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Abstract Over the past decade, heavy metal (HMs) 
contamination in soil environments has become 
severe worldwide. However, their resulting ecological 
and health risks remained elusive across a variety of 
soil ecosystems due to the complicated distributions 
and sources. This study investigated the HMs (Cr, 
As, Cu, Pb, Zn, Ni, Cd, and Hg) in areas with multi-
mineral resources and intensive agricultural activities 
to study their distribution and source apportionment 

using a positive matrix factorization (PMF) model 
coupled with self-organizing map (SOM). The 
potential ecological and health risks were assessed 
in terms of distinct sources of HMs. The results dis-
closed that the spatial distribution of HM contamina-
tions in the topsoil was region-dependent, primarily 
located in areas with high population intensity. The 
geo-accumulation index (Igeo) and enrichment fac-
tor (EF) values collectively displayed that the top-
soils were severely contaminated by Hg, Cu, and Pb, 
particularly in residential farmland areas. The com-
prehensive analysis combined with PMF and SOM 
identified both geogenic and anthropogenic sources 
of HMs including natural, agricultural, mining, and 
mixed sources (caused by multi-anthropogenic fac-
tors), accounting for 24.9%, 22.6%, 45.9%, and 6.6% 
contribution rates, respectively. The potential eco-
logical risk was predominantly due to the enrichment 
of Hg, followed by Cd. The non-carcinogenic risks 
were mostly below the acceptable risk level, while 
the potential carcinogenic health risks caused by As 
and Cr should be paid prime attention to, particularly 
for children. In addition to the 40% geogenic sources, 
agricultural activities contributed to 30% of the non-
carcinogenic risk, whereas mining activities contrib-
uted to nearly half of the carcinogenic health risks.
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Introduction

Soil, the core element connecting the atmosphere, 
hydrosphere, biosphere, and lithosphere, provides 
the natural support and biological barrier of basi-
cally all ecosystems on the earth’s surface. The soil 
quality is inextricably linked to humans and environ-
ments (Lehmann et al., 2020). In recent years, due to 
the rapid expansion of cities, contamination of soil by 
heavy metals (HMs) has become increasingly severe 
worldwide (Árvay et  al., 2017; Li et  al., 2014). The 
accumulation of HMs not only affects the ecological 
environment, but also biological entitles, i.e., animals 
and plants. HMs contaminants directly or indirectly 
threaten human health by introducing metal elements 
that are essential for human health into the body, 
through various environmental exposure pathways 
such as drinking water and food chain (Huang et al., 
2021; Jiang et al., 2022a; Yang et al., 2018).

In general, HMs such as Cd, Cr, Hg, Pb, Cu, Zn, 
Ni, and metalloid arsenic (As) are derived from both 
geogenic and anthropogenic sources (Kebonye et al., 
2021). They are released naturally through weather-
ing of geological parent materials and/or from various 
human activities including agriculture, transportation, 
mining and smelting, and wastes rich in metal resi-
dues (Li et  al., 2021; Ungureanu et  al., 2017). HMs 
are prioritized as contaminants under control due to 
their potential toxicity, persistence, and irreversibil-
ity (Lin et al., 2018; Man et al., 2010). HMs in soils 
would cause a threat to the health of human beings 
when they are converted from solid form to either 
ionic moieties or organometallic moieties (Madrid 
et al., 2002). To improve the soil environmental qual-
ity and protect human health, it is necessary to dif-
ferentiate the natural and anthropogenic sources of 
HMs, determine the quantitative contribution, and 
assess the impact of HMs exposure on the ecological 
environment and human health (Cheng et  al., 2020; 
Huang et al., 2021).

The past studies have been conducted on the dis-
tribution, source apportionment, and risk assess-
ment of topsoil HMs under various human activi-
ties. However, most of the research focused only 
on human activity or the same receptor medium, 
such as the agricultural (Rodriguez et  al., 2008; 
Zhang et  al., 2020), urban parks (Gu et  al., 2017; 
Liu et  al., 2020; Wang et  al., 2019), industrial park 
(Li et  al., 2021; Long et  al., 2021), and mining and 

smelting area (Árvay et  al., 2017; Tian et  al., 2018; 
Xiao et al., 2017). The distribution, the inter-relation-
ship between heavy metals, and quantitative analysis 
of sources and health risk assessment of topsoil HMs 
under the influence of mixed anthropogenic activities 
(e.g., long-term mining and smelting of polymetallic 
ores and intensive agricultural activities) remained 
poorly understood.

