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Ion-exchange processes and the adsorption of ions 
significantly impacted the concentration of As. The 
HCO3

− and Na+ are the dominant ions in the study 
area, and the water types of samples were CaHCO3, 
mixed CaMgCl, and CaCl, demonstrating that rock–
water contact significantly impacts hydrochemical 
behavior. The geochemical modeling indicated nega-
tive saturation indices with calcium carbonate and 
other salt minerals, encompassing aragonite, calcite, 
dolomite, and halite. The dissolution mechanism sug-
gested that these minerals might have implications 
for the mobilization of As in groundwater. A com-
bination of human-induced and natural sources of 
contamination was unveiled through principal com-
ponent analysis (PCA). Artificial neural networks 
(ANN), random forest (RF), and logistic regression 
(LR) were used to predict As in the groundwater. 

Abstract  Arsenic contamination in the groundwater 
occurs in various parts of the world due to anthropo-
genic and natural sources, adversely affecting human 
health and ecosystems. The current study intends to 
examine the groundwater hydrogeochemistry con-
taining elevated arsenic (As), predict As levels in 
groundwater, and determine the aptness of ground-
water for drinking in the Vehari district, Pakistan. 
Four hundred groundwater samples from the study 
region were collected for physiochemical analysis. 
As levels in groundwater samples ranged from 0.1 
to 52 μg/L, with an average of 11.64 μg/L, (43.5%), 
groundwater samples exceeded the WHO 2022 rec-
ommended limit of 10 μg/L for drinking purposes. 
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The data have been divided into two parts for statis-
tical analysis: 20% for testing and 80% for training. 
The most significant input variables for As predic-
tion was determined using Chi-squared analysis. The 
receiver operating characteristic area under the curve 
and confusion matrix were used to evaluate the mod-
els; the RF, ANN, and LR accuracies were 0.89, 0.85, 
and 0.76. The permutation feature and mean decrease 
in impurity determine ten parameters that influence 
groundwater arsenic in the study region, including 
F−, Fe2+, K+, Mg2+, Ca2+, Cl−, SO4

2−, NO3
−, HCO3

−, 
and Na+. The present study shows RF is the best 
model for predicting groundwater As contamination 
in the research area. The water quality index showed 
that 161 samples represent poor water, and 121 sam-
ples are unsuitable for drinking. Establishing effec-
tive strategies and regulatory measures is imperative 
in Vehari to ensure the sustainability of groundwater 
resources.

Keywords  Groundwater arsenic · Machine 
learning · Logistic regression · Artificial neural 
network · Random forest · Water quality index

Introduction

People rely heavily on groundwater in many countries 
for drinking, agriculture, and industrial needs (Jat 
Baloch et al., 2020; Rehman et al., 2019; Ullah et al., 
2022c). Groundwater supplies drinking water for one-
third of the world and is the source of freshwater in 
arid and semi-arid areas of Pakistan (Ghani et  al., 
2022; Jat Baloch et al., 2023). Because of rapid popu-
lation expansion, agricultural and industrial activities, 
groundwater withdrawal has steadily increased and 
prompted concerns regarding assessing and managing 
groundwater resources for sustainable development 
(Iqbal et al., 2023b; Rashid et al., 2023; Ullah et al., 
2022a). Groundwater is one of the essential water 
resources in Pakistan (Jat Baloch et al., 2020, 2023). 
However, several chemical elements, such as arsenic 
(As), threaten groundwater quality increasingly. Over 
47 million are currently exposed to As contamination 
in Pakistan (Jat Baloch et  al., 2022a; Rashid et  al., 
2023). Thus, understanding groundwater quality is 
critical for effective water management and long-
term sustainability (Zhang et al., 2022; Zhang et al., 
2022b).

The International Agency for Research on Cancer 
(IARC) classifies As as a class 1 human toxic element 
(Tropea et al., 2021). The World Health Organization 
(WHO) has reduced the As level in drinkable water 
from 50 to 10 µg/L due to the high carcinogenic risk 
(Zhou et  al., 2021). Water contamination is a sig-
nificant concern worldwide, notably in developing 
countries such as China, Pakistan, India, Bangladesh, 
and Vietnam. The consumption of As in drinking 
water has affected over 2 million people worldwide 
(Rahman et  al., 2021). Weathering, evapotranspira-
tion, and volcanic emissions are all geological fac-
tors that influence groundwater quality. Other recent 
studies have found that human activities contribute 
significantly to groundwater contamination. Subsur-
face contamination is caused by activities such as 
petroleum refining, herbicides, pesticides, and min-
ing (Dilpazeer et al., 2023; Li et al., 2023; Stojanović 
Bjelić et al., 2023; Tariq et al., 2023). As contamina-
tion in eggs, water, milk, food, and meat can result in 
many health problems. The ingestion of bovine milk 
is among the most significant sources of toxicants 
in the food chain (Ullah et  al., 2021). Groundwater 
As concentration rises due to physicochemical and 
geochemical conditions and rock-water interaction. 
People can be exposed to As through various mecha-
nisms, including breathing, drinking, and skin contact 
(Çiner et  al., 2021). Numerous national and interna-
tional cases demonstrate that drinking contaminated 
water endangers people’s health via these intercon-
nected pathways (Iqbal et al., 2023a; Tabassum et al., 
2019). This high As concentration in drinking water 
may cause various health issues, including hair loss, 
kidney failure, and cardiovascular disease (Rashid 
et  al., 2019). Geochemical compositions, concentra-
tion levels, and bedrock geology all have an impact 
on groundwater quality around the world. Fresh-
water resources are critical for all life forms and are 
required for the survival of life and the natural envi-
ronment. Overconsumption and poor management 
threaten freshwater resources (Jat Baloch & Mangi, 
2019). To identify trends and ensure sustainability, 
groundwater modeling, quality analysis, and monitor-
ing are required.

In recent water studies, Machine Learning (ML) 
methods are often used to solve various issues (Hus-
sain et  al., 2022; Sahin et  al., 2021; Sun & Scan-
lon, 2019). ML approaches generally emphasize the 
relationship between the model’s outputs and inputs 
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rather than the mechanisms that enable the process. 
Sophisticated nonlinear associations between many 
variables can be appropriately documented with or 
without previous knowledge of the investigated sys-
tem by learning a massive amount of data (Abbas 
et  al., 2023; Hussain et  al., 2021; Iqbal et  al., 2020; 
Jamil et al., 2019). The presence of F−, As, and other 
contaminants in groundwater has thus been estimated 
using various ML techniques, such as Artificial neural 
networks (ANN) (Ahmadi et al., 2017). The Random 
Forest (RF) model is most widely used for regres-
sion and classification. RF has many valuable features 
for classification. Because RF is a non-parametric, 
nonlinear method, it can handle large datasets with 
numerical and categorical data and complicated non-
linearity and factor interactions (Ranjgar et al., 2021).

