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Abstract We sought to explore the association 
between heavy metal exposure and coronary heart 
disease (CHD) based on data from the US National 
Health and Nutrition Examination Survey (NHANES, 
2003–2018). In the analyses, participants were all 
aged > 20 and had participated in heavy metal sub-
tests with valid CHD status. The Mann–Kendall test 
was employed to assess the trends in heavy metals’ 
exposure and the trends in CHD prevalence over 
16 years. Spearman’s rank correlation coefficient and 
a logistics regression (LR) model were used to esti-
mate the association between heavy metals and CHD 
prevalence. 42,749 participants were included in our 

analyses, 1802 of whom had a CHD diagnosis. Total 
arsenic, dimethylarsonic acid, monomethylarsonic 
acid, barium, cadmium, lead, and antimony in urine, 
and cadmium, lead, and total mercury in blood all 
showed a substantial decreasing exposure level ten-
dency over the 16  years (all Pfor trend < 0.05). CHD 
prevalence varied from 3.53 to 5.23% between 2003 
and 2018. The correlation between 15 heavy metals 
and CHD ranges from − 0.238 to 0.910. There was 
also a significant positive correlation between total 
arsenic, monomethylarsonic acid, and thallium in 
urine and CHD by data release cycles (all P < 0.05). 
The cesium in urine showed a negative correlation 
with CHD (P < 0.05). We found that exposure trends 
of total arsenic, dimethylarsonic acid, monomethylar-
sonic acid, barium, cadmium, lead, and antimony in 
urine and blood decreased. CHD prevalence fluctu-
ated, however. Moreover, total arsenic, monomethyl-
arsonic acid, and thallium in urine all showed posi-
tive relationships with CHD, while cesium in urine 
showed a negative relationship with CHD.

Keywords Coronary heart disease · Heavy metals · 
Spearman’s rank correlation · US NHANES

Introduction

According to the American Heart Research Asso-
ciation report, there were 874,613 cardiovascular 
disease-related (CVD) deaths in the US in 2019, 
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with coronary heart disease (CHD) accounting for 
41.3% of them (Agarwala et  al., 2020; Heidenreich 
et  al., 2011; Jilani et  al., 2021). Nowadays, genetic 
and environmental factors, or a combination of these 
factors, play an integral role in CHD (Daniali et  al., 
2020). Although many studies have been conducted 
on traditional risk factors such as diabetes, hyperlipi-
demia, increased blood pressure, tobacco and alcohol 
use, obesity, genetic mutations, and psychological ill-
nesses (Al-Shaar et al., 2020; Lahm et al., 2021; Lu 
et  al., 2020), there has been limited research on the 
association of heavy metals and CHD.

The majority of previous studies have reported that 
cadmium, lead, mercury, and arsenic are related to 
CHD (Fan et al., 2022; Jia et al., 2021; Wang et al., 
2022). Researchers have largely focused on cross-sec-
tional and case–control studies for detecting biologi-
cal molecules and interactions between heavy metals 
and diseases; however, there has been a lack of focus 
on prospective cohort studies or long-term consist-
ency studies that might demonstrate a relationship 
between heavy metals’ exposure and CHDs in popu-
lations (Boyd et al., 2022).

Our study examined the 16-year trend of heavy 
metals’ exposure and the prevalence of CHD using 
data from the National Health and Nutrition Exami-
nation Survey (NHANES, 2003–2018). Further, 
we estimated the association between heavy metals’ 
exposure and the corresponding CHD prevalence in 
survey participants.

Method

Study participants

The NHANES was an annual cross-sectional study 
that employed a wide range of collection methods 
including interviewing participants and conducting 
clinical examinations of local community population 
samples from all over the country (NHANES, 2014). 
Our study data was drawn from the NHANES from 
2003 to 2018.

The following criteria were used to determine who 
was appropriate for inclusion: (1) participants who 
were older than 20  years; and (2) participants who 
had participated in the heavy metal sub-test. Exclu-
sion criteria were defined as: (1) Participants without 
CHD tracking; and (2) Participants having uncertain 

CHD status. Finally, 42,749 participants were 
included in our analyses.

