Patos Lagoon estuary-Brazil 
(0.28–36.4  µg/g; Neves et  al., 2023). But they were 
lower than the values reported in other regions such 
as the Caspian coast-Iran (249–3900 µg/g; Shirneshan 
et  al., 2016), Eastern Mediterranean Coast (1.6 
14.7  µg/g; Tsapakis et  al., 2010), Northern Arabian 
Gulf (5654–20,942 ng/g; Rushdi et al., 2014b). 

The sources of n-alkanes in the environment are 
mainly biogenic and anthropogenic contributions, and 
their sources can be identified based on the distribu-
tion pattern of their homologous series. The exist-
ence and detection the n-alkanes in ecosystems are 
valuable markers to assess the sources, transport, and 
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preservation of organic matter in the environment. The 
focal parameters coupled with the n-alkane character-
istics and sources are the carbon number maximum 
(Cmax) of the most abundant n-alkane in the homolo-
gous series and the carbon preference index (CPI; Bray 

& Evans, 1961). The CPIo/e (Mazurek & Simoneit, 
1984) was estimated using the equation:

CPI(o∕e) = Total nC
odd

∕Total nC
even
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Fig. 2   Spatial concentration distributions of a TEOM, b n-alkanes, c hopanes, d steranes, e phthalates, and f UCM in sediments 
from the Obhur lagoon
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Table 1   The average concentrations (Avg.) and standard devi-
ation (SD) in ng/g of TEOM, n-alkanes, hopanes, steranes, and 
UCM in sediments samples from the three zones (IZ, MZ, and 

OZ) of Obhur lagoon of Saudi Arabia and their related organic 
geochemical parameters

IZ MZ OZ

Avg SD Avg SD Avg SD

TEOM (ng/g) 1428 1448 1982 1710 2080 2229
Compound
n-Alkanes (ng/g) Composition M.W
Heptadecane C17H36 240 2.5 5.3 0.9 1.1 1.7 2.2
Octadecane C18H38 256 2.5 4.4 1.8 1.6 2.8 2.6
Nonadecane C19H40 268 5.6 10.8 3.4 4.0 5.9 4.7
Eicosane C20H42 282 7.1 12.2 3.6 4.9 2.6 2.9
Heneicosane C21H44 296 8.2 15.2 5.6 5.2 10.3 13.4
Docosane C22H46 310 11.1 19.1 3.9 3.8 4.7 4.6
Tricosane C23H48 324 7.9 12.0 5.5 4.8 8.3 11.3
Tetracosane C24H50 338 7.3 11.2 4.4 4.7 7.9 10.5
Pentacosane C25H52 352 7.6 9.8 5.8 5.0 7.9 9.0
Hexacosane C26H54 366 8.6 14.1 6.8 7.8 3.8 3.5
Heptacosane C27H56 380 9.7 10.5 7.2 7.5 8.6 11.5
Octacosane C28H58 394 7.6 14.7 3.8 4.7 3.8 4.0
Nonacosane C29H60 408 11.6 12.1 7.4 9.2 9.8 13.0
Triacontane C30H62 422 7.3 14.1 4.0 5.1 3.7 4.3
Hentriacontane C31H64 436 24.6 21.1 18.3 22.6 17.2 24.8
Dotriacontane C32H66 450 5.1 12.5 2.6 3.4 2.0 2.6
Tritriacontane C33H68 464 4.5 5.6 3.0 3.6 1.6 2.3
Tetratriacontane C34H70 478 2.0 5.5 1.4 1.3 0.6 0.7
Total 140.6 196.4 89.3 88.5 103.2 114.9
CPI (o/e)a 2.0 0.7 1.9 0.9 2.3 1.7
Wax n-Alkanes (ng/g)
Pentacosane C25H52 352 0.7 1.2 0.9 1.0 2.3 3.2
Heptacosane C27H56 380 3.6 4.8 2.2 3.4 5.1 9.3
Nonacosane C29H60 408 5.8 7.2 3.7 4.5 6.0 9.0
Hentriacontane C31H64 436 18.4 18.9 15.0 19.9 14.3 22.4
Tritriacontane C33H68 464 2.4 4.2 1.6 2.5 0.7 1.8
Total 31.2 34.4 23.4 29.0 28.5 45.1
Total Petroleum n-alkanes (ng/g) 109.4 191.9 65.9 65.8 74.7 72.0
Total Petroleum n-alkanes (%) 62.7 15.3 75.0 17.3 76.7 21.2
Hopane Biomarkers (ng/g)
Trisnorneohopane C27H46 370 4.0 3.2 4.1 4.3 4.7 4.5
17α(H)-Trisnorhopane C27H46 370 8.3 7.5 11.7 13.9 11.8 12.1
17α(H), 21β(H)-Norhopane C29H50 398 13.7 11.2 12.5 13.4 14.1 13.2
Trisnorhopane C29H50 398 3.9 2.8 3.4 3.8 3.7 3.4
17 α (H), 21β(H)-Hopane C30H52 412 13.5 10.4 12.0 12.6 13.6 12.0
17α(H), 21β(H)-22S-Homohopane C31H54 426 7.4 5.4 6.8 7.4 7.0 5.7
17α(H), 21β(H)-22R-Homohopane C31H54 426 4.9 3.0 3.9 4.2 4.4 3.6
Gammacerane C30H52 412 0.6 0.9 0.2 0.4 0.3 0.2
17α(H), 21β(H)-22S-Bishomohopane C32H56 440 4.8 3.5 4.0 4.4 4.9 4.6
17α(H), 21β(H)-22R-Bishomohopane C32H56 440 3.9 3.3 3.5 3.8 4.1 3.2