Furthermore, logistic regression defines and clari-
fies the relationship between one or more independent 
nominal, ordinal, interval, or ratio-level variables and 
the dependent binary variable (Erguzel et al., 2019). 
Many researchers used RF, ANN, and LR to forecast 
groundwater pollution worldwide. ANN was used in 
China to predict geogenic groundwater F− contami-
nation across the country (Cao et  al., 2022). It was 
also used to predict high NO3

− in the groundwater of 
Harran Plain, Turkey (Yesilnacar et al., 2008). In the 
Yinchuan Region of central China, RF was employed 
to forecast NO3

− pollution in groundwater (He et al., 
2022). The RF method is used in Southern Spain to 
forecast NO3

− in the groundwater and factors related 
to intrinsic and specific susceptibility (Rodriguez-
Galiano et al., 2014). In Nigeria, research has demon-
strated the appropriateness of utilizing ANN models 
for monitoring and evaluating water quality (Egbueri, 
2021). ANN and multiple linear regression (MLR) 
exhibited strong reliability in monitoring groundwa-
ter resources. Both models demonstrated excellent 
performance, with MLR (ranging from 95 to 100%) 
outperforming ANN (ranging from 85 to 99%) in 
modeling the majority of potentially toxic elements 
(PTEs) and water quality indices (Agbasi & Egbueri, 
2023). In the southern region of Nigeria, both MLR 
and multilayer perceptron neural networks (MLP-
NN) methodologies were used to estimate and predict 
water quality indices, as well as the index of pollu-
tion (OIP) and water quality index (WQI). Remark-
ably minimal modeling errors were observed for both 
approaches, signifying the models’ robust and con-
current predictive capabilities (Egbueri & Agbasi, 

2022a). In the context of water quality analysis in 
Nigeria, the recent investigation synergistically inte-
grated various soft computing algorithms. The out-
comes validate that employing a combination of 
multiple models typically results in more robust and 
improved assessments compared to relying solely 
on an individual model (Egbueri & Agbasi, 2022b). 
However, these algorithms have been used indepen-
dently to predict groundwater pollution, leaving gaps 
in determining the best ML model to predict ground-
water contamination. The current study compares 
three machine learnings, RF, ANN, and LR, to pre-
dict the As in groundwater using binary classification 
analysis.

Pakistan is contending with a significant challenge 
of groundwater pollution caused by As, leading to 
adverse effects on groundwater quality across multi-
ple regions, notably Punjab Province. The Pakistan 
Council of Research in Water Resources (PCRWR) 
identified elevated levels of As in Punjab’s ground-
water, surpassing the permissible drinking water limit 
set by WHO 2022 (2022). Moreover, in Sindh Prov-
ince, the consumption of arsenic-contaminated drink-
ing water has impacted 36% of the local population. 
Tragically, heavy metal contamination in the drink-
ing water was responsible for the loss of 40 lives in 
the Hyderabad district in 2004 (Ullah et  al., 2021). 
Groundwater pollution has increased due to the rapid 
population growth in the Indus plains of Punjab Prov-
ince. Numerous studies have investigated groundwa-
ter As contamination across diverse settings, encom-
passing rural and urban areas and peri-urban zones of 
Pakistan (Fatima et  al., 2018; Shahid et  al., 2018a). 
As contamination in Vehari district’s groundwater 
underscores its significance. Studies by (Shah et  al., 
2020) highlight elevated As levels, mainly attrib-
uted to geological factors and agricultural practices. 
These findings echo the concerns (Jat Baloch et  al., 
2022b) raised, highlighting the urgency of assessing 
health risks and implementing effective mitigation 
strategies.

A comprehensive analysis of potential drinking 
water contaminants remains imperative to safeguard 
the local population’s well-being. Remarkably, mini-
mal attention has been directed toward investigating 
As contamination and prediction within the drink-
ing water sources of the Vehari district. Thus, this 
study assumes significance in pioneering: (i) an in-
depth exploration of groundwater hydrogeochemistry, 
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emphasizing the spatial distribution of arsenic con-
tamination; (ii) an innovative approach utilizing 
ANN, RF, and LR classifiers to unravel determinants 
influencing groundwater As; (iii) an assessment of 
the suitability of groundwater for human consump-
tion through the Water Quality Index (WQI). The 
research innovation is particularly highlighted by its 
pioneering use of machine learning models, a previ-
ously unexplored approach in the study area. This uti-
lization significantly improves the accuracy of arsenic 
prediction, leading to a substantial enhancement in 
our comprehension of local water safety.

Materials and methods

Study area

Vehari holds significance as a prominent district 
within the Punjab Province of Pakistan. Burewala, 

Mailsi, and Vehari emerge within this district as key 
sub-districts (refer to Fig. 1). Geographically, the area 
is bounded by the Sutlej and Ravi rivers, positioned 
between coordinates 30°04′19′′ N and 72°35′28′′ E 
(Fig.  2). With a population of approximately three 
million, the Vehari district witnesses a climate char-
acterized by scorching summers, temperatures peak-
ing at 50 °C, and chilly winters, where temperatures 
can drop to about 5  °C. The summer also brings 
frequent dust storms, while the annual precipitation 
hovers around 125  mm. Groundwater is critical for 
agricultural and domestic needs in Vehari, Pakistan. 
Its accessibility promotes irrigation, which is essen-
tial to the local economy and ensures crop growth 
and food security. Groundwater also serves as a reli-
able buffer during droughts, protecting against erratic 
surface water availability. Significant human activi-
ties influencing groundwater quality and As levels in 
Vehari, Pakistan, include intensive agricultural prac-
tices involving fertilizer and pesticide use, industrial 

Fig. 1   Study area map showing the sampling location
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operations with potential chemical releases, insuf-
ficient waste disposal practices, and possible con-
tamination from unregulated domestic and municipal 
wastewater (Jat Baloch et al., 2022b).

Geology and hydrogeology

The geology and hydrogeology of the Vehari district 
reveal a strong relationship between borehole depths 
and fundamental aquifer properties, shedding light on 
subsurface characteristics and groundwater dynam-
ics. The region is dominated by alluvial deposits, 
with borehole depths ranging from shallow to deep, 
revealing a stratigraphic succession of sediments such 
as silts, sands, and gravels. The Satluj and Ravi riv-
ers run through the study area and serve as groundwa-
ter recharge sources (Khalid et al., 2020). The South 
Indus River forms the alluvial plain deposit, and its 
five major tributaries transport Pleistocene and Hol-
ocene sediments carried by the Ravi and Sutlej riv-
ers (Fig. 2). The aquifer is made up of loose alluvial 
deposits that contain varying amounts of sand, a high 
percentage of fine sand and silt, and very little organic 
matter. Since the late Tertiary period, the Indus Riv-
ers and streams have deposited these materials in the 
vast alluvial plain stretching from the Himalayan foot-
hills to the Arabian Sea. The mineralogical evalua-
tion identified aragonite, anhydrite, calcite, dolomite, 
gypsum, goethite, hematite, and halite as minerals 

(Ahmad et al., 2002). During the Pleistocene epoch, 
the Indus River sediment deposits formed a substan-
tial 400 m thick layer. The groundwater in the Pun-
jab region is a mix of alluvial sand and alternating silt 
layers. The two main aquifer systems in the hydro-
geological structure are the upper unconfined aquifer 
and the lower confined aquifer. Borehole data pro-
vides critical insights into aquifer depths, revealing 
that the upper aquifer is generally at shallower depths 
than the confined aquifer. The properties of aquifers 
are crucial to understanding the region’s hydrogeol-
ogy. Aquifer yield is a measure of water provisioning 
capability, whereas storativity is a measure of water 
storage capacity. The rate of groundwater movement 
is significantly influenced by transmissivity, which 
measures the aquifer’s ability to transmit water (Sha-
hid et  al., 2018b). Borehole logs also reveal various 
lithological structures, such as fault zones and per-
meable layers, significantly impacting groundwater 
movement and distribution. The interaction of bore-
hole depths, aquifer properties, and lithological struc-
tures shapes the groundwater flow regime (Ali et al., 
2023).