Covariates’ determination

Participants’ demographic characteristics comprised 
gender, age (years), race/Hispanic, education level, 
poverty-to-income ratio (PIR), and body mass index 
(BMI, kg/m2). All demographic characteristics were 
described in our previous study (Li et al., 2023). The 
PIR reflects the economic income level. We divided 
the PIR into high, medium, and low levels (Krieger 
et al., 2003). Lifestyle factors included physical exer-
cise (vigorous/moderate/none), smoking (current 
smoker/ex-smoker/none), and alcohol consumption 
(heavy drinking/none).

For our analyses, 15 heavy metal samples were 
collected from urine or blood; detailed information 
is provided in Table  2. Inductively-coupled plasma 
dynamic reaction cell-mass spectrometry (ICP-DRC-
MS) was used to measure all heavy metal levels while 
adhering to stringent control procedures (NHANES, 
2013).

Outcome ascertainment

In the current study, CHD status was inferred from 
self-report participant questionnaires prior to Decem-
ber 31, 2015. Subsequently, CHD status was identi-
fied by professional doctors who used codes I00-09, 
I11, I13, or I20-51 for labeling participants according 
to the International Statistical Classification of Dis-
eases and Related Health Problems, Tenth Revision, 
(ICD-10) (Hirsch et al., 2015; Mou & Ren, 2020).

Statistical analysis

Participants’ demographic characteristics were sum-
marized in the data release cycle. Categorical vari-
ables were represented as number (%), while con-
tinuous variables were calculated as the median 
(interquartile range). We employed the chi-square 
test or Wilcoxon two-sample test to compare char-
acteristics throughout the 16-year survey duration. 
Heavy metals were reported as geometric means and 
geometric standard deviations every two years. The 
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Mann–Kendall test was used to assess the trends in 
heavy metals’ exposure or CHD prevalence over 
the 16  years. We conducted Principal Component 
Analysis (PCA) on the 15 heavy metals to reduce the 
dimensionality and visualize the average levels on a 
2D plane. Further, to provide a comprehensive analy-
sis, we performed PCA for heavy metals every two 
years, considering different CHD statuses. Using Wil-
coxon’s two-sample test, we compared the contents of 
heavy metals in different CHD statuses. Meanwhile, 
we used Spearman’s rank correlation coefficient to 
estimate the correlation between heavy metals and the 
corresponding CHD prevalence.

Additionally, we computed the odds ratio (OR) and 
95% confidence interval (CI) using a logistic regres-
sion (LR) model to determine the link between heavy 
metals and CHD. Model 1 was unadjusted; Model 2 
was adjusted for gender and age; and Model 3 was 
adjusted for variables in model 2 plus demographic 
characteristics and lifestyle factors.

All analyses were executed through Python 3.8.0, 
with statistically significant difference defined as 
P < 0.05.

Results

Participants’ demographic characteristics in the study

The study participants’ demographic characteristics 
from 2003 to 2018 (NHANES) are shown in Table 1. 
A total of 42,749 participants were included in the 
analyses, 48.25% of them men, and the average par-
ticipant age was 49 (interquartile range, 34.0–64.0). 
At each data release cycle, there were significant dif-
ferences in participants’ age, race, education level, 
PIR, BMI, physical activity, smoking, and alcohol 
consumption (all P < 0.05). During the 16  years, 
other races, high education level, and BMI have all 
shown significant increasing tendencies (all P for 
trend < 0.05).

Level of heavy metal exposure over 16 years

In Table  2, we describe the level of heavy metals’ 
exposure for each data release cycle. Over 16 years, 
there was a substantial decreasing exposure tendency 
for total arsenic (− 2.71  μg/L the difference value 

between years 2003 and 2018), dimethylarsonic acid 
(− 0.97 μg/L the difference value between years 2003 
and 2018), monomethylarsonic acid (− 0.44 μg/L was 
the difference value between years 2003 and 2018), 
barium (− 0.35  ng/mL the difference value between 
years 2003 and 2018), cadmium (− 0.07  ng/mL 
the difference value between years 2003 and 2018), 
lead (− 0.39  ng/mL the difference value between 
years 2003 and 2018), and antimony (− 0.09  ng/mL 
the difference value between years 2003 and 2018) 
in urine, and cadmium (− 0.09  μg/L the difference 
value between years 2003 and 2018), lead (− 0.79 μg/
dL the difference value between years 2003 and 
2018), and total mercury (− 0.37 μg/L the difference 
value between years 2003 and 2018) in blood (all 
Pfor trend < 0.05), while cobalt, cesium, thallium, tung-
sten, and uranium in urine followed a constant trend 
(all Pfor trend > 0.05).