Environ Geochem Health (2024) 46:22	

1 3

Page 7 of 18  22

Vol.: (0123456789)

The major samples had maximum concentrations 
at C31 (Table 1 and SM1), suggesting a contribution 
from higher terrestrial plant waxes of grassy flora 
(Eglinton & Hamilton, 1967; Ficken et  al., 2000; 
Simoneit, 1978; Zhang et  al., 2006). This higher 
molecular weight n-alkane was also detected in the 

sediments from the Arabian Gulf (Rushdi et al., 2010, 
2022a) signifying that plant waxes of tropical vegeta-
tion have a high Cmax (Simoneit, 1978). Frequently, 
the n-alkane CPI(o/e) has been employed to assess the 
impact and influence of biogenic and anthropogenic 
inputs (Al-Khion et  al., 2021; Bray & Evans, 1961; 

Bold indicates total concentrations of each group

Table 1   (continued)

IZ MZ OZ

Avg SD Avg SD Avg SD

17α(H), 21β(H)-22S-Trishomohopane C33H58 454 2.9 2.1 2.3 2.4 2.6 2.2
17α(H), 21β(H)-22R-Trishomohopane C33H58 454 1.6 1.3 1.3 1.4 1.8 1.6
17α(H), 21β(H)-22S-Tetrakishomohopane C34H60 468 1.7 1.0 1.2 1.2 1.3 1.3
17α(H), 21β(H)-22R-Tetrakishomohopane C34H60 468 1.3 0.9 0.8 0.9 1.0 1.1
17α(H), 21β(H)-22S-Pentakishomohopane C35H62 482 1.7 1.1 1.1 1.5 1.5 1.4
17α(H), 21β(H)-22R-Pentakishomohopane C35H62 482 0.7 0.4 0.5 0.6 0.8 0.8
Total 74.9 54.6 69.4 75.3 77.7 69.9
C31 S/(R + S) 0.56 0.11 0.65 0.06 0.62 0.05
C32 S/(R + S) 0.57 0.15 0.53 0.07 0.53 0.07
Steranes (ng/g)
13β, 17α-20S-Cholestane Diasterane C27H48 372 5.9 5.8 4.9 4.8 6.9 6.6
13β, 17α-20R-Cholestane Diasterane C27H48 372 3.5 3.4 2.9 2.8 3.8 3.2
13β, 17β-20S-Cholestane Diasterane C27H48 372 3.1 3.0 2.3 2.5 3.3 3.7
13β, 17β-20R-Cholestane Diasterane C27H48 372 4.0 4.7 4.1 5.5 5.9 6.6
14α, 17βα-20S-Cholestane C27H48 372 5.0 4.8 3.9 4.5 4.6 4.4
14β,17β -20R-Cholestane C27H48 372 6.7 6.3 5.1 5.5 5.8 5.7
14β, 17β-20S-Cholestane C27H48 372 10.4 9.8 7.7 8.1 9.4 9.4
14α,17βα-20R-Cholestane C27H48 372 4.6 4.4 1.8 1.7 2.0 2.6
14α, 17βα-20S-Ergostane C28H50 386 2.6 3.0 2.2 2.9 3.8 4.0
14α, 17β-20R-Ergostane C28H50 386 7.7 7.4 6.7 7.3 7.6 7.0
14α, 17β-20S-Ergostane C28H50 386 3.2 3.0 2.5 2.6 3.3 3.6
14α, 17βα-20R-Ergostane C28H50 386 0.8 0.6 0.7 0.8 0.4 0.3
14α, 17βα-20S-Stigmastane C29H52 400 8.8 8.9 7.4 9.3 8.0 8.0
14β, 17β-20R-Stigmastane C29H52 400 12.0 11.4 10.0 11.4 8.4 7.0
14β, 17β-20S-Stigmastane C29H52 400 7.3 6.5 7.0 7.4 6.2 6.4
14α, 17βα-20R-Stigmastane C29H52 400 3.9 3.4 3.3 4.0 2.2 2.0
Total 89.5 82.2 72.5 77.9 81.4 76.8
C27 S/(R + S) 0.48 0.11 0.42 0.12 0.46 0.10
C29 S/(R + S) 0.65 0.15 0.62 0.28 0.66 0.22
Phthalates (ng/g)
Di-isobutyl phthalate C16H22O4 278 5.5 7.2 14.5 11.9 17.1 19.6
Dibutyl phthalate C16H22O4 278 4.8 5.7 10.0 9.1 11.2 11.1
Dioctyl phthalate C24H38O4 390 27.0 23.0 34.2 29.0 36.7 37.6
Total 37.4 34.5 58.6 49.0 65.0 68.0
UCM 821 1119 1041 1539 1297 1684
U:R 1.00 0.99 0.86 1.17 1.23 1.33



