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Abstract In India, where cereal-based meals make
up the majority of the daily diet, bread wheat (7riti-
cum aestivum L.) is a key grain crop. Micronutrient
deficiencies are a result of the lack of a diverse food
culture in the nation. Genotypes of bread wheat that
have been biofortified might be introduced to address
this. It is anticipated that more information on the
genotype X year interaction of these nutrients in grain
will help us better understand the size of this interac-
tion and perhaps even identify more stable genotypes
for this attribute. Year revealed divergent responses to
grain iron and zinc. Compared to zinc, iron showed
lowest variation across year. Maximum temperature
was the major determinant for the four traits. Iron is
also significant correlation with zinc. Among the total
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fifty-two genotype, HP-06, HP-22, HP-24, HP-25,
HP-33, HP-44, and HP-45 were found superior for
zinc and iron content. These genotypes with high
levels of zinc and iron can be used in a hybridization
programme to further crop improvement. Wide-scale
cultivation of the chosen genotype with high zinc and
iron content in the agro-climatic conditions of Jammu
will work with the region’s current cropping systems.
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Genetic variability - G X E interactions - Correlation

Introduction

Micronutrient malnutrition, sometimes known as
"hidden hunger," is a global problem that results
in low birth weight, anaemia, learning difficulties,
higher rates of morbidity and mortality, low job pro-
ductivity, and high healthcare expenditures (Batra &
Seth, 2002; Welch & Graham, 2002). Lack of iron
(Fe) and zinc (Zn) affects a number of metabolic
processes in humans, including oxygen transport,
cell development and differentiation, DNA replica-
tion, protein synthesis, reduction of oxidative stress,
and defence against brain cancers (Thavarajah et al.,
2009). The importance of micronutrients in the for-
mation of a well-functioning immune system is well
established during the COVID-19 pandemic (WHO,
2020), and the efforts to increase Zn and Fe bio-
availability through dietary supplementation, food
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fortification, and dietary diversification have been
made to reduce micronutrient malnutrition, but the
potential methods for reducing global micronutrient
deficiency has been anticipated through the produc-
tion of staple food crop cultivars fortified with micro-
nutrients (Singh, 2017). The HarvestPlus programme
of the CGIAR was conceptualized at mitigating the
nutritional deficit targeting high-value crops across
globe. Wheat being a major food crop grown across
the world was focused for biofortification (Harvest-
Plus Brief, 2006), and project’s major goal is to gen-
erate nutritionally enhanced cultivars of common
wheat (Triticum aestivum L.) to increase people’s
intake of zinc (Zn) and iron (Fe), two micronutri-
ents that are considered to be vital for human health
(Pfeiffer & McClafferty, 2007). Advanced elite lines
developed through this programme are being utilized
by the location-specific breeding programmes in
wheat. The genetic improvement towards biofortifi-
cation necessitates the studies on genetic variability
for Fe and Zn content in the seed, their inheritance
in the plant, and their sinking into the progeny seed.
The International Maize and Wheat Improvement
Center (CIMMYT, International), with funding from
the HarvestPlus Challenge Program and the CGIAR
Research Program on Agriculture for Nutrition and
Health, are in charge of a global initiative to create
and spread to partners in South Asia high-yielding
wheat varieties that contain high levels of grain Zn
and Iron (Guzman et al. 2014). According to Singh
et al. (2017) and Johnson et al. (2013), there is sub-
stantial genetic variation across wheat germplasm
for a number of micronutrients, and genetic (G) x
environmental (E) interactions play a key role in the
inheritance of Fe and Zn content in wheat and other
crops. Breeding cultivars with high Fe and Zn content
in their seeds is complicated by environmental fac-
tors such soil fertility, soil type, seed characteristics,
seed composition, and climate influences (Thavarajah
et al., 2009). G X E interactions have been viewed as
a barrier to crop development for nutritional features
(Kumar et al., 2018) because it reduces trait herita-
bility estimates, which may lead to less genetic gain
through selection (Ceccarelli, 1989).