Prevalence of CHD over the 16 years

Among the 42,749 participants in the 16-year study, 
1802 were diagnosed with CHD, the prevalence of 
CHD being 4.22%. The prevalence over the years 
is shown in Fig.  1. From 2003 to 2012, the annual 
prevalence of CHD decreased from 5.23 to 3.53%; 
however, CHD prevalence increased from 3.53 to 
4.63% after 2012 (Fig. 1a). The trend in CHD preva-
lence fluctuated over the 16 years (Pfor trend = 0.197). 
According to the prevalence of CHD, a polynomial 
dotted curve was fitted  (R2 = 0.737). In addition, 
Fig.  1b shows the CHD prevalence by gender from 
2003 to 2018. Men showed a higher CHD prevalence 
than women every two years (P < 0.05). Further, par-
ticipants who were aged > 60 had the highest CHD 
prevalence among the different age groups in each 
data release cycle (P < 0.05) in Fig. 1c.

The distribution of heavy metals in relation 
to CHD

Due to the nature of PCA analysis, it was necessary 
to have complete data for each sample. As a result, 
PCA analysis of all the heavy metals was performed 
on 3,185 participants; the levels of heavy metals are 
described in Fig. 2a. In addition, we conducted PCA 
of heavy metals by different CHD statuses in Fig. 2b. 
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The explained variance ratio (first two heavy metals) 
was 0.973 and 0.107.

To provide a comprehensive analysis, we per-
formed PCA for heavy metals every two years from 
2005 to 2010, considering different CHD statuses 
(in Supplementary Fig. 1). However, it is important 
to note that the measurements for total arsenic and 

monomethylarsonic acid were absent after 2010, 
preventing us from disaggregating the data for 
2011–2018.

Moreover, based on the different CHD statuses 
(Supplementary Table 3), the content of barium and 
thallium in urine as well as cadmium and lead in 

Fig. 1  CHD# prevalence 
from 2003 to 2018 in 
NHANES. #CHD, coronary 
heart disease
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both urine and blood showed a significant difference 
(P < 0.05).

Correlation coefficients between heavy metal 
exposure and corresponding CHD prevalence

The corresponding CHD prevalences by data release 
cycles based on each heavy metal all showed a fluc-
tuating trend (Pfor trend > 0.05). The Spearman’s rank 
correlation coefficients (r ranging from − 0.238 to 
0.910) between 15 heavy metals and their corre-
sponding CHD prevalence correlations are reported 
in Supplementary Table 1 and Fig. 3. There was, in 
particular, a significant correlation between total arse-
nic (r = 0.900, P = 0.037), monomethylarsonic acid 
(r = 0.900, P = 0.037), cesium (r = 0.786, P = 0.021) 
and thallium (r = 0.762, P = 0.028) in urine and CHD 
by data release cycle (Fig.  3). Other heavy metals 
were not associated with their corresponding CHD 
prevalence.

Overall, there was a reasonable level of concord-
ance between the trend of change in heavy metal 
exposure and the variability in CHD prevalence 
among the four heavy metals. We separately illustrate 
the association between total arsenic, monomethylar-
sonic acid, cesium, and thallium in urine with their 
corresponding CHD prevalence from 2003 to 2018 
in Fig.  4. With regard to total arsenic exposure in 
urine, the level increased to 10.1 μg/L in 2009–2010, 
but, by contrast, the corresponding CHD prevalence 
decreased from 3.31 to 3.14%. Figure 4-c, comparing 
the level of cesium exposure in urine in 2005–2006, 
2011–2012, and 2017–2018 with other years, reveals 

variation in the corresponding CHD prevalence. Fig-
ure 4-d shows that in 2011–2012 there was a notice-
able increase in the level of thallium exposure in 
urine, although the corresponding prevalence of CHD 
gradually decreased.