	 Environ Geochem Health (2024) 46:22

1 3

22  Page 8 of 18

Vol:. (1234567890)

Colombo et  al., 1989; Commendatore & Esteves, 
2004; Diefendorf et  al., 2014; Rushdi et  al., 2022a; 
Simoneit, 1989). In the sediment of the lagoon, the 
CPI(o/e) values for n-alkanes with carbon chains rang-
ing from C17–C35 were estimated between 0.8 and 5.7 
(Table SM1). Specifically, the values for sediment in 
IZ ranged from 0.8 to 3.5 (average = 2.0 ± 0.7), for 
MZ it was 1.1 to 4.4 (average = 1.9 ± 0.9), and for 
OZ it was 1.1 to 5.7 (average = 2.1 ± 1.7) as shown 
in Table 1. These values confirmed that n-alkanes in 
the sediments were originally derived predominantly 
from petroleum-related products with small amounts 
from higher plant waxes.

To assess the relative inputs of the different 
sources, the n-alkane concentrations from plant wax 
were calculated following the method of Simoneit 
et  al., (1991a). The plant wax concentrations var-
ied from 1.1 to 132  ng/g of total n-alkanes of the 
lagoon. They were ranging from 3.1 to 98.5  ng/g 
(average = 31.2 ± 34.4 ng/g) in the IZ, 0.6–60.1 ng/g 
(average = 23.4 ± 29.0 ng/g) in the MZ, and from 1.5 
to 57.2  ng/g (average = 28.5 ± 45.1  ng/g) in the OZ 
(Table  1 and SM1). The TAR​alk ratios (terrestrial-
to-marine n-alkanes; TAR​alk = [(nC27 + nC29 + nC31)/
(nC15 + nC17 + nC19)]; Bourbonniere & Meyers, 1996) 
were calculated and found to range from 9.3 ± 10.1 
for ZII to 28.2 ± 22.4 for ZI (Table SM1). These high 

values indicated that terrestrial plant sources were 
prevalent in these sediments. The petroleum n-alkane 
inputs were then estimated by deducting the cal-
culated plant wax n-alkanes from the total n-alkane 
concentrations. Their total concentrations ranged 
from 4.0 to 444.2 ng/g in the sediment samples of the 
lagoon. They ranged from 4.0 to 444.2  ng/g (aver-
age = 109.4 ± 191.9  ng/g) in the IZ, 7.8–188.6  ng/g 
(average = 65.9 ± 65.8  ng/g) in MZ, and from 2.7 to 
272.7  ng/g (average = 74.4 ± 72.0  ng/g) in the OZ 
(Table  1 and SM1). The relatively low concentra-
tions of n-alkanes and the absence of the isoprenoid 
pristane and phytane in the lagoon sediments are 
probable due to biodegradation and high oxidation 
processes.