Thus, it is essential to study the impact of environ-
ment on Fe and Zn content in order to utilize them
to make genetic improvement towards biofortification
effective. With this background, preliminary inves-
tigation on the study was to determine the genetic
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variability for Fe and Zn content among exotic micro-
nutrient enriched elite genotypes and adapted com-
mercial varieties was undertaken and the impact of
seasons/years with varying environment on the Fe
and Zn content in the wheat, thus identifying stable
genotypes for utilization in hybridization.

Material and methods

Experimental material for the present study com-
prised of forty-nine zinc and/or iron-enriched Har-
vestPlus genotypes and along with three adapted
wheat varieties, viz. HD 3086, JAUW 683, and RSP
561 (Table 1).

These genotypes were evaluated during two con-
secutive Rabi seasons (November to April), viz.
2019-20 and 2020-21, in randomized complete block
design with three replications having a plot size 1.0
m?. The description of experimental site along with
weather conditions are presented in Table 2 and
Fig. 1. All the agronomic and plant protection meas-
ures were followed as per the packages and practices
of SKUAST-Jammu to raise healthy crop. Five plants
per genotype per replication were randomly chosen
for recording morpho-metric and yield attributing
traits during both the crop seasons viz., plant height,
number of tillers per plant, days to 50 per cent flower-
ing, flag leaf area (cm?), spikelets per spike, days to
maturity, 1000 grain weight (g), and grain yield per
plant (g).

Micronutrients profiling for zinc and iron

A combination of tap water, diluted HCI (0.01 N),
and distilled water was used to wash the grain sam-
ples. Samples were dried in a hot air oven at 60 °C for
five minutes. Grain was processed and used for future
chemical analysis after reaching consistent weight.
Grain samples were microwave-digested with HNO;
by placing 0.5 g of the sample into a PTFE-TFM
jar, adding 7 ml of suprapure HNO;, and predigest-
ing the mixture overnight. The vessel was then sealed
and placed in microwave digestion. The heating pro-
gramme (Multiwave ECO, Anton Paar) was config-
ured with operational parameters of a ramp period
of 25 min to reach 180 to 190 °C and a hold time
of 25 min at 180 to 190 °C (Datta et al., 2017). To
ensure the full transfer of content, the samples were
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Table 1 The details of 52 germplasm lines acquired from HarvestPlus and adapted variety

S.No Coded Name Pedigree

1 HP-2 KACHU#1

2 HP-3 MAYIL

3 HP-4 ZINCSHAKTHI

4 HP-5 DANPHE#1*#2/SOLALA//BORL14

5 HP-6 DANPHE#1+#2/SOLALA//BORL14

6 HP-7 VALI//KACHU/KIRITATI

7 HP-8 MANKU/MUTUS*2?TECUE#1

8 HP-9 VILLA JUAREZ F2009/3/T.DICOCCON PI94625/...

9 HP-10 FRANCOLIN#1/3/TIWA8600211//2*PBW343*2/KUKUNA/7/TRAP#1/

10 HP-11 C80.1/3*BATAVIA//2*WBLL1/3/ATTILA/3*BCN*2/BAV92/4/...

11 HP-12 C80.1/3*BATAVIA//2*WBLL1/3/ATTILA/3*BCN*2/BAV92/4/...

12 HP-13 C80.1/3*BATAVIA//2*WBLL1/3/ATTILA/3*BCN*2/BAV92/4/...

13 HP-14 TRAP#1/BOW/3/VEE/PIN/2*TV1/4/BAV92/RAYON15/KACHU#1/6/

14 HP-15 ROLF07+#2/KIRITATI/3/IWA8600211//2*PBW343*2/KUKUNA/4/. ..

15 HP-16 SHAKTI/2*BORL14

16 HP-17 SHAKTI/2*BORL14

17 HP-18 SHAKTI/2*BORL14

18 HP-19 SHAKTI/2*MUCUY

19 HP-20 SHAKTI/6/KAUZ/ALTAR84/AOS/3/PASTOR/4/873.97/5/...

20 HP-21 SHAKTI/7/SERI.1B*2/3/KAUZ*2/BOW//KAUZ/4/KRONSTAD F2004/...
21 HP-22 SHAKTI/5/WHEAR/KIRITATI/3/C8001/3*BATAVIA//2*WBLL1*2/4/...
22 HP-23 KATERE/MUCUY/7/TRAP#1/BOW/3/VEE/PIN//2*TV1/4/BAV92/...