Sampling and analysis

Four hundred groundwater samples were collected 
from the Vehari district. These groundwater sam-
ples were obtained explicitly from drinking wells at 

Fig. 2   Hydrogeology map 
of the study area
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diverse depths ranging from 50 to 400 feet (Table 2). 
All wells were flushed for at least 5  min to obtain 
fresh water before collecting groundwater samples. 
Groundwater samples (1000  mL each) were taken 
in duplicate in two separate plastic bottles having 
airtight caps. The samples were filtered through a 
0.45 μm filter for further analysis. One water sample 
was acidified on-site by adding 2–3 drops of concen-
trated nitric acid (HNO3) to stabilize As and metal 
ions and reduce precipitation (Shah et al., 2020). The 
acidified water samples were used to analyze total As 
contents and other elements. The second water sam-
ple was kept non-acidified to analyze various cati-
ons and anions. The American Public Health Asso-
ciation’s recommended procedures were implemented 
(Jat Baloch et  al., 2022b). Using a multi-parameter 
analyzer, the pH, electrical conductivity (EC), total 
dissolved solids (TDS), total hardness (TH), and tur-
bidity of the study area were measured in situ (Hanna 
HI9829). The groundwater samples were then tested 
in the water quality laboratory of the Pakistan Coun-
cil for Research in Water Resources (PCRWR) for 
further analysis. The samples were examined for sig-
nificant anions such as NO3

−, SO4
2−, and PO4

3− using 
a UV–VIS spectrophotometer. The concentration of 
F− was determined using "Mohr’s method and Fluo-
ride Analyzer" ISE (ion-selective electrode) (Rashid 
et al., 2018a). The titration method was used to assess 
bicarbonate (HCO3

−) and chloride (Cl−). Volumetric 
titration with ethylene diamine tetra acetic acid was 
utilized to determine calcium (Ca2+) and magne-
sium (Mg2+) concentrations. The sodium (Na+) and 
potassium (K+) concentrations were measured using 
a flame photometer (Zhou et al., 2021). As levels in 
the samples were measured using an atomic absorp-
tion spectrophotometer (AAS Vario 6, Analytik Jena, 
Jena, Germany (Baloch et al., 2022). The charge bal-
ance error (CBE) for each sample was calculated 
(ionic concentrations are measured in meq/L) to 
ensure the accuracy of the results. Groundwater sam-
ples containing ± 5% CBE were chosen for further 
examination (Jat Baloch et al., 2022a).

Statistical and hydrochemical analysis

Statistical software XL STAT 2021 was employed 
to compute the mean values, including minimum, 
maximum, average, and standard deviation, for each 
parameter. Piper diagram was utilized to determine 

the hydrogeochemical type and concentration of 
major anions and cations in the water samples and 
identify geochemical processes that contribute to 
assessing groundwater quality (Ullah et  al., 2022b). 
The Piper diagram was produced using Grapher, and 
the Gibbs diagram was used to determine ground-
water evolution. Saturation indices were calculated 
using PHREEQC Interactive to measure water’s min-
eral balance and dissolved mineral reactivity.

Preprocessing of data for machine learning model

The input parameters were EC, pH, TDS, Turbidity, 
Hardness, Cl−, HCO3−, Ca2+, Mg2+, SO4

2+, K+, Na+, 
Fe2+, NO3

−, F−, and the dependent variable (As). All 
As concentrations less than 10  μg/L were assigned 
a value of zero (0), and concentrations greater than 
10  μg/L were given one (1) value. To improve the 
model’s speed and accuracy, the independent vari-
ables for the three algorithms were scaled between 0 
and 1 (Nafouanti et al., 2021). Subsequently, the data-
set was randomly partitioned into two segments: 80% 
designated for the training phase and 20% allocated 
for testing. The adjustment of actual groundwater 
variable concentrations, particularly for As concen-
trations, serves a scientific purpose in enhancing the 
modeling process. By categorizing As concentrations 
as below 10  μg/L (assigned as 0) or above 10  μg/L 
(assigned as 1), the study aims to create a binary 
classification framework that aligns with regulatory 
thresholds for safe drinking water. This approach 
offers several benefits: it simplifies the modeling task, 
focusing on classifying water as safe or contaminated 
and addressing potential noise and variability in the 
dataset. Moreover, it aligns with real-world decision-
making scenarios where the primary concern is iden-
tifying water sources with elevated As levels that 
exceed permissible limits. This categorization facili-
tates efficient model training, convergence, and pre-
diction accuracy, contributing to a more practical and 
actionable outcome for groundwater quality assess-
ment and management strategies.

Choosing the appropriate input

Feature selection is crucial in classification because it 
enhances the classifier’s performance while reducing 
computation complexity by eliminating duplicated data 
(Zebari et al., 2020). In this study, filter methods were 
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used to select the relevant inputs. These approaches 
are faster than wrapper methods because they do not 
require model training. They can also link the inde-
pendent and dependent variables (Coulibaly et  al., 
2000). The chi-squared method can create independent 
comparison tests (Zebari et al., 2020). For feature selec-
tion, chi-squared analysis was used to compute the chi-
squared score of each class, resulting in a ranking list 
of all features. The numeric attributes were discretized 
to use the chi-squared statistic to find inconsistencies in 
the data (Kim, 2017). The following equation was used 
to calculate a feature’s chi-squared score.

where c represents the total classes, and r denotes the 
discrete intervals for the specified feature. nij signifies 
the observed frequency of the groundwater samples 
in the ith interval and jth class.

If ni = cj = 1, the number of samples in ith interval 
for a feature is nij; otherwise, the number of samples 
in the ith interval for a feature is nj = ri = 1. The sample 
count for class j is n, the total sample count is n, and the 
expected frequency of nij is � ij = ni.

When the observed number is close to the expected 
number, and the Chi-squared value is small, the varia-
bles are considered independent. Because of the higher 
Chi-Squared value, a variable is significant to the out-
come and should be used to train models. Python’s 
sklearn module and the "SelecktBest" function were 
used to select the variables, which kept the first k (no of 
the samples being summed) input variables (Table 1). 
The twelve (12) variables with high Chi-squared values 
were chosen as critical groundwater inputs. pH, TDS, 
SO4

2−, Na+, Fe2+, Cl−, HCO3
−, Ca2+, Mg2+, NO3

−, K+ 
and F− for the As prediction.

Artificial neural networks (ANN)

Artificial neural networks has proven to be an effec-
tive categorization, clustering, pattern recognition, 
and prediction model. ANN is an ML model that 

(1)X2 =

r
∑

i=1

c�
∑

j=1

(

nij − �ij

)2

�ij

outperforms conventional regression and statistical 
models (Musa et  al., 2019). ANN are multilayered 
biologically inspired computer models with input, 
hidden, and output layers. The primary processing 
unit of ANN is the neuron, which connects all layers 
(Afzaal et  al., 2019). Multilayer perceptron (MLP) 
neural networks used in this study are among the 
most common types of ANN. MLP includes an input 
layer with source neurons, one or more hidden layers 
of neurons, and an output layer. The number of nodes 
in the input and output layers changed according to 
the number of input and output variables (Fig. 3). The 
generalization potential of the network is determined 
by the number of hidden layers and the number of 
nodes per hidden layer and it contains two layers. The 
relatively limited number of hidden layers and neu-
rons may cause underperformance.