Multivariate statistical analyses such as Principal 
Component Analysis (PCA), Chemical Mass Bal-
ance (CMB), and Cluster Analysis (CA) have been 
widely employed to reveal the distribution and pos-
sible sources of HMs (Davis et al., 2009; Facchinelli 
et al., 2001; Li et al., 2004). However, these methods 
are limited in identifying multiple sources simultane-
ously, obtaining the nonlinear correlations, and clas-
sifying different variables and samples, especially for 
high-dimensional and complex datasets (Astel et al., 
2007; Kim et al., 2020). Compared with the conven-
tional models, the positive matrix factorization (PMF) 
was developed to cope with uncertainties and error 
propagation problems (Huang et  al., 2021; Zanotti 
et al., 2019). Recently, PMF has been widely applied 
to identify pollution sources and apportion contri-
butions in various environmental media (Brinkman 
et  al., 2006; Zhang et  al., 2018). The success of its 
application is affected by the error of sample data val-
ues, model structure, and parameter representation, 
and the conclusion would rely on the interpretation 
of background data in the study area (Huang et  al., 
2021; Li et al., 2020; Mao et al., 2023). In addition, to 
accurately explain the relationship between variables, 
owing to the complexity and uncertainty of soil heavy 
metal occurrences, it is imperative to reduce and clas-
sify the data. To overcome the shortcomings of tra-
ditional classification methods, self-organizing map 
(SOM), which can reveal local relationships between 
variables and classify nonlinearity and dispersed data 
(Jiang et al., 2022a; Kebonye et al., 2021; Lee et al., 
2019), was increasingly adopted in data classification 
of related research in the field of earth environmen-
tal science (Agyeman et al., 2022a; Nakagawa et al., 
2020; Qu et al., 2021). Moreover, SOM supports the 
technique of using reference vectors to provide an 
informational picture of the data, which clearly shows 
the interdependencies between variables (Pearce 
et al., 2011; Wang et al., 2020; Zhu et al., 2020).

In the current study, primary topsoil HMs (Cu, Pb, 
Zn, Cr, Ni, Cd, As, Hg, and Mn) in areas with typical 
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multi-mineral resources and intensive agricultural 
activities were analyzed to evaluate the pollution level 
of topsoil HMs. Combining with PMF and SOM as 
well as Pearson correlation analysis, the distribution 
and potential contaminant sources were investigated. 
The potential ecological-health risks were evaluated. 
This study provides a strategy and scientific basis for 
preventing, controlling, and remediating the HMs 
contaminations in areas undergoing mining and agri-
cultural activities.

Study area

Mountainous, low mountainous, and plain areas make 
up the majority of the physiognomy in the study area. 
In terms of topography and land-use type, the study 
area is divided into mountainous, mining, agricul-
tural, and residential areas. The region with strong 
agricultural activity (i.e., farmland zones) is primar-
ily located at the upper piedmont sloping plain in the 
southwest, followed by the riverbed or riparian ribbon 
alluvial plain in the southern or eastern areas, or the 
valleys of the northwestern mountain (Fig. 1). There 
are also many agricultural activities in the central or 

northern region even though some farmlands are dis-
tributed in the valleys and mountains. Additionally, 
large-scale vegetable planting bases, modern agricul-
tural industrial parks, and fruit industrial parks are 
found. There are abundant coal, iron, and gold ore 
resources, along with lead and zinc, phosphorite, and 
graphite mineral resources, while the other mineral 
resources are relatively small in size or distribution of 
ore spots (Jiang et al., 2022b).

The coal resources are primarily located in the 
southwest and east mining areas of the study area. 
Iron mines are mainly located in the south and north-
west area, followed by the central area, where hem-
atite, magnetite, and titanium-magnet minerals of 
large scale are developed. The non-ferrous mineral 
resources (mainly lead–zinc ore, with a few copper 
and molybdenum ore) controlled by the metallogenic 
geological conditions are distributed in the southeast. 
The gold ores (49 deposits) are the mineral resources 
with the broadest distribution area and the largest 
mining scale in this region (around 1500  km2). Addi-
tionally, silver ore resources in the study area are less 
abundant, and most silver deposits are formed by the 
symbiotic or associated combination of Ag and other 
beneficial ore-forming elements (e.g., Pb and Zn).