23 HP-24 KATERE/MUCUY/7/TRAP#1/BOW/3/VEE/PIN//2*TV1/4/BAV92/...

24 HP-25 KATERE//ONIX/KBIRD/6/C80.1/3*BATAVIA//2*WBLLI1/3/ATTILA/...
25 HP-26 ZINCOL//BECARD/QUAIU#1/7/INQALAB91#2/TUKVRV//WHEAR/6/.
26 HP-27 DANPHE#1#2/3/T.DICOCCON PI94625/AE.SQUARROSA (372)//...

27 HP-28 HG094.7.1.12//WBLL1#*2/KUKUNA/3/WBLL1#2/KURUKU/4/...

28 HP-29 VALI/3/MUTUS*2//ND643/2*WBLL1/6/C80.1/3*BATAVIA//...

29 HP-30 WHEAR/KUKUNA/3/C80.1/3*BATAVIA//2¥*WBLL1/4/...

30 HP-31 QUAIU#1/SOLALA//QUAIU#2/3/MANKU/4/KACHU#1/KIRITATI// ...
31 HP-32 KOKILA/3/MUTUS*2//ND643/2*WBLL1/8/PSN/BOW//SERI/3/...

32 HP-33 KIRITATI1/4/2*SERI.IB*2/3/KAUZ*2/BOW//KAU2/5/CMH81.530/...

33 HP-34 WHEAR/KIRITATI/3/C80.1/3*BATAVIA//2*WBLLI/4/CMH75A.66/. ..
34 HP-35 DANPHE#1#2/3/T.DICOCCON PI94625/AE.SQUARROSA (372)//...

35 HP-36 WHEAR/KUKUNA/3/C80.1/3*BATAVIA//2¥*WBLL1/4/...

36 HP-37 MANKU/6/WHEAR/KUKUNA/3/C80.1/3*BATAVIA//2¥*WBLL1/5/PRL/...
37 HP-38 VILLA JUAREZ F2009/3/T.DICOCCON P194625/...

38 HP-39 VALI/5/2*VILLA JUAREZ F2009/3/T.DICOCCON PI94625/...

39 HP-40 QUAIU#1/3/T.DICOCCON PI194625/AE.SQUARROSA (372)//...

40 HP-41 MAYIL/2*¥*VALI

41 HP-42 MAYIL/2*¥*VALI

42 HP-43 MAYIL*2//SUP152*2/TELUE#1

43 HP-44 VILLA JUAREZ F2009/3/T.DICOCCON P194625/...

44 HP-45 KOKILA/2*VALI

45 HP-46 KOKILA/2*KUTZ

46 HP-47 ZINCOL/5/28QUAIV#1/3/T.DICOCCON PI194625/...
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Table 1 (continued)

S.No Coded Name Pedigree

47 HP-48 WHEAR/KIRITATI/3/C80.1/3*BATAVIA//2*WBLL1/4/CMH75A.66/...
48 HP-49 PAURAQ//RL6043/4*NAC/3/2*QUAIU#1/SOLALA//QUAIU#2

49 HP-50 PAURAQ//AG/5*NAC/3/2*QUAIU#1/SOLALA//QUAIU#2

50 HD3086 Adapted variety /commercial variety (Timely sown, irrigated)

51 JAUW 683 Adapted variety / advanced line (Timely sown, irrigated)

52 RSP 561 Adapted commercial variety (Timely sown and late sown irrigated)

Table 2 The site of

g e S. No Parameters Units
experiments conditions at
SKUAST-Jammu, India 1 Altitude 239 m AMSL
2 Longitudes 74°48E
3 Latitudes 32°40N
4 Climate Subtropical with cold
winters and dry sum-
mers