In contrast, too many hidden nodes may over-
fit training data and poorly generalize new input 
(Otchere et  al., 2021). In this study, the "adam" 
optimizer was utilized to update the weight in the 
network. The permutation feature has been used to 
identify critical variables in the correlation of pre-
dictors and dependent variables. It describes the 
impact of variable elimination on network accuracy.

Table 1   Selection of Relevant Inputs by using the Chi-Squared analysis

Variables pH TDS SO4
2− Na+ Fe2+ Cl− HCO3

− Ca2+ Mg2+ NO3
− K+ F−

Score 92,626.6 9185.3 5882.9 4644.4 3035.6 2503.5 1195.9 958.3 651.1 318.6 181.6 8.3

Fig. 3   Artificial Neural Network structure with the Inputs var-
iables
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Random forest modeling

Random forest avoids the limitations of overfitting 
and instability when only one decision tree is used. 
The primary goal of RF is to generate many deci-
sion trees from random subsets of the original train-
ing dataset. The average forecasts of these single 
trees are used to increase the model’s generalization 
(Wu et al., 2020). RF classification was used in this 
research to predict As pollution in groundwater. To 
generate a training subset for every tree, a bootstrap-
ping technique determines the training dataset into 
an "in-bag" subset for decision tree training and an 
"out-of-bag (oob) subset that is not used in the train-
ing process. Internal validation is performed because 
each tree is partitioned. The mean of all oob forecasts 
would provide a metric for the accuracy rate of the 
RF model, and oob samples from each tree are used 
to assess its efficiency. A decision tree’s in-bag and 
out-of-bag sample sizes are 66.67 and 33.333% (2:1) 
of the original training dataset. After the model has 
been formed and fitted with the training dataset, its 
performance is assessed using the test dataset. Con-
sequently, upon both training and test sets, the model 
makes oob predictions. To evaluate model perfor-
mance, metrics including mean absolute error, root 
mean square error, and the coefficient of determina-
tion (R2) are employed to measure the disparities 
between observed and predicted response variables 
(Markwart et  al., 2019). In addition, the trained and 
validated RF model evaluates predictor variable sig-
nificance to determine how each predictor factor 
influences the response variable. The RF model in the 
current study was built using 100 trees. RF can iden-
tify and characterize the critical predictive variables 
that cause groundwater contamination. The permu-
tation function was utilized to determine the signifi-
cant factors in the association between predictors and 
dependent variables (Hussain et  al., 2021). A con-
siderable decline in impurity constitutes an essential 
split. The greater the significance of the variable, the 
more significant the mean impurity reduction.

Logistic regression

Logistic regression (LR) is a statistical model that 
uses a logistic function to illustrate a binary depend-
ent variable. LR is a method for defining the require-
ments of a logistic model in regression analysis 

(Wasserman & Pattison, 1996). This study uses LR to 
forecast the level of As in groundwater. The LR equa-
tion is as follows:

βo and β1 are estimated parameters.

Machine learning model assessment criteria

Data analysis in a confusion matrix is a standard 
method for assessing predictive performance. The 
accuracy, specificity, sensitivity, and error have been 
computed to determine the model prediction. AUC 
(Area Under the Curve) is a metric commonly used 
in binary classification to assess the performance 
of machine learning models. It represents the area 
beneath the receiver operating characteristic (ROC) 
curve, reflecting the model’s ability to distinguish 
between positive and negative classes. A higher AUC 
value (closer to 1) indicates better model discrimina-
tion and classification accuracy. LR was also evalu-
ated using the ROC and AUC. A confusion matrix 
determines the ability to predict binary classifica-
tion correctly and accurately. It demonstrates how 
the model distinguished predicted and actual values 
(Nafouanti et al., 2021). To analyze the classified data 
percentages, the prediction has been evaluated by 
comparing them to the identified concentration. The 
sensitivity is the percentage of As correctly classified, 
while the specificity is the percentage of non-arsenic 
correctly classified. The Python 3.9 programming 
language was used to create the three models.

The confusion matrix metrics equation is as 
follows:

(2)F(x) =
1

1 + e−(�o+�1x)

(3)Accuracy =
TP + TN

TP + FP + TN + FN

(4)Sensitivity =
TP

TP + FP

(5)Specificay =
TN

TN + FP

(6)Error rate =
FP + FN

TP + TN + FP + FN
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where TP = True Positive, TN = True Negative. 
FP = False Positive, FN = False Negative.

Water quality index

The study employed the WQI to evaluate the suitability 
of groundwater for drinking purposes in the study area, 
as conducted by (Agbasi & Egbueri, 2023; Egbueri & 
Agbasi, 2022a; Omeka & Egbueri, 2023; Onyemesili 
et  al., 2022). The WQI values were calculated based 
on the World Health Organization (WHO, 2022) drink-
ing water standards for nine parameters, TDS, pH, 
Turbidity, Ca2+, Mg2+, Na+, K+, Cl−, SO4

2−, HCO3
−, 

NO3
−, F−, and Fe2+. To calculate the WQI, three com-

puting steps were undertaken. First, weights (ωi) were 
assigned to each parameter based on their significance 
in determining groundwater quality, with Table 2 pro-
viding the weight and relative weight of all hydrochem-
ical parameters.

The relative weight (Wi) for each parameter was 
computed using Eq. (7), where Wi denotes the relative 
weight, wi represents the weight of the specific parame-
ter, and n indicates the total number of parameters. This 
step aimed to weigh the importance of each parameter 
proportionally.

(7)Wi =
Wi

∑n

i=1
Wi

The second step involved determining each param-
eter’s quality rating scale (qi) using Eq.  (8). In this 
equation, qi represents the quality ranking, Ci sig-
nifies the parameter’s quality in milligrams per liter 
(mg/L), and Si represents the WHO (2022) standard 
for that parameter. This calculation allowed for the 
evaluation of the quality of each parameter with the 
established standards.

The sub-index (SIi) for each parameter was com-
puted using Eq. (9) to consolidate the various param-
eter sub-indices into a single representative value. 
In this equation, SIi represents the sub-index of the 
ith parameter, Wi signifies the relative weight of that 
parameter, and qi corresponds to the rating associated 
with the concentration of the specific parameter. This 
step aimed to reflect the significance of each param-
eter in contributing to the overall assessment.

Finally, the comprehensive WQI was determined 
by summing up all the individual sub-indices using 
Eq.  (10). This final index provided a holistic under-
standing of the drinking water quality in the research 
area, aligning with the WHO 2022 drinking water 
quality standards for the specified hydrochemical 
parameters.