Hopanes and steranes

Both hopane and sterane biomarkers were detected 
in the lagoon sediment samples. Hopanes, which 
were observed to range from C27 to C35 had Cmax at 
29 and 30 (Table 1), were measured with concentra-
tions ranging from 4.2 to 197.0 ng/g (Table SM1). As 
shown in Table 1 and Figs. 2c, 3, the average concen-
trations were roughly similar in the three zones (i.e., 
74.9 ± 54.6  ng/g in IZ, 69.4 ± 75.3  ng/g in MZ, and 
77.7 ± 69.9  ng/g in OZ). These concentrations were 

Fig. 3   Box plots of the concentrations of a TEOM, b n-alkanes, c hopanes, d steranes, e phthalates, and f UCM in sediments from 
the inner zone (IZ), middle zone (MZ), and outer zone (OZ) of Obhur lagoon
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in the range of the levels reported in the sediments 
of the estuary of Paranagaue Bary-Southeast Atlan-
tic (41.2–198  ng/g; Garcia et  al., 2019); they were 
higher than the concentrations in the coastal sedi-
ments of Qatar (0.0–32.9 ng/g; Rushdi et al., 2017a, 
2017b), and lower than the values determined in the 
coastal canal of Thailand (1510–17114 ng/g; Boonya-
tumanond et al., 2006), Iranian coast of Arabian/Per-
sian Gulf (189–3713 ng/g, 42–3864 ng/g; Jafarabadi 
et al., 2019), and estuary in Malaysia (023–2.45 mg/
kg; Keshavarzifard et  al., 2022) Steranes total con-
centrations ranged from 6.2 to 194.3  ng/g with 
averages of 89.5 ± 82.2  ng/g, 72.5 ± 77.9  ng/g, and 
81.4 ± 76.8 ng/g for sediments from IZ, MZ, and OZ, 
respectively (Figs. 2d and 3d). They ranged from C27 
to C29 with a Cmax at 29 and major amounts at C27 

(Table 1). The concentrations of these sediments were 
lower than the levels measured in the sediments of the 
Arabian/Persian coast of Iran coast (42–3864  ng/g; 
Jafarabadi et  al., 2019), similar to the values in 
Leizhou Peninsula-South China (20–230  ng/g; Gao 
et  al., 2021), and relatively higher than the levels 
in the coastal zone of Qatar (0.7–36.3  ng/g; Rushdi 
et al., 2017a, 2017b).

The occurrence of hopane and sterane biomarkers 
in the environment suggests that the source of organic 
matter was fossil fuel residues (e.g., Jafarabadi et al., 
2019; Medeiros et  al., 2005; Simoneit, 1984; Simo-
neit et al., 1991b). The positive correlations between 
hopane and sterane concentrations versus TEOM 
were significant (Fig.  4; R2 = 0.74–0.85, 0.69–0.72, 
and 0.70–0.8 for IZ, MZ, and OZ respectively), 

Fig. 4   Correlation plots 
showing the relationships 
between: a concentrations 
of hopanes and b steranes 
versus total concentrations 
of extractable hydrocarbons 
(TEOM) for the three zones
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confirming that petroleum residues were also major 
sources to the sediment of the lagoon. Hopanes are 
usually applied as biomarker tracers for fossil fuel 
contributions in the environment since they resist 
alteration and degradation processes (Ten Boulou-
bassi et  al., 2001; Haven et  al., 1988; Moldowan 
et  al., 1985; Peters & Moldowan, 1993). There-
fore, we utilized them to differentiate the incidence 
of petroleum-related products in the environment. 
The maximum detected hopanes were at the C30 
and/or C29 homologues, with the thermodynami-
cally stable  17α(H),21β(H) configuration and minor 
17β(H),21α(H)-hopanes (Table  1 and SM1). These 
isomeric configurations normally take place in crude 
oils and mature sedimentary rocks due to the diage-
netic interconversion of the 17β(H),21β(H)-hopane 
precursors of bacterial origins (Peters & Moldowan, 
1993). The hopane distribution ranged from C27 to 
C35 for the α,β-series with typically mature C-22 R/S 
(sinister/rectus enantiomers at carbon 22) pairs of the 
predominant homologs > C30 (Simoneit, 1984; Simo-
neit et al. 1990; Peters & Moldowan, 1993). High con-
centration distributions of the 22S hopane relative to 
the equivalent 22R isomer have been generally related 
to petroleum and vehicle engine exhaust (Simoneit, 
1984, 1985). The 22S/(S + R) ratios for the extended 
hopanes of C31 and C32 varied from 0.29 to 0.8 in 
the sediments of the lagoon. They were 0.56 ± 0.11, 
0.65 ± 0.06, and 0.62 ± 0.05 for sediments from IZ, 
MZ, and OZ, respectively. These ratios were compa-
rable to the values reported for petroleum hydrocar-
bons and mature crude oil (Kvenvolden et al., 1990; 
Rushdi & Simoneit, 2002a, 2002b). Consequently, 
these ratios verified that the sources of the hopane 
compound series in the lagoon sediments were petro-
leum-related inputs.