Association between heavy metals and CHD

The ORs of association between the different mod-
els of heavy metal exposure with CHD were esti-
mated separately by the LR model, as reported in 
Table  3. After adjusting for potential variables, the 
ORs and 95% CI of total arsenic, monomethylarsonic 
acid, cesium, and thallium in urine with CHD were 
1.003 (1.000–1.010), 1.010 (1.001–1.014), 0.995 
(0.990–0.998) and 1.004 (1.002–1.014), respectively. 
The results of ORs were similar to the correlation 
coefficients between heavy metal exposure and corre-
sponding CHD prevalence.

Discussion

In our large sample population-based cross-sectional 
study, we investigated the relationship between 
15 metals and CHD among 42,749 participants. 
Based on our study, the total arsenic, dimethylar-
sonic acid, monomethylarsonic acid, barium, cad-
mium, lead, and antimony in urine, and cadmium 
and lead in blood, showed significant decreas-
ing trends over the 16  years. In particular, total 

Fig. 2  PCA# of 15 heavy metal values on 2D plane. #PCA, principal component analysis; CHD, coronary heart disease
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arsenic, monomethylarsonic acid, and thallium in 
urine showed a positive relationship with CHD, while 
cesium in urine revealed a negative relationship with 
CHD.

Through a literature search we found that previous 
studies had noted a positive correlation between CHD 
and arsenic in blood and its constituents, in line with 
our findings (Hannon et  al., 2020; Liu et  al., 2022; 
Marrugo-Madrid et al., 2022). An animal study also 
revealed that arsenic exposure during pregnancy in 
mice mothers had a teratogenic effect on the heart, 
significantly increasing the occurrence of cardiac 
abnormalities (Richter et al., 2022). Even arsenic and 
monomethylarsonic acid could pass from breast milk 
to human offspring, causing cardiac development 
issues (Pierezan et al., 2022).

Thallium was recognized as a potential environ-
mental pollutant and an "invisible health killer" by 
the United States Environmental Protection Agency 
(USEPA) (Xiao et al., 2004). Simultaneously, the pri-
ority constraint list mentions thallium in the European 
Water Framework Directive (EWFD) as the predomi-
nant hazardous waste (Lennartson, 2015). In earlier 
research, thallium exhibited a nonlinear association 
with disorders of the cardiovascular system, similar 
to this research (Sacks et al., 2018). Moreover, stud-
ies have inferred that urine thallium concentrations 
over 4.5–6 g/L could lead to early health damage in 
humans (Xu et  al., 2019); however, the mechanisms 
underlying the associations of thallium or cesium 
exposure with CHD are still unknown due to the pau-
city of conclusive evidence (Wi et al., 2019).

It is worth stating that the potential causes of the 
variability between levels of heavy metal exposure 
and CHD prevalence are complicated. The United 
States paid a great deal of attention to environmental 

Fig. 3  Correlation between metal content and correspond-
ing  CHD# prevalence by Spearman’s rank (NHANES, 2003–
2018), #CHD, coronary heart disease

◂

Fig. 4  Relationship between metal content and corresponding  CHD# prevalence (NHANES, 2003–2018), #CHD, coronary heart dis-
ease
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health issues from 2009 to 2013, with the administra-
tion and competent institutions establishing a range 
of environmental policy instruments to support and 
promote environmental restoration (Li et  al., 2014; 
Skubała & Zaleski, 2012; Smieja-Król et  al., 2010). 
Although policies and intervention initiatives directly 
led to a decline in heavy metal exposure, the cor-
responding CHD prevalences reported varied (Jia 
et  al., 2020; Miller et  al., 2017). Considering the 
impact of an accumulation of heavy metals on human 
health, however, the level of heavy metals’ exposure 
decreasing in the short-term would not change CHD 
prevalence. Even though the decrease in prevalence 
of CHD showed some time lag, this phenomenon 
suggests that the findings from our study are more 
accurate.