Fig. 1  Sampling location of HMs in topsoil samples under different land-use types in the study area
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Materials and methods

Soil sampling and analyses

A total of 101 topsoil samples (from 0 to 20  cm) 
were collected vertically by soil drills, including 67 
residential farmland soils (RF), 17 mining farmland 
soils (MF), and 7 woodland–grassland soils (WG) 
(Fig. 1). In addition to the soil samples, 10 mining 
or tailing/slag waste samples (MS) were collected 
in the mining factory, smelting plant, and tail-
ings pond (Fig. 1). Each sample is taken by a clean 
sampler to reduce cross-contamination and stored 
in polyethylene bags and sent to the laboratory for 
analysis. All samples were naturally dried at 20 °C 
until constant weight after removing the plant resid-
ual roots, gravel, and other debris, and then crushed 
and passed through a 2-mm sieve.

The samples of HMs were digested in sterile 
dry Teflon crucibles by a concentrated acid mix-
ture  (HNO3-HF-HClO4) and a quantified aqua 
regia solution (HCl-HNO3), and then placed on 
the heating plate in a fume cupboard. The electric 
heating plate was heated to 260 ℃ until the liquid 
evaporates completely. Then, 5  ml of  HNO3 was 
added to the samples and held at 130 ℃ in a dry-
ing baker to dissolve the residue. When crucibles 
cooled, the samples were removed to a 50-ml vol-
umetric flask and diluted with ultrapure water for 
testing. The concentrations of Cu, Pb, Ni, and Cd 
were determined by Inductively Coupled Plasma 
Mass Spectrometry (ICP-MS) (Thermo X series 
II, Thermo Fisher Scientific, USA), and those of 
As and Hg were analyzed by Atomic Fluorescence 
Spectrometer (AFS, HJ-680–2013, China). The 
concentrations of Zn, Cr, and Mn were measured by 
inductively coupled plasma atomic emission spec-
trometry (ICP-AES) (iCAP6300, Thermo Scientific, 
Waltham, USA). The analyses and quality assur-
ance/quality control (QA/QC) for HMs were deter-
mined by duplicate samples, blanks, and standard 
substances (GSS-24) from the Centre of National 
Standard Reference Material of China. The recover-
ies of substrate samples and the standard substances 
ranged from 88 to 106% and 98% to 103%, respec-
tively. The detection limits (MDLs) of Cu, Pb, Zn, 
Cr, Ni, Cd, As, and Hg were 0.6, 0.5, 0.03, 0.2, 0.6, 
0.05, 0.2, and 0.005 mg/kg, respectively. The rela-
tive standard deviation of the duplicate samples was 

less than 5%. pH was measured by glass electrode 
method using a pH meter (Thermo, USA).

Evaluation method of pollution levels

Geochemical methods including geo-accumulation 
index (Igeo) and enrichment factor (EF) can provide 
relative levels of soil heavy metal contamination.

Geo‑accumulation index (Igeo)

Igeo is an intuitive geochemical standard for quantita-
tive evaluation of heavy metal contamination levels 
which takes into account the influence of background 
values caused by natural geological processes as well 
as exogenous HMs produced by human activities:

where Ci represents the measured concentration of 
heavy metal i (mg/kg), Bi denotes the geochemical 
background value of corresponding element i (mg/
kg), and K is the correction coefficient, generally 1.5 
(Chen et al., 2019; Long et al., 2021).

Enrichment factor (EF)

EF is usually used to evaluate the enrichment degree 
of metal elements in topsoil and can also help to 
distinguish an anthropogenic source from natural 
sources:

where Ci represents the concentration of element i, 
and Cref is the reference element for normalization 
(mg/kg). Mn is adopted as the reference element 
because it is more stable in the earth’s crust than other 
metals (Cheng et al., 2018; Wu et al., 2010). The clas-
sification of the Igeo and EF is shown in Table S1.