(8)qi =
Ci

Si

(9)SIi = Wi × qi

Table 2   The weight 
and relative weight of 
hydrochemical parameters

Chemical parameters WHO 2022 standards 
(mg/L) (Si)

Weight (wi) Relative weight (Wi)

TDS 1000 1 0.038461538
pH 6.5–8.5 1 0.038461538
Turbidity 5 2 0.076923077
Ca2+ 200 1 0.038461538
Mg2+ 150 1 0.038461538
Na+ 200 2 0.076923077
K+ 12 3 0.115384615
Cl− 250 2 0.076923077
SO4

2− 250 2 0.076923077
HCO3 − 250 4 0.153846154
NO3

− 10 1 0.038461538
F− 1.5 5 0.192307692
Fe2+ 0.3 5 0.192307692

Sum of wi = 30 Sum of Wi = 1
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Results and discussion

Hydrogeochemical analysis of groundwater

The hydrogeochemical characteristics of the ground-
water samples are displayed in Table  3 and com-
pared with the WHO 2022 standards for drinking 
water quality (Organization, 2022). The EC shows 
the ability of water to transmit an electric current 
between dissolved salts. However, EC ranges from 85 
to 4550 μS/cm with a mean value of 1363.10, show-
ing that groundwater mineralization is responsible 
for elevated EC saturating salinity in the groundwa-
ter system. The findings suggest that the groundwa-
ter chemistry in the study area is impacted by geo-
chemical processes, rock-water interactions, and 
human activities (Adimalla et  al., 2021). Total dis-
solved solids (TDS) measurements are essential for 
reporting dissolved chemical concentrations. TDS 
concentrations varied from 234 to 3173  mg/L, with 
a mean of 968.20  mg/L. The elevated TDS is due 
to salt leaching and sewage infiltration (Khan et  al., 

(10)WQI =

n
∑

i=1

SIi

2018). Higher salinity in groundwater cause high 
EC and TDS levels, typically related to semi-arid 
and arid climatic conditions (Herczeg et  al., 2001). 
The groundwater pH varies from 6.78 to 8.18, with 
a mean value of 7.16, indicating slightly alkaline. 
Because of pH variations, the chemical composition 
of groundwater changes, and this variation is primar-
ily determined by lithology. Weathering and chemical 
reactions of plagioclase feldspar in sedimentary rocks 
(Ali et  al., 2023). The groundwater Turbidity levels 
ranged from 0.3 to 188.0 NTUs (Nephelometric Tur-
bidity Units), with a mean of 6.34 NTU. Poorly con-
structed and too-shallow wells can cause high turbid-
ity (Azis, 2015). Furthermore, the alkaline condition 
increases conductivity over time due to the dissolu-
tion process. The total Hardness ranged between 
100 and 820 mg/L, with an average of 361.39 mg/L. 
Water with a hardness of > 500  mg/L is unsafe for 
human consumption (WHO, 2022). The amount of 
CO2 in the soil increases due to humus decomposi-
tion and respiration in the topsoil. The breakdown of 
feldspar and carbonate minerals is accelerated by high 
soil CO2, resulting in high groundwater alkalinity 
(Roy et al., 2018).

The groundwater is dominated by cations in the 
following order: Na+  > Ca2+  > Mg2+  > K+  > Fe2+. 
The concentration of Na+ ranged from 13 to 
662  mg/L, with an average of 148.73  mg/L. The 

Table 3   Statistical analysis 
of physicochemical 
parameters for groundwater 
samples for the study area

Parameters Minimum Maximum Mean SD WHO (2022)
Standard

EC(μS/cm) 85 4550 1363.10 748.009 1000
TDS (mg/L) 234 3173 968.20 469.715 1000
pH 6.780 8.180 7.16765 0.277313 6.5–8.5
Turbidity 0.30 188.00 6.3417 22.93979 5
TH 100 820 361.39 126.042 300
HCO3 − (mg/L) 80 900 319.90 104.604 250
Cl− (mg/L) 10 518 92.48 74.187 250
SO4

2− (mg/L) 18 1432 255.02 178.978 250
Ca2+ (mg/L) 8 208 86.20 34.592 200
Mg2+ (mg/L) 2 104 35.25 16.511 150
Na+ (mg/L) 13 662 148.73 118.331 200
K+ (mg/L) 2.6 74.0 9.072 7.2372 12
NO3

− (mg/L) 0.01 17.66 1.7610 3.14160 50
Fe2+ (mg/L) 0.01 3.92 1.1455 19.59425 0.3
F− (mg/L) 0.00 3.15 0.5176 0.29004 1.5
As (ug/L) 0.1 52 11.64 11.393 10
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high levels of Na+ in the groundwater are attributed 
to ion exchange caused by silicate weathering, saline 
water infiltration, or clay minerals (Mitchell et  al., 
2018). Furthermore, agricultural activities in the 
research region may impact the prevalence of Na+ 
in groundwater. The average concentration of Ca2+ 
was 86.20 mg/L, with a range of 8–208 mg/L. Higher 
Ca2+ content is from geological sources, such as the 
dissolution of carbonate and evaporite minerals or 
carbonate minerals within rock formations (Chidam-
baram et  al., 2018). Mg2+ levels varied between 2 
and 104 mg/L, with a mean value of 35.25 mg/L. The 
elevated Mg2+ originating from minerals like mica, 
gypsum, and dolomite could also arise through ion 
exchange (Chidambaram et  al., 2018). Groundwater 
with higher Ca2+ and Mg2+ concentrations is classi-
fied as hard water. The K+ concentrations in the study 
region ranged from 2.6 to 74.0 mg/L, with an average 
of 9.072  mg/L, and were influenced by agricultural 
activities and water seepages from agrarian lands. 
Natural sources of K+ ions, such as silicate minerals, 
also contribute to K+ ions in groundwater. The maxi-
mum permissible Fe2+ concentration in groundwa-
ter is 0.3 mg/L, according to the (WHO, 2022). The 
Fe2+ levels in the study region ranged from 0.01 to 
3.92 mg/L, with an average of 1.1455 mg/L, and were 
primarily sourced from ferruginous minerals on the 
Earth’s surface (Raju, 2006).

The dominant anions in the groundwater are 
HCO3

− > SO4
2− > Cl− > NO3

− > F−. The concentra-
tions of HCO3

− ranged from 80 to 900 mg/L, with 
an average of 319.90  mg/L, making it the most 
prominent anion. The presence of HCO3

− in ground-
water can be attributed to the breakdown of carbon-
ate minerals and the interaction of atmospheric CO2 
with silicate minerals (Fornes et  al., 2020). The 
SO4

2− concentrations varied from 18 to 1432 mg/L 
with a mean value of 255.02  mg/L. The higher 
SO4

2− levels in groundwater resulted from agricul-
tural activities (Manjusree et al., 2009). Groundwa-
ter Cl− concentrations ranged from 10 to 518 mg/L, 
with a mean value of 92.48 mg/L. Higher Cl− con-
tent in the aquifers is caused by saline water infil-
tration and evaporite dissolution (Gopinath et  al., 
2018). The NO3

− varied from 0.01 to 17.66  mg/L 
with a mean value of 1.76  mg/L. Fertilizer runoff, 
septic systems, and improperly treated wastewater 
are the anthropogenic sources of NO3

− (Selvakumar 
et  al., 2017). The As concentrations in the study 

area ranged from 0.1 to 52 µg/L, with an average of 
11.64 µg/L. Elevated levels of As in groundwater is 
due to natural and anthropogenic sources (Adimalla 
et  al., 2018). The higher levels of HCO3

− in the 
groundwater of Vehari district result in increased 
As concentration showing an oxidative condition 
in the aquifers. Most regions in southern Punjab 
contain high levels As in groundwater due to arse-
nic minerals, making most of the water resources 
unsuitable for drinking. Vehari district faces a criti-
cal challenge due to the widespread As contamina-
tion (Ullah et al., 2021).