The detection of steranes in the environment is 
generally related to petroleum emissions and or 
releases of lubricants from vehicular engines (Abas 
& Simoneit, 1996). Refinery activities, ship-washing 
discharges, and municipal wastewaters are also possi-
ble sources of these biomarkers (Laws, 1993). Hence, 
the sterane biomarkers are similarly valuable support-
ing tracers for oil-product contamination in coastal 
and urban environments (e.g., Aboul-Kassim & Simo-
neit, 1996; Albaiges & Cuberes, 1980; Rushdi et al., 
2017a, 2017b, 2022a). The steranes in the sediments 
of Obhur lagoon ranged from C27 to C29 with pri-
marily the 5α,14β,17β-series and minor 5α,14α,17α 

configurations and both occurring as the 20S and 
20R epimers. The epimerization ratio of steranes at 
C-20, S/(S + R) for these samples, ranged from 0.10 
to 0.91 for C27 and from 0.14 to 0.87 for C29. They 
were 0.48 ± 0.11 in IZ sediments, 0.42 ± 0.12 in MZ, 
0.46 ± 0.10 in OZ sediments for C27, and 0.65 ± 0.15 
in IZ, 0.0.62 ± 0.28 in MZ, and 0.66 ± 0.22 in OZ for 
C29 (Table 1). These ratios revealed that the sources 
of these biomarkers were petroleum residues (Peters 
& Moldowan, 1993; Simoneit, 1984).

Phthalates

The phthalates in the sediment samples of the lagoon 
were major compounds, including diisobutyl- dibu-
tyl and dioctyl- phthalates. Their total concentra-
tions ranged from 3.7 ng/g to 201.2 ng/g, with aver-
age concentrations of 37.4 ± 34.5  ng/g in the IZ, 
58.6 ± 40.0  ng/g in the MZ, and 65 ± 68  ng/g in the 
OZ sediments (Table  1, and SM1, Fig.  3e). Dioctyl 
phthalate was the predominant plasticizer detected in 
the lagoon sediments. These man-made plasticizer 
compounds were not detected in the solvents, ana-
lytical blanks, and sample containers, indicating that 
they were the main components of the lagoon sedi-
ments. The total concentrations of these phthalates in 
the lagoon sediments were much lower than the levels 
measured in Campeche-Mexico (18292–21702 ng/g; 
Ramirez et al., 2019), Asalouyeh harbor coast of Iran 
(mean = 5180  ng/g; Arfaeinia et  al., 2019), Arabian/
Persian Gulf of Saudi Arabia coast (31–2799  ng/g; 
Rushdi et  al., 2022a), similar to values in Santos 
Bay-Brazil (0.0–182  ng/g; Cesar et  al., 2014), and 
relatively higher than the levels in the coast of Qatar 
(7.8 ± 0.7 ng/g; Rushdi et al., 2017a, 2017b).

Plastic waste and litter in marine ecosystems have 
been recognized as a serious environmental concern 
(Andrady, 2011; Eriksen et al., 2013; Fan et al., 2023; 
Isobe & Iwasaki, 2022; Jang et al., 2023; Peng et al., 
2020; Perkins, 2015; Sivadas et  al., 2022; Vegter 
et  al., 2014). About 269,000 tons of plastic objects 
have been predicted floating on oceanic surface 
waters (Xanthos & Walker, 2017), which represent 
60–95% of marine debris (Derraik, 2002; Surhoff & 
Scholz-Bottcher, 2016; Walker et  al., 1997, 2006). 
Plasticizers, mainly phthalates, make up the mass 
chemical composition of plastics and are very stable 
compounds in the environment (Dong et  al., 2019; 
Zhang et al., 2021). They are hazardous and harmful 
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substances to marine life (Squillante et  al., 2023; 
Tranganida et al., 2023).