5 Soil texture Sandy loam soil
6 pH 7.0
7 Temperature Regime 2019-20 22-10.6 °C
8 Min Temperature 2019-20 10.60 °C
9 Max Temperature 2019-20 24.03 °C
10 Min Temperature 2019-20 9.78 °C
11 Relative humidity (Morning) 2019-20 89.37
12 Relative humidity (Evening) 2019-20 58.01
13 Morning Relative humidity 2020-21 89.21
14 Evening Relative humidity 2020-21 53.27
15 Average rainfall 2019-20 16.32 mm
16 Average rainfall 2020-21 7.20 mm

thoroughly shaken after being cooled to room temper-
ature and added Milli-Q water. The resulting mixture
was passed through a Whatman No. 42 filter before
being diluted to a final amount of 100 ml in a volu-
metric flask using Milli-Q water that contained 1%
suprapure HNO3. A atomic absorption spectropho-
tometer (AAS) was used to measure the total Zn and
Fe in the digest. To prepare a reagent blank, a similar
process was used but without a sample.

Statistical analysis
Pooled and year-wise analysis of variance (ANOVA)

along with mean performance of genotypes during
two consecutive years (2019-20 and 2020-21) were
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considered, and relationship among genotypes was
assessed employing R ver. 4.1 and Windostat 9.3
software.

Results and discussion

Analysis of variance revealed mean sum of squares
due to genotype to be highly significant for all traits
during both years (Tables 3a and 4). The pooled
ANOVA for genotype and year was found signifi-
cant (p<0.01) for all the traits, while interactions
were found significant (p <0.01) for only 1000-grain
weight (g) and at p<0.05 for grain yield per plant
(Table 5). Table 6 summarizes the results on envi-
ronmental variations for yield and yield contribut-
ing traits and micronutrient content (Zn and Fe)
in fifty-two wheat genotypes grown under Jammu
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Fig. 1 a Temperature (°C)
at Experimental field of

Temperature (°C) at Experimental field of SKUAST-Jammu
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(a) Temperature (°C) at Experimental field of SKUAST-Jammu from the month of November to

May of 2019-20 and 2020-21.

Rain Fall (mm) at Experimental field of SKUAST-Jammu
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(b) Rainfall (mm) at Experimental field of SKUAST-Jammu from the month of November to

May of 2019-20 and 2020-21.

agro-climatic conditions. Significant genetic varia-
tion among genotypes is a prerequisite to increase
the concentration of Zn and Fe content in wheat grain
through conventional breeding.

Significant differences between treatments at the
genotypic level may result from genetic variation
of genotypes, whereas significant variations at the
annual level and genotype x year interactions may
result from changes in humidity, precipitation, cli-
mate, soil conditions, or other cultivation practises
used throughout the cropping season (Joshi et al.,
2010). The environment has a big impact on yield and
the qualities that make up that yield. Table 6 summa-
rises the mean data of the morpho-metric character-
istics and micronutrients (Zn and Fe) content of 52
accessions for the two following years, 2019-2020
and 2020-2021.

It was prominently elucidated the significant
variation among the genotype, year, and geno-
type x year interactions studied. The most sta-
ble plant height was recorded in the genotype
RSP-561 (100 cm in 2019-20 and 99.67 cm in
2020-21) followed by HP-02 (93.33 cm in 2019-20
and 92.67 cm in 2020-21), HP-29 (87.00 cm in
2019-20 and 86.33 cm in 2020-21), and HP-39
(86.33 cm in 2019-20 and 87.00 cm in 2020-21),
whereas the highest plant height was recorded for
JAUW-683 (105 cm in 2020-21). For number of
tillers per plant, the most superior and stable perfor-
mance was attained by the genotype HP-02 (9.33 in
2019-2020 and 10.00 in 2020-21) and HP-48 (8.00
in 2019-2020 and 9.33 in 2020-21). Plant height
and number of tillers per plant are the most sensitive
to environmental fluctuations. It is indicated that the