Hydrogeochemical evolutional processes

The hydrochemical facies diagram depicts the 
groundwater interactions in a lithological formation 
(Boateng et  al., 2016). The chemical differences 
among the groundwater samples are shown in the 
Piper diagram (Fig. 4). Most of the samples fall into 
Zones 1 (CaHCO3 type), 4 (mixed CaMgCl type), 
and 5 (CaCl) and no dominance type, indicating 
that the rock-water interaction plays a significant 
role in determining the hydrochemical composition. 
Zone 1 (CaHCO3 type) represents fresh recharge 
water samples. Regarding cations, the groundwater 
samples can be classified into Zone B (mixed type) 
or Zone D (Na + K type), highlighting the signifi-
cance of silicate weathering and ion exchange. The 
majority of the groundwater samples are classified 
into Zone B (mixed type) and E (HCO3

− type) from 
the anions’ perspective, with a few samples falling 
into Zone G (Cl type). This implies that carbonate 
weathering and evaporite dissolution are the domi-
nant processes, whereas gypsum dissolution is neg-
ligible in the study area. For the cations, the major-
ity of the samples fall into Zone B (No dominance), 
Zone A (Calcium type), and Zone C (Magnesium 
type). For Ca2+ and Mg2+ components in water sam-
ples, limestone and sandstone weathering signifi-
cantly influences the groundwater system (Mallick 
et  al., 2021). In the Piper plot, the types of waters 
Na+

, SO4
2−, Ca2+, and Mg2+ were demonstrated As 

released by sedimentary rocks into groundwater. As 
mobilization in groundwater is caused by several 
vital mechanisms, including calcium dissolution, 
salt mineral dissolution, and desorption (Jat Baloch 
et al., 2020).
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Gibbs diagram

The Gibbs diagram portrays the groundwater chem-
istry-influencing variables: evaporation dominance, 
precipitation dominance, and weathering dominance 
(Jat Baloch et al., 2021; Rashid et al., 2018b; Salem 
et  al., 2015). Most of the samples are plotted in the 
rock dominance region in Fig. 5, signifying that rock 
dominance influences the majority of groundwater, 
while a few are also in the evaporation dominance. 
Rock weathering is the foremost driving force behind 
the heightened presence of minerals within the 
groundwater system. This enrichment is facilitated 
by intermingling soluble salts and minerals within 
the groundwater. Furthermore, the extended period 
of water–rock interaction, resulting from the pro-
longed residence time, allows the potential dissolu-
tion of minerals. This phenomenon underscores the 
complex interplay between geological processes and 
groundwater composition, a pivotal focus in scientific 
research (Tariq et al., 2022).

Pearson correlation

The findings of Pearson’s correlation analysis are 
displayed in Table  4. In the conventional interpre-
tation, quality parameters exhibiting correlation 

coefficients (r) of < 0.5, between 0.7 and 0.5, 
and > 0.7 signify weak, moderate, and strong rela-
tionships, respectively (Onyemesili et  al., 2022). 
From the correlation matrices for Vehari, we were 
able to understand the geochemical process in the 
study area. The strong correlations between EC 
and TDS, HCO3−, Cl−, SO4

2+, Mg2+, Na+, TH, and 
F− indicate higher ion exchange possibilities in the 
aquifers. The significant correlation between TDS 
and HCO3

−, Cl−, SO4
2−, Ca2+, Mg2+, Na+, and TH. 

As the TDS value increase, all ionic concentrations 
also increase, primarily due to weathering of sedi-
mentary rocks. TH positively correlated with EC, 
TDS, HCO3

−, Cl−, SO4
2+, and Ca2+, illustrating 

that groundwater has elevated hardness due to Ca2+ 
and Mg2+, and other ions in the study area (Xue-
Jie et al., 2013). The significant correlation between 
HCO3− with Cl−, SO4

2+, Mg2+, and Na+ suggests 
a significant contribution from multiple anthropo-
genic sources like improper disposal of wastes, agri-
cultural activity, sanitation, discharge of industrial 
effluents, and organic decomposition in the study 
area. In Vehari, As exhibited a negative correlation 
with EC, TDS, pH, Turbidity, HCO3−, Cl−, Mg2+, 
Na+, K+, Hardness, and NO3

−, Fe2+ and F−. Such 
correlations highlighted the influence of pH on As 
concentration in groundwater (Jia et al., 2023).

Fig. 4   Geochemical evolu-
tion of groundwater types
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Principal component analysis (PCA)

Principal component analysis was implied to find 
and classify the sources that influenced the ground-
water variables. The factors related to groundwater 
were subjected to a PCA, as shown in Table 5. The 
varimax rotation was applied to the PCA results to 
understand better the factors that impact groundwater 
(Rashid et al., 2020; Zhang et al., 2020). Four com-
ponents were obtained, with eigenvalues of 6.476, 
1.874, 1.359, and 1.016, accounting for 38.096, 
11.026, 7.993, and 5.974% of the total variability, 
respectively (Fig.  6). PC1 had 38.89% of variability 
with an eigenvalue of 6.476. The significant loadings 
factors of EC, TDS, HCO3−, Cl−, SO4

−2, Mg2+, Na+, 
and TH were calculated to be 0.959, 0.980, 0.763, 
0.865, 0.911, 0.718, 0.868, and 0.723. Thus, PC1 
showed the highest contribution of strong loading 
factors in PCA results, demonstrating the geogenic 
and anthropogenic sources in the study area. The PC1 
results indicate the ionic formation in groundwater, 
resulting from the ion exchange process, dissolution 
of minerals, and weathering of rocks. PC2 exhibits 
11.026% variability with an eigenvalue of 1.874. The 
moderate loadings factors of groundwater variables 
were Ca2+ (0.731) and TH (0.645) in the study area. 
The levels of Ca2+ and Hardness are likely to be influ-
enced by anthropogenic and weathering activities (Li 

et  al., 2020a). The PC3 and PC4 showed the lowest 
contribution in PCA results with 7.993 and 5.974% 
variability and eigenvalues of 1.359 and 1.016. The 
moderate factors of variables in PC3 and P4 could 
be associated with anthropogenic activities lead-
ing to influence the hydrochemical characterization 
of groundwater aquifers. These results highlight the 
contribution of anthropogenic and natural factors to 
groundwater contamination in the area under study 
region.