Self-organizing map (SOM)

The self-organizing map (SOM) is an unsupervised 
competitive learning neural network method. Simi-
lar sample points in high-dimensional space could be 
mapped to the neighboring neurons in the two-dimen-
sional output layer (2D) after the systematic analysis 
of nonlinear complex data (Haselbeck et  al., 2019; 

(1)Igeo = log2[Ci∕(K ⋅ Bi)]

(2)EF =
(Ci∕Cref)sample

(Ci∕Cref)background
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Mao et al., 2021). Additionally, the global and local 
relationships between variables are both displayed in 
the unified distance matrices (U-matrix) and median 
distance matrices (D-matrix) of SOM (Lee et  al., 
2019; Mao et al., 2021), as described by Jiang et al. 
(2022a) and Kim et al. (2020). The calculations and 
visualization of SOM were executed using MATLAB 
software, and a more detailed description is shown in 
Text S1.

Positive matrix factorization model (PMF)

In this study, the PMF receptor model 5.0 devel-
oped by the USEPA (2014) was used to identify the 
sources of HMs in topsoil. The PMF model decom-
posed the original matrix through several calculations 
and obtained the optimal matrix G and F to minimize 
the objective function Q:

where i, j, and k represent the number of samples, ele-
ments, and different pollution sources, respectively. 
Xij is the concentration of the jth chemical compo-
nent of the ith sample (mg/kg), Fkj is the contribution 
concentration of the jth chemical component of the 
source k (mg/kg), Gik is the contribution of the source 
k to the ith sample, and Eij is the residual matrix.

where Uij is the uncertainty of the jth chemical com-
position of the ith sample. MDL and error fraction 
are the method detection limit and the percentage of 
measurement uncertainty, respectively. And C is the 
concentration of the elements.

Potential ecological-health risks assessment

Potential ecological risks assessment

The potential ecological risk index was developed to 
evaluate the potential impact of contaminations on 

(3)Xij =

p
∑

k=1

GikFkj + Eij

(4)Q =

n
∑

i=1

m
∑

j=1

(

Eij

Uij

)2

(5)

If c ≤ MDL,Uij = MDL, else, Uij

=
√

(Error fraction × C)2 + (0.5 ×MDL)2

the ecological environment according to the toxicity 
of HMs and the response of the environment:

where RI is the comprehensive potential ecologi-
cal risk index for all HMs; Ei

r
 represents the poten-

tial ecological risk index of single heavy metal i; Ti
r
 

stands for the biological toxic response coefficient 
of corresponding heavy metal i, and the values of 
element increase were 1(Zn), 1(Mn), 2(Cr), 5(Cu), 
5(Ni), 5(Pb), 10(As), 30(Cd) and 40(Hg) (Agyeman 
et  al., 2022b; Hakanson, 1980; Jiang et  al., 2020; 
Li et al., 2021; Zuo et al., 2022); Ci

M
 and Ci

R
 are the 

measured concentration and the reference value of the 
heavy metal i, respectively (mg/kg). The assessment 
standard for Ei

R
 and RI is presented in Table S2.

Human health risks assessment (HRA)

In general, direct oral ingestion, dermal contact, and 
inhalation absorption are three major pathways for 
human long-term exposure to HMs in topsoil (Chen 
et al., 2015; Wang et al., 2019). The HRA model pro-
posed by the United States Environmental Protection 
Agency (USEPA, 2011) was employed to quantita-
tively evaluate the potential health risk of hazardous 
substances to the human body.

Exposure doses through oral ingestion, dermal 
contact, and inhalation can be calculated as follows:

where  ADIing,  ADIdermal, and  ADIinh represent the 
average daily intake from soil ingestion, dermal, and 
inhalation absorption, respectively (mg/kg·day). The 
significance and exact values of each parameter are 
shown in Table S3.

(6)RI =

n
∑

i=1

Ei
r
=

n
∑

i=1

Ti
r
× (Ci

m
∕Ci

R
)

(7)ADIing−i = Ci ×
IngR × EF × ED

BW × AT
× CF

(8)

ADIdermal - i = Ci ×
SA × AF × ABS × EF × ED

BW × AT
× CF

(9)ADIinh−i = Ci ×
InhR × EF × ED

PEF × BW × AT
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Non‑carcinogenic risk assessment

Non-carcinogenic risk assessment of a single ele-
ment in metal-contaminated soil is usually charac-
terized by the hazard quotient (HQ). However, the 
hazard index (HI) represented the accumulative/
total risk value of various non-carcinogenic indica-
tors from all exposure pathways:

where the  RfDi is the corresponding reference tox-
icity threshold dose of element i [mg/(kg·day)]. For 
non-carcinogenic risk, if HI > 1, there will be obvious 
potential adverse health effects for the exposed indi-
vidual. Otherwise, it is considered to be an acceptable 
level (Gu et al., 2017; Zhang et al., 2020).