Further, there are many studies of clinical treat-
ment after exposure to heavy metals (Ganz et  al., 
2020; Haschka et  al., 2021; Kattamis et  al., 2022; 
Morales & Xue, 2021; Wang et al., 2017). Chelation 
therapy, a typical treatment for heavy metal toxicity, 
entails offering patients detoxifying illegal substances 
to help with the elimination of heavy metal ions (Bal-
ali-Mood et al., 2021; Kattamis et al., 2022; Morales 
& Xue, 2021). Nevertheless, due to restrictions and 
possible adverse reactions, the utilization of chelat-
ing compounds should be considered cautiously. 
The oxidation and breakdown of heavy metals can 
be enhanced by nutritional support through the con-
sumption of especially valuable vitamins and min-
erals, such as vitamin C, selenium, and zinc, which 
could decrease the detrimental effects of heavy met-
als on health (Ganz et al., 2020; Haschka et al., 2021; 
Zhang et al., 2022). A nutritious meal plan, frequent 

exercise, and staying away from outside sources 
of heavy metals are other lifestyle changes that are 
essential for minimizing the risk and seriousness 
of heavy metal exposure (Duan et  al., 2023; Santos 
et al., 2022).

The current study has several potential strengths. 
First, the study was notable for its assessment of 
levels of heavy metals’ exposure over a period of 
16  years with a substantial sample size, making the 
results more realistic and reliable. Second, though 
these findings were reproducible in our study, the 
trend of heavy metal exposure levels or prevalence 
of CHD both had strong data support, thus laying a 
solid foundation for other researchers to explore the 
relationship between heavy metals and disease in the 
future. Finally, our study comprehensively investi-
gated the relationship between heavy metals’ expo-
sure and CHD prevalence, providing a scientific ref-
erence to guide further management of the levels of 
heavy metal exposure in the environment.

There are several limitations to our research, how-
ever. First, before 2015 the identification of CHD 
relied on participants’ responses in an interview ques-
tionnaire in NHANES, meaning that a portion of the 
resulting data was based on participants’ memories. 
Information bias was likely to appear in the reported 
data, self-reported results tending to be different from 
actual clinical diagnoses. Second, due to limitations 
in the study method, we were not able to infer a causal 
relationship between disease and dosage of heavy 
metals’ exposure. Moreover, participants with other 
comorbidities were not excluded, possibly increasing 
the influence of confounding factors in our study and 
affecting the accuracy of its results. Finally, due to the 

Table 3  Association between heavy metals and  CHD# (NHANES, 2003–2018)

Model 1 unadjusted
Model 2 adjusted for age and gender
Model 3 adjusted for model 2 plus BMI, race, educational level, poverty-to-income ratio, smoking, alcohol consumption, and physi-
cal activity
#CHD, coronary heart disease; *OR, odds ratio

Heavy metal OR*  (95% CI)

Model 1 Model 2 Model 3

Total arsenic, in urine 1.002 (1.001–1.008) 1.003 (1.002–1.010) 1.003 (1.000–1.010)
Monomethylarsonic acid, in urine 1.004 (1.002–1.017) 1.004 (1.001–1.017) 1.010 (1.001–1.014)
Cesium, in urine 0.997 (0.987–0.990) 0.993 (0.990–0.997) 0.995 (0.990–0.998)
Thallium, in urine 1.023 (1.013–1.033) 1.005 (1.001–1.015) 1.004 (1.002–1.014)
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absence of heavy metal sub-test data for total arsenic, 
monomethylarsonic acid, and uranium in urine since 
2012 in NHANES, we were unable to continue col-
lecting data for analyses. Moreover, we discovered 
that monomethylarsonic acid, and dimethylarsonic 
acid showed no relationship with CHD (2003–2012), 
but lead in urine and total mercury in blood had a 
relationship with CHD (2003–2012), which was con-
trary to the correlation (2003–2018) (Supplemen-
tary Table  2). The absence of data may affect our 
results. We will therefore persist in requiring ongo-
ing research in future studies because we realize the 
importance of continually updating data for analyzing 
and interpreting findings.

Conclusion

When examining the NHANES data between 2003 
and 2018, we found that the trends of total arse-
nic, dimethylarsonic acid, monomethylarsonic acid, 
barium, cadmium, lead, and antimony in urine and 
blood decreased, while the exposure levels of cobalt, 
cesium, thallium, tungsten, and uranium in urine fol-
lowed a constant trend. CHD prevalence, however, 
fluctuated. Moreover, total arsenic (2003–2012), 
monomethylarsonic acid, and thallium in urine all 
showed positive relationships with CHD, while 
cesium in urine showed a negative relationship with 
CHD. In the future, we need to control total arsenic, 
monomethylarsonic acid, thallium, and cesium expo-
sure levels in the environment.
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