@ Springer
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relative inconsistent performance of other geno-

<}

Eo é 5 E 10 *: 3 types was marked due to genotype and environment
'_"5 E - § © E & interaction. For days to 50 per cent of flowering, the
= = e genotype HP-04 (94.33 in 2019-2020 and 95.67 in
-§ g i im - 2020-21) and HD 3086 (94.00 in 2019-2020 and
B %‘ -eZgSn 96.00 in 2020-21) projected the lowest days to 50
g E 5 2« per cent of flowering, which could be directly cor-
g - . § related with early maturity. While, the stable gen-
Eo g E § *‘2 :;% é o otype was achleV§d by HP-03 (95.67) and HP-08
5 8 73 P § S (97.33). Plant heights, flag leaf, days to 50 per
Z RG] a cent of flowering, and seed morphological varia-
g tion are the primary descriptor for characterization
> of germplasm. The leaf morphological traits of the
E § C . Eor 0 % wheat germplasm (9HPYT) under study showed a
z éﬂ Eﬁ § § § § § wide range of variability. Regarding the flag leaf,
% S g -x - % it was found that RSP-561 (30.23 cm) showed the
E most consistent trait during the two years investi-
é § gated, followed by HP-22 (26.23 cm for 2019-20
é g i@ 3 - 5 - and 26.57 cm for 2020-21), HP-09 (27.70 cm for
g 5 =22 & 2019-20 and 28.23 cm for 2020-21), and HD 3086.
‘é’ A g g (27.73 c¢cm for 2019-20 and 28.37 c¢m for 2020-21).
2 While in reference to spikelets per spike, the stable
g 8 performance was presented by HP-39 (18.67) fol-
é E % % lowed by HP-15 (18.00) and HP-03 (16.33), in case
& 28 2L I3 of days to maturity, genotype HP-14 (137.67) and
% & & Ta2s = lowest days to maturity was recorded in genotype,
8 - HP-04 (133.67 in 2019-20) and RSP-561 (133.67 in
g = 2020-21). One thousand grain weight (g) and grain
g ks - 353 o im o yield per plant (g) are the major economic traits and
g EIFE ; ; % z E are important for successful agronomic practices
g ope o« and global demand. Thus, exploiting the highest
o - g%" 1000-grain weight (g) was observed for both the
§ é A § . . years in genotype HP-47 (46.40 g in 2019-20 and
g3 28 = 4o e 43.63 g in 2020-21) followed by HP-21 (43.67 in
5% |88 |d8< =92 2019-20 g and 8.87 g in 2019-20), whereas for grain
Ea . <\:/>’I yield per plant (g), genotype HP-09 (24.40 g in
2 2 5 | % - 2 - o 2 2020-21) followed by HP-02 (24.33 g in 2020-21)
Zo8 cBE5|S g I 3 Z|2 and HP-40 (23.30 g in 2020-21) was recorded high-
s |2 |FFE= - é est. While, the most stable genotype for 1000-grain
é § ; £ . % g weight (g) was recorded in HP-06 (37.40) followed
SE|Z|2 LS %2 by HP-19 (42.33 gm in 2019-20 and 42.50 gm in
EEIERE SE" S8% 2020-21), HP-13 (39.00 gm in 2019-20 and 38.83
E, 1'\ = 1A o - gm in 2020-21), and grain yield per plant (g), were
58 E _— - - ﬁ %l revealed by genotype HP-08 (14.13) followed by
3 % B . a HP-26 (14.37 gm), HP-27 (10.47 gm), and HP-28
E QZ; g % %? . 2 (16.03) in 2019-20 and 2020-21, respectively.
n § E g EE . g u=8 Highly significant differences among the genotype
2 215 g é g >:< £ % s E‘J were observed for both grain Fe and Zn concentra-
E3|&8% 5o & 4l@e tion, indicating the presence of sufficient amount
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of genetic variability for grain Fe and Zn concen-
tration among the genotypes studied. The pooled
mean percentage of Zn and Fe in grain of the fifty-
two accessions ranged from 8.00 ppm to 40.67 ppm
and 27.33 ppm to 41.67 ppm in Zn and from
9.67 ppm to 88.33 ppm and 28.67 ppm to 72.33 in
Fe for 2019-20 and 2020-21, respectively (Fig. 2).
The accession HP-45 (41.67 ppm in 2020-21) was
recorded to establish the highest Zn content fol-
lowed by accession HP-41 (40.67 ppm in 2019-20)
and HP-02 (40.33 ppm in 2020-21), while the high-
est Fe content was depicted by HP-49 (88.33 ppm
in 2019-20 and 72.33 ppm 2020-21) followed by
HP-44 (71 ppm in 2019-20 68.67 ppm in 2019-20)
and HP-45 (55.00 ppm in 2019-20 and 51.67 in
2020-21). Since, grain contains higher amounts of
Zn and Fe, it is possible that harvesting plant will
assist in the sustainable exploitation of natural con-
servation. As a result of polygenic control, envi-
ronmental or nongenetic factors, and their inter-
action, few accessions, on the other hand, showed
inconsistent Zn and Fe content over the course of
two years (G X E interaction). When the perfor-
mance of the traits was compared between the two
years, it was evident that the accessions performed
better in the first year for many morpho-metric and
yield-attributing variables, including plant height,
days to 50% of flowering, flag leaf, spikelets per
plants, and Zinc (ppm) (2019-20). The accessions
performed superior for number of tillers per plant,
1000-grain weight (g), and grain yield per plant (g)
and iron (ppm) characters in the second consecutive