Carcinogenic risk assessment

Generally, carcinogenic risk (CR) refers to the prob-
ability of developing any type of cancer over an 
individual lifetime due to carcinogenic exposure in 
the environment. Similarly, total carcinogenic risks 
(TCR) are obtained by summing the individual can-
cer risks across all carcinogens and/or exposure 
pathways, as follows:

where  SFi represents the cancer slope factor of the 
element under different exposure pathways [(kg·day)/
mg], and the values of SF and RfD from the literature 
are shown in Table S4. Generally, the tolerable level 
of carcinogenic risk ranges from 1 ×  10–6 to 1 ×  10–4, 
whereas TCR less than 1 ×  10–6 is considered a neg-
ligible risk. If the values of TCR exceed 1 ×  10–4, the 
level of carcinogenic risk is high and poses potential 
threat to human (Chen et  al., 2015; Li et  al., 2014). 
The values of RfD and SF for different HMs are 
shown in Table S4.

Source‑oriented HRA

The contribution of different sources to health risk 
was quantified by combining the PMF with HRA 

(10)HI =
∑

HQi =
∑ ADIi

RfDi

(11)CR = ADI × SF

(12)TCR =
∑

CRi =
∑

ADIi × SFi

model. The concentration  Ci of different HMs in 
Eqs. (7)–(9) was replaced by Cn

ki
 , as follows:

After that, the source-oriented HRA was repeated 
using Eqs. (10)–(12). Where Cn

k
 represents calculated 

contribution rate of heavy metal i at sample k origi-
nating from identified source n.

Results and discussion

Characteristics and distributions of HMs

The geochemical background values (GBVs) of soil 
environmental quality and the risk control standard 
values (RSVs) for soil contamination of agricultural 
land (GB 15,618—2018) were employed for con-
trastive analysis of the content and distribution char-
acteristics of HMs. The HMs in the topsoil samples 
vary greatly and were dependent upon land-use types 
(Table  1). Although the contents of HMs such as 
Cu, Cr, Pb, and Cd in a few mining waste residues 
were above the RSVs of corresponding soil qual-
ity standards, the HMs contents in most soil samples 
were lower (Table 1). However, with the exception of 
74.26% Cr and 64.36% As, the contents of Cu, Pb, Zn, 
Ni, Cd, and Hg in most samples were indeed greater 
than the GBVs (Table 1). Specifically, the exceeding 
rates of Pb (86.14%) and Cu (83.17%) were the high-
est, followed by Zn, Ni, Cd, and Hg (> 50%), imply-
ing that Cu and Pb may be the main contaminants.

Understanding the spatial distribution of HMs 
is helpful to uncover the source apportionment of 
HMs (Huang et al., 2021; Jin et al., 2019). The spa-
tial distribution of investigated HMs contents exhib-
ited regional differences (Fig. S1), which were likely 
affected by both natural and human causes. Samples 
with Cu contents exceeding the RSVs were mainly 
distributed in the east and southeast of the study area 
(Fig. S1a). Samples with high Cu contents (1.5–two-
fold of GBVs) were found in the south and south-
west of the study area. In the same areas, there were 
samples with high Cr and Ni contents (exceeding the 
RSVs or twofold of GBVs) (Fig. S1d and S1e). Most 
samples also had high levels of Pb and Hg (exceeding 
twofold of GBVs) (Fig. S1b and S1h), and high Zn 

(13)Cn
ki
= Ci × Cn

k
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and Cd concentrations were observed in a few sam-
ples (Fig. S1c and S1f). Comparatively, irrespective 
of a few mining residues and farmland samples, As 
was much less abundant (Fig. S1d and S1g). In con-
trast, the content of HMs in the samples in the north 
mountain valleys of the study area had relatively low 
levels of HMs (Fig. S1).