Unresolved complex mixture (UCM)

Commonly, the GC traces of TEOM of environmen-
tal samples show the unresolved complex mixture 
(UCM) of branched and cyclic compounds above the 
baseline with the superimposing of the resolved com-
pounds (Frysinger et al., 2003; Killops & Al-Juboori, 
1990; Simoneit, 1984, 1985). The concentrations of 
UCM in the sediment samples of the lagoon were 
relatively high, ranging from ~ 0.0 to 4571.4  ng/g 
(Table  SM1) with high concentration ranges in the 
three zones (Figs.  2f and 3f). They ranged from 
27 to 2755  ng/g (average = 821 ± 1119  ng/g) in 
IZ, 0.0–4571.4  ng/g (average = 1041 ± 1539  ng/g) 
in MZ, and from 21 to 4433  ng/g (aver-
age = 1297 ± 1684 ng/g) in OZ (Table 1). These con-
centrations were lower than the values reported in 
sediments from the Arabian/Persian Gulf coasts of 
United Arab Emirates (10000–670000  ng/g; Tolosa 
et al., 2005), Iraq (71753–92540 ng/g; Rushdi et al., 
2014a, 2014b), Saudi Arabia (14–11388  ng/g, 
Rushdi et al., 2022a), and relatively similar to Qatar 
(38–609 ng/g; Rushdi et al., 2017a, 2017b).

Fossil fuel utilization and oil spills are the main 
sources of the UCM. Generally, the refining process 
of crude oil produces diesel and gasoline, with the 
former having a broader UCM and the latter having 
a narrower UCM (Frysinger et  al., 2003; Gough & 
Rowland, 1990; Simoneit, 1984, 1985). A TEOM of a 
sample with only biogenic sources such as terrestrial 
plants has no UCM (Simoneit & Mazurek, 1982). 
Thus, the UCM-to-resolved compound ratio (U:R 
ratio, Simoneit & Mazurek, 1982) is employed to 
evaluate the level of contamination from the input of 
petroleum-related products and oil spills. A U:R ratio 
value of > 1.0 suggests contamination by biodegraded 
petroleum-related products in sediments. The U:R 
ratios varied from 0.01 to 3.5 (Table  SM1) and the 
average values were 1.00 ± 0.99 for IZ, 0.86 ± 1.17 
MZ, and 1.23 ± 1.33 for OZ (Table 1). The estimated 
values of the U:R of the sediment samples of the 
lagoon indicated that the lagoon was comparatively 
contaminated with petroleum residues.

The ratio of UCM/n-Alkanes has been used to con-
firm and distinguish the sources of petroleum hydro-
carbons in the environment, where the values > 2.0, 

> 4.0, and > 10 indicate petroleum, lubricating oil, 
and degraded petroleum, respectively (Harji et  al., 
2008; Tolosa et  al., 2004). The ratio values ranged 
from 0.1 to 32.2 for the sediment samples of the 
lagoon. The averages were 6.8 ± 6.6 in IZ, 8.5 ± 7.6 
in MZ, and 10.8 ± 10.9 in OZ. We have applied the 
ratios of UCM/n-Alkanes versus CPI(o/e) to validate 
and differentiate the origins of hydrocarbons in the 
sediments of the lagoon (Fig. 5). Obviously, the main 
sources of these hydrocarbons in the lagoon were 
petroleum hydrocarbons.

The percentages of petroleum-related compounds, 
including petroleum n-alkanes, hopanes, steranes, and 
UCM, were relatively high ranging from 1 to 97% of 
the TEOM of the lagoon sediment. They were from 
39.5 to 83.8% (average = 62 ± 15%) in IZ, 7.7–97.2% 
(average = 43 ± 33%) in MZ, and 18.8% to 90.2% 
(average = 54 ± 28%) in OZ. The fractions of phtha-
lates from plastics varied from 0.70 to 5.6% in the 
sediments and from 1.8 to 4.7% (average = 2.9 ± 1.2%) 
in IZ, 0.7–4.7% (average = 3.2 ± 1.1%) in MZ, and 
from 1.3 to 6.3% (average = 4.0 ± 1.6%) in OZ 
(Fig. 5). The plasticizer fractions were similar to the 
values reported from the Gulf of Suez (3.3 ± 2.0%, 
Rushdi et al., 2009) and higher than in the Qatar coast 
(0.42 ± 0.72%, Rushdi et al., 2017a, 2017b).