Machine learning model evaluation and comparison

The test predictor data were used to evaluate the 
models’ precision in predicting the presence of As 
in groundwater after model development and train-
ing. The ANN, RF, and LR evaluation metrics were 
obtained from their confusion matrix. Tables S1, 
S2, and S3 provide more information. Based on the 
assessment criteria applied to the three models, the 
RF model demonstrated accuracy, error rate, speci-
ficity, and sensitivity values of 0.85, 0.10, 0.79, and 
0.95, respectively (Table  6). High sensitivity over 
specificity means fewer false negatives in binary 
classification, indicating a good prediction model. 
RF’s capability to forecast groundwater pollution for 
F− has previously been investigated, which supports 
our study (Nafouanti et  al., 2021). The accuracy of 

Fig. 5   The Gibbs diagram demonstrates the ionic composition of the samples of groundwater a Na/Na + Ca mg/L versus Log TDS, 
b Cl/Cl + HCO3 mg/L versus Log TDS
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RF efficiency is improved in this work by identifying 
appropriate inputs and employing many trees, result-
ing in a performance boost for the model. The ANN’s 
accuracy, error rate, specificity, and sensitivity were 
0.80, 0.20, 0.73, and 0.88, respectively. The current 
finding supports the previous research, Water quality 
indicator forecasting for irrigation applications using 
ANN (Abrahart et al., 2005; El Bilali et al., 2021) and 
(Awu et al., 2015). In this study, increasing the num-
ber of hidden layers in the network training improved 
ANN performance. By increasing the number of hid-
den layers, accuracy can be significantly enhanced 
(Karsoliya, 2012). In ANN, a suitable number for net-
work training with two hidden layers can be obtained.

The LR’s accuracy, error rate, specificity, and sen-
sitivity were 0.59, 0.41, 0.52, and 0.63, respectively; 
the model’s capabilities were assessed using the ROC 
curve (AUC) (Fig.  7). LR’s AUC was 0.73; the cur-
rent finding supports the findings of previous research, 
Groundwater NO−

3 pollution in a semi-arid environ-
ment utilizing integrated parametric IPNOA and data-
driven logistic regression (Rizeei et  al., 2018). The 
diminished effectiveness of the ANN model, in contrast 
to the RF model, arises from the ANN model’s limita-
tion in making predictions outside the range of its train-
ing data. Consequently, the intricate challenge of over-
fitting becomes pronounced within the ANN training 
data (Al-Mukhtar, 2019). Because the RF model avoids 
overfitting and combines many trees to generate a pre-
diction. Regarding accuracy, specificity, and sensitivity, 

Table 5   Principal component analysis of selected groundwa-
ter parameters for Vehari district

Extraction method: principal component analysis. Rotation 
method: Kaiser normalization of Varimax. Bold values show 
higher loading value

Component F1 F2 F3 F4

EC 0.959 − 0.180 0.071 − 0.048
TDS 0.980 0.054 0.122 − 0.019
pH − 0.087 − 0.073 0.047 − 0.402
Turbidity 0.022 0.240 0.382 0.299
Alkalinity 0.098 − 0.205 0.018 0.467
HCO3 0.763 − 0.075 − 0.115 0.123
Cl 0.865 − 0.138 0.016 − 0.111
SO4 0.911 − 0.128 0.206 − 0.027
Ca 0.497 0.731 0.187 0.034
Mg 0.718 0.266 − 0.215 − 0.005
Na 0.868 − 0.413 0.109 − 0.014
K 0.339 0.115 − 0.396 − 0.121
TH 0.723 0.645 0.013 0.020
NO3 0.206 0.174 − 0.636 − 0.108
Fe 0.128 − 0.168 0.031 0.606
F 0.450 − 0.655 − 0.091 − 0.107
As − 0.069 0.001 0.686 − 0.331
Eigenvalue 6.476 1.874 1.359 1.016
Variability (%) 38.096 11.026 7.993 5.974
Cumulative % 38.096 49.122 57.115 63.088
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the LR model performed the worst of the three mod-
els (Table 6). Low-dimension data in the training data 
set can reduce LR performance. The model on the test 
data set may be overfitting and incorrect. Despite their 
poor performance in the current study, ANN and LR 
have advantages when forecasting groundwater con-
tamination in previous studies. Because of the presence 
of numerous variables, the process of groundwater pol-
lution is difficult to comprehend. Hence, the model’s 
precision and dependability increase proportionally 
with the algorithm’s enhanced adaptability (Tsoar et al., 
2007). An algorithm’s structure, the data type, and the 
parameter selections influence its performance (Üstün 
et al., 2005). In this classification task, feature selection 
should be considered for statistical analysis to produce 
an excellent predictive model.

Identifying the variables that impact arsenic 
mobilization

The mean decrease in impurity (MDI), a factor sig-
nificance metric via RF, was used to determine the 
relationship between predictors and As (He et  al., 

2022). It’s a tree-specific variable importance met-
ric calculated with Python’s RF "skirt-learn" mod-
ule’s feature importance implementation. Each time 
a variable is chosen to split a node, the cumulative 
MDI per feature across all forest trees is calculated. 
Factors dividing nodes closer to the tree root have a 
higher significance value (Fig. 8). The F−, Fe2+, K+, 
Mg2+, Ca2+, Cl−, SO4

2−, NO3
−, HCO3

−, and Na+ 
variables are at at the top of the plot with the high-
est MDI values. The plot shows that pH and TDS 
have a low MDI in the research area.

The MDI was previously used to find the essen-
tial components in data that influence the depend-
ent variable (Bylander, 2002). Furthermore, the 
MDI identified significant variables related to the 
dependent variable in microarray and facies estima-
tion. It was employed to find essential predictors of 
the dependent variables (Bhattacharya & Mishra, 
2018). According to the MDI results, the variables 
influencing As in the study region are F−, Fe2+, K+, 
Mg2+, Ca2+, Cl−, SO4

2−, NO3
−, HCO3

−, and Na+, 
which is consistent with previous research find-
ings (Jat Baloch et al., 2022b; Rashid et al., 2018a; 
Tahir & Rasheed, 2013). By evaluating the variable 
importance of ANN, the permutation feature was 
utilized to find the utmost influential aspects of the 
output. When a single variable is removed, the per-
mutation lowers the final model score (Chae et al., 
2016). Twelve (12) networks were tested to discover 
the most significant factors in the outcome. After 
removing a variable, each showed a change in net-
work accuracy variance (Table 7).

Table 6   Performance for Logistic Regression using ROC 
(AUC) curve

Metrics RF ANN LR

Accuracy 0.85 0.80 0.59
Error rate 0.10 0.20 0.41
Specificity 0.79 0.73 0.52
Sensitivity 0.95 0.88 0.63

Fig. 7   Performance for Logistic Regression using ROC 
(AUC) curve

Fig. 8   Important Features to the Arsenic using Mean Decrease 
in Impurity in Random Forest
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The accuracy is 0.80 after omitting the pH and 
TDS, the same as the original model accuracy. Conse-
quently, the potential exclusion of pH and TDS from 
the model arises, given their limited impact on net-
work accuracy. This observation underscores that pH 
and TDS insignificantly influence the concentration 
of As within the study region. In contrast, when addi-
tional variables such as F−, Fe2+, K+, Mg2+, Ca2+, 
Cl−, SO4

2−, NO3
−, HCO3

−, and Na+ are removed 
from the model, the model’s accuracy decreases, 
showing their significance to the As model. Permuta-
tion was previously used in research to identify criti-
cal components in dissolved oxygen (DO) (Matayoshi 
et al., 2019). In the current research, the permutation 
feature and the MDI give similar outcomes to the 
variables affecting As in the study region, F−, Fe2+, 
K+, Mg2+, Ca2+, Cl−, SO4

2−, NO3
−, HCO3

−, and Na+. 
When analyzing the correlation between the input 
and output variables, the permutation feature outper-
forms the MDI feature. The permutation technique, 
employed to evaluate the significant contributors 
influencing the output of any algorithm, highlights 
the distinctive aspect of the MDI as an exclusive fea-
ture within the realm of the RF algorithm.