90.00
80.00
70.00
60.00
50.00 I Ig
40.00

= i =

year (2020-21). Overall based on the ten morpho-
matric attributes, Zn and Fe content, the accessions
HP-08, HP-26, HP-27, HP-28, HP-33, HP-41, and
HP-49 displayed a comparable consistent perfor-
mances pattern in the agro-climatic conditions of
the North Western Himalayan region for the two
consecutive years studied. HP-33, HP-41, HP-45,
and HP-49 had higher Zn and Fe content.

Regarding qualities that contribute to yield, other
genotypes behaved differently in both years. The
findings showed that genotype-by-environment
interactions complicate crop variety development
and decrease the efficacy of breeding programmes
aimed at improving yield (Ahmad et al., 2011). When
the experimental materials for the current study
were evaluated during the two years (2019-20 and
2020-21), different patterns of minimum and maxi-
mum temperature and rainfall were observed (Fig. 1).
This gave researchers the chance to examine how
genetic make-up and/or environmental factors affect
the level of Fe and Zn (Kumar et al., 2018). The
development of breeding techniques for creating bio-
fortified wheat cultivars is aided by knowledge of the
interplay between genotype and environment. Given
that genotype x year interactions were significant in
the current study for both Fe and Zn content, it is
likely that a sizeable amount of the Fe and Zn con-
tent in wheat seed depends on soil conditions, crop
management techniques, temperature, precipitation,
and these factors (moisture, aeration, and soil pH).
In contrast, substantial genotype x location interac-
tions for Zn and Fe concentrations in both wild and

M Zinc (ppm)

Fig. 2 Pooled grain Zn and Fe content during (2019-20 and 2020-21)
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cultivated cultivars of wheat were found (Gomez-
Becerra et al., 2010; Ortiz-Monasterio et al., 2007;
Trethowan, 2007). Year-to-year changes in Fe and
Zn content were likewise extremely significant in the
current investigation, showing that the environmental
conditions depicted in Fig. 1 are present. Fifty-two
genotypes were divided into eight clusters based on
the K-means cluster. The distribution pattern of geno-
types in the different cluster is presented in Fig. 3.
The cluster VI was the largest cluster consisting of
15 genotypes followed by cluster I (10 genotypes),
cluster III having 8 genotype, cluster VII having 7
genotypes, cluster IV (6 genotypes), cluster VIII (3