Environmental effects

Coastal lagoons are important sources of organic 
and inorganic nutrients to marine environments (Por, 
2012) with estimated primary production similar to 
upwelling areas (Knoppers et  al., 1991). They are 
naturally very important and ultimate ecosystems for 
aquaculture projects but, are still, extremely influ-
enced by anthropogenic inputs and developmental 
activities (Kjerfve, 1994). Urbanization and human 
activities have influenced the well-being conditions 
of the lagoons of the Red Sea coasts (Albarakati & 
Ahmad, 2019; Basaham et  al., 2019). They affect 
key habitats, such as mangroves, coral reefs, seagrass 
stands, and bottom water fish nursing areas of the 
lagoons (Alamri et al., 2021; Aljahdali et al., 2021).

To evaluate the potential warning effects of these 
sediment hydrocarbons and phthalates, we’ve uti-
lized the sediment quality assessment guidelines 
(SQAGs) approach developed by Long and Mor-
gan (1990). This method involves testing various 
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sediment contaminant concentrations against two 
ranges: the threshold effects level (TEL), which is 
the minimum level that could cause an effect, and 
the probable effects level (PEL), which is the lower 
limit range of contaminant concentrations that could 
cause damage to the biological system. Although 
n-alkanes have been reported to be non-toxic 
(Nilsen et  al., 1988), there are no guidelines avail-
able for their regulation. Thus, we have used phtha-
lates to assess the sediment quality of the lagoon. 
The TEL and PEL values for phthalate esters are 
182 µg/kg and 2647 µg/kg, respectively, as reported 
by Long and Morgan (1990) and Long et al. (1995). 
For DBP, based on the characteristics of toxicol-
ogy and environmental chemistry, Van Wezel 
et  al. (2000) established environmental risk limits 
(ERLs), which was set at 0.7  mg/kg for DBP. The 
acceptable exposure threshold (AETs) for DNBP is 
71 1400 µg/Kg, according to PTI (1988) and Bellar 
et al. (1986). The TEL for DBP is 2200 ng/g and the 
PEL is 17000 ng/g, as determined by Kingsley and 
Witthayawirasak (2020). Accordingly, based on the 
works mentioned above, the levels of DBP and total 
phthalates found in the sediments of the lagoon 

were below the TEL values. This indicates that the 
measured concentrations of phthalates should not 
have any significant harmful effects.

Increase in petroleum-related products and plasti-
cizer wastes from many sources such as oil transfer 
docks, oil refineries, municipal sewage treatment 
plants, and public littering is anticipated to have 
impacts on the various habitats and associated spe-
cies groups in the lagoons (Dicks, 1987; Loya, 1975; 
Rinkevich & Loya, 1979). The most sensitive early 
life stages of biota such as egg, larva, and young 
genera will be disturbed by these toxic chemicals. 
Other marine species, especially benthic species that 
depend on the lagoon for reproduction, growth, and 
protection, are harshly impacted. Thus, the presence, 
characteristics, distributions, and sources of crude oil 
contamination and other man-made chemical pollut-
ants in the Obhur lagoon need further studies. These 
studies will facilitate the control and preventive meas-
ures to be undertaken to avert or at least reduce the 
inputs of these pollutants into the lagoons.
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Conclusion

The TEOM hydrocarbons in the sediments of 
Sharm Obhur were mainly from petroleum residues 
(43 ± 33–62 ± 15% of the TEOM) with fewer inputs 
from vascular higher plants (23.4 ± 29.0–31.2 ± 34.4% 
of TEOM). The sources of petroleum hydrocar-
bons were largely from oil-related operations, spills, 
boat engines, oil transfer docks, oil refineries, and 
untreated water discharges into the lagoon. Other 
sources of pollutants in the sediments of the lagoon 
were phthalates from plastic littering. These petro-
leum residues and plasticizers will in due course have 
severe effects on the ecosystems of the lagoon and the 
adjoining Red Sea coastal environments.

Further studies are necessary to monitor and inves-
tigate the occurrence, characteristics, and distribution 
of organic and inorganic pollutants in the Red Sea 
coastal lagoons and their impacts on the key habitats 
of the area. These research and monitoring activities 
are critical to protecting the important ecosystems of 
the lagoons.
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