Arsenic mechanism in groundwater

Arsenic levels in groundwater in the Vehari district 
varied from low to high levels of enrichment, as 

depicted in Fig.  9. Results indicated that 43.5% of 
the samples in the Vehari district exceeded the WHO 
2022 permissible limit of As (10  µg/L). The cor-
relation between As and some essential parameters 
was drawn to investigate the As release mechanism. 
The correlations are presented in scatter diagrams 
in Fig.  10. The results from the present study area 
showed some trend of oxidative desorption with an 
increased evaporative concentration mechanism con-
cluded based on alkaline pH (6.7–8.2), low iron, high 
bicarbonates, high sulfates, negative correlation of 
iron with arsenic, respectively, and significant posi-
tive correlation between As–HCO3

− and As–SO4
2−, 

and slight positive correlation with pH in groundwa-
ter of Vehari. The Gibbs diagram also justified the 
evaporative mechanism, which showed that evapora-
tion is also a dominant natural phenomenon in con-
trolling the water chemistry of the study area (Fig. 5). 
Ion-exchange processes and the adsorption of ions in 
the study region significantly impacted the concentra-
tion of As. Previous research has indicated that Ca2+ 
can potentially interfere with As adsorption due to 
the effect of ion reactions on mineral surfaces (Xie 
et al., 2008). High competing ionic compositions can 
thus aid arsenic desorption (HCO3 −, SO4

2−, Na+, 
K+, Mg+, and Ca2+). The findings were consistent 
with previous studies of (Brahman et  al., 2016) and 
(Shahab et  al., 2019) with a high As concentration 
in Sindh province, Pakistan. Moreover, variations 
in As enrichment in high-pH groundwater could be 
attributed to soil salinization and subsurface environ-
mental conditions (Li et  al., 2020b). The weak cor-
relation between As and pH observed in this study 
may be due to alkaline desorption, which can impact 
the release of As into groundwater. Additionally, the 
aquifers in the study region have been reported to be 
alluvial, composed of silt, sand, and gravel, and have 
elevated As levels in the Punjab province (Shahab 
et al., 2019). Punjab province has a high evaporation 
rate, with 74–80 percent of groundwater being highly 
evaporated (Yu et al., 2015). In this study, no statis-
tically significant correlation between As, NO3

−, and 
F− was found, as their concentration levels were very 
low in almost all of the groundwater samples. The 
SI estimation facilitates understanding the reaction 
pathways and the measurement of mineral dissolu-
tion and precipitation. In the geochemical simulation 
model (Fig.  11), aquifer conditions were undersatu-
rated (SI < 0) with calcium carbonate and rock salt 

Table 7   Importance features using permutation feature for 
ANN showing the change of the accuracy after a variable is 
eliminated

Variable Accuracy vari-
ation for ANN

All variables 0.80
Eliminated Na+ (mg/L) 0.58
Eliminated HCO3

− (mg/L) 0.64
Eliminated NO3

− (mg/L) 0.45
Eliminated SO4

2− (mg/L) 0.57
Eliminated Cl− (mg/L) 0.68
Eliminated TDS (mg/L) 0.80
Eliminated Ca2+ (mg/L) 0.60
Eliminated Mg2+ (mg/L) 0.52
Eliminated K+ (mg/L) 0.60
Eliminated Fe2+ (mg/L) 0.62
Eliminated F− (mg/L) 0.59
Eliminated pH 0.80



	 Environ Geochem Health (2024) 46:14

1 3

14  Page 18 of 25

Vol:. (1234567890)

minerals, including aragonite, calcite, dolomite, and 
halite. These mineral phases had negative SI values 
and were unlikely to precipitate, but they may have 
played an important role in releasing As into aquifers 
through dissolution (Rashid et al., 2022). In contrast, 
the SI was positive for anhydrite, gypsum, and iron 
oxide mineral phases, including goethite and hema-
tite. These minerals tended to participate in ground-
water (Fig.  11). (Bhattacharya et  al., 2009) found 
that iron oxides in the sediments of the flood plain in 
Bangladesh inhibited As mobility in groundwater.

WQI

The WQI is a popular method for determining 
groundwater quality for drinking (Narsimha & Sudar-
shan, 2017). The WQI was used to check the suit-
ability of groundwater in the research region. The 
WQI is divided into five classes: excellent (50), good 
(50–100), poor (100–200), and unsuitable (> 200). 

Table 8 shows that the samples (n = 161) were clas-
sified as "Poor" with 40.25 and 30% unsuitable con-
tributions, while the samples 1.5 and 27.75% were 
classified as "Excellent" and "Good," respectively. 
Most samples had poor to unsuitable drinking water 
quality, showing that the study areas’ groundwater 
sources are unsafe to drink. The water quality suit-
ability map is depicted in Fig. 12.

Conclusions

The presence of high levels of As in drinking water 
sources can make it unsuitable for consumption. In 
the current study, 174 of the 400 samples (43.5%) 
had As concentrations that exceeded the permissible 
limit of 10  μg/L set by the World Health Organiza-
tion (WHO, 2022) for drinking water. The As levels 
measured ranged from 0.1 to 52 μg/L. Ion-exchange 
processes and the adsorption of ions in the study 

Fig. 9   Spatial distribution of groundwater As in study area
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region significantly impacted the concentration of As. 
The elevated concentrations of basic physiochemi-
cal parameters, such as EC, TDS, HCO3

−, and Na+, 
exceeded the permissible limits set by WHO, thereby 
rendering the water unsafe for drinking. Multivariate 
statistical approaches in the study suggest that geo-
genic and anthropogenic activities in the region cause 
As enrichment in groundwater. The hydrochemical 
analysis of groundwater samples indicates a combi-
nation of CaMgCl and CaCl types. The Gibbs plot 

demonstrated that the prevailing rock composition 
substantially influences the groundwater’s chemi-
cal makeup. Moreover, the results from geochemical 
modeling displayed that As had negative saturation 
indices with calcium carbonate and salt minerals, 
including aragonite, calcite, dolomite, and halite. 
According to the WQI, most of the water samples 
from the Vehari district had poor water quality. Arti-
ficial Neural Networks, Random Forest, and Logistic 
Regression machine learning techniques were used 
to predict As levels in the study region. Results indi-
cate that the Random Forest technique was the most 
effective, with an accuracy of 0.85. The permuta-
tion feature and the MDI were employed to identify 
the variables influencing arsenic levels in the region. 
These approaches identified variables such as F−, 
Fe2+, K+, Mg2+, Ca2+, Cl−, SO4

2−, NO3
−, HCO3

−, 
and Na+ as contributing factors to As concentration. 
These findings suggest that the Random Forest model 
can be used as a reliable algorithm for forecasting 

Table 8   Water Quality Index (WQI) classification of the study 
area

WQI five categories No of samples % of samples

Excellent (< 50) 6 1.5
Good (> 50), 111 27.75
Poor (> 100) 161 40.25
Unsuitable (> 200) 122 30.5

Fig. 12   Groundwater suitability assessment for drinking purposes in the study area
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groundwater arsenic in the Vehari region and can be 
extended to other locations for predicting groundwa-
ter contamination. However, future research should 
focus on developing more adaptive models to improve 
the accuracy of groundwater pollution prediction.
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