Groupk  n within 85 Cluster Members —>
1 1l 10756 ] § [}
[ ]
P06 1
1 1 0.0000 12
W3
3 [ 0.6501 18 19 1] 2%
19 23
-0 .26
] ] 07288 il n U k||
22 125
(3] 32
5 1 0.0021 50 51
I8
RSP 561
[} 15 3478 8 9 1 1
X (30
#10 15
AN U 3% K[}
P31 HP-36
P35 W7
1 1 13084 1 1 [} 1
a2 P45
w0 [
8 ] 15783 ¥ u

1
[ LX)
HP-45

genotypes), cluster V (2 genotype), and cluster II hav-
ing 1 genotype. It is pertinent to mention that all the
zinc- and iron-enrich genotypes were obtained from
the HarvestPlus breeding programme and likely to
have some part of common ancestry and thus fall in
the same cluster. Similar results have been reported
by Ajmal et al. (2013); Shahryari et al. (2011). The
clustering of genotypes from different ecogeographic
regions into one cluster could be due to the exchange
of breeding material among global partners. Den-
drogram was achieved from cluster analysis of fifty-
two genotypes on the basis of two micronutrient (Zn
and Fe) content (Fig. 4). According to this grouping

ki) Ll 4 L] L] Ll
P-4 43 P47
HP42 HP-46 P48

1 klj k) L]
P28 40
P38 50

i L]
P33
41

15 18 1 i 2% L]
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i
P39

11 n i
P2 Ho3266
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Fig. 3 Clustering pattern of fifty-two wheat genotypes on the basis of K-means cluster analysis
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Fig. 4 Dendrogram showing genetic relationship among wheat genotypes based on Euclidean distance for grain zinc and iron con-

tent

under-study wheat genotypes divided into seven clus-
ters. Cluster II and VI was considered most desir-
able cluster for selecting the genotype for use in
hybridization.

It is possible to simultaneously increase the con-
centration of zinc and iron in grains by selection
because the genotypic and phenotypic correlations
between zinc and iron were highly positive (Table 7).
By Velu et al. (2012) and Chatrath et al. (2018), simi-
lar associations between grain iron and zinc concen-
tration were reported. The genotypic connection
between the iron and days to maturity was highly pos-
itive, and Velu et al. (2012) observed a similar find-
ing. Similar results were found by Velu et al. (2012)
and the zinc yield had a significantly favourable phe-
notypic connection with days to maturity. Spikelets
per spike and grain weight revealed a substantial pos-
itive genotypic connection with grain yield (Table 7).
According to Joshi et al. (2007), the number of effec-
tive tiller and grains per spike are the most important
traits for grain yield in wheat. From this research,
genotypic correlation between grain yield with days
to 50 per cent flowering and flag leaf area was found
significant negative (—0.158%*) and (—0.170%),
respectively.

@ Springer

Conclusion

Wide adaptation and consistent performance in a
range of circumstances are admirable objectives for
resource conservation. In order to have more suc-
cess, scientists have concentrated on the phenomenon
of genotype environment (G X E) interaction, which
enables them to distinguish between genotype per-
formance in various environments and to selectively
target suitable genotypes for commercial cultivation
to specific environmental niches. Using 10 morpho-
nutrient (Zn and Fe content) properties, it was deter-
mined that HP-03, HP-06, HP-08, and HP-27 were
the consistently performing biofortified wheat acces-
sions. These genotypes might be used for hybridiza-
tion under the Jammu agro-climatic of the Northwest-
ern Himalayan region, and HP-06, HP-22, HP-33,
HP-34, HP-41, HP-44, HP-45 and HP-49, which have
high Zn and Fe concentration. This study showed that
environment and its interaction with genotypes have
significant and higher effects than the effects due
to the genotypes per se on the grain Zn and Fe con-
centration in wheat. It is, therefore, concluded that
improvement of grain Zn and Fe concentration is pos-
sible but potentially slow due to the substantial influ-
ence by the environment.
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