On the whole, the distribution Cu, Pb, Zn, Ni, Cd, 
and Hg displayed a similar pattern, i.e., the piedmont 
sloping plain and valley in the south of the study area, 
in contrast with the lower values in mountain valleys 

in the northwest/northeast. Because the south area 
had intensive human activities, this result implied 
that their sources were likely associated with human 
activities. Relative to the topsoils, the maximum con-
tents of HMs in the mining waste or tailing/slag waste 
samples (MS) were higher than the GBVs and even 
several times greater than the RSVs (Table  1). The 
wastes in the mine tailings pond and concentrators 
could pose a threat to the surrounding pristine top-
soils, likely resulting in potential health risks to resi-
dents in the mining area.

Table 1  Heavy metal 
content statistics of soil 
samples in the study area 
(mg/kg)a

RF: Residential farmland 
soil; MF: Mining farmland 
soil; WG: Woodland and 
grassland soil; MS: Mining 
waste or tailing/slag 
waste soil; n: Number of 
observations; and Q1 and 
Q3 represent the upper and 
lower quartile, respectively
a Relative standard deviation
b Background values (Wei 
et al., 2019)
c Risk screening values 
from soil environmental 
quality risk control standard 
for soil contamination 
of agricultural land (GB 
15,618—2018) (Ministry of 
Ecology and Environment 
of P.R. China 2018)

Element Cu Pb Zn Cr Ni Cd As Hg Mn pH

RF (n = 67)
Min 13.1 14.1 31.5 25.7 11.5 0.08 0.55 0.01 420 7.13
Mean 32.84 38.56 78.96 61.59 29.45 0.19 9.05 0.1 733.13 8.92
Max 302 297 254 349 94.6 1.15 28.3 1.34 1600 9.74
Q1 (25%) 23 24.2 62.1 47.8 21.9 0.12 6.76 0.02 660 8.64
Median 27.2 26.9 71.1 58.7 29.5 0.15 8.55 0.03 700 8.92
Q3 (75%) 32.4 31.3 79.7 65.8 31.8 0.2 9.95 0.07 780 9.32
RSD 1.06 1.10 0.45 0.61 0.38 0.81 0.43 2.14 0.23 0.06
MF (n = 17)
Min 23.8 3.6 37.2 42.4 27.6 0.07 0.7 0.01 600 8.65
Mean 45.91 33.69 69.68 123.25 53.73 0.14 7.15 0.08 860 9.16
Max 119 108 113 448 142 0.27 14.8 0.32 1200 9.77
Q1 (25%) 29 23.7 56.4 60.9 29.8 0.11 2.75 0.01 690 8.93
Median 36.6 26.5 69.7 68.8 32.4 0.13 8.27 0.03 820 9.05
Q3 (75%) 51.4 39.8 74.9 107 69.8 0.17 10.2 0.05 940 9.52
RSD 0.59 0.83 0.30 0.96 0.66 0.36 0.59 1.37 0.24 0.04
WG (n = 7)
Min 20.4 19.8 57.6 42.8 21.9 0.09 6.48 0.01 530 7.03
Mean 24.96 26.73 61.64 53.01 26.56 0.12 7.76 0.06 648.57 9.12
Max 29.8 32.6 64.9 75.1 35.4 0.15 9.38 0.2 760 9.71
Q1 (25%) 22.9 21.5 59 42.9 22.4 0.11 6.5 0.03 580 9.16
Median 23.4 27 62.6 49.6 26.5 0.12 7.44 0.04 650 9.52
Q3 (75%) 27.8 30.7 63.7 59.2 30.1 0.14 9.13 0.06 740 9.62
RSD 0.13 0.17 0.04 0.22 0.18 0.17 0.16 1.06 0.13 0.10
MS (n = 10)
Min 7.83 2.44 28 11 5.68 0.071 0.12 0.0047 460 7.95
Mean 227.83 57.86 372.84 206.48 66.18 2.49 6.65 0.01 1058 9.38
Max 1030 417 3170 1060 202 23.9 48 0.031 1900 9.76
Q1 (25%) 44.6 5.11 40.4 45.4 17.8 0.082 0.75 0.006 960 9.39
Median 74 11.925 48.15 68.15 56.3 0.105 1.87 0.00945 1000 9.485
Q3 (75%) 326 39.8 93 232 98.5 0.16 4.84 0.014 1200 9.65
RSDa 1.42 2.21 2.64 1.54 0.92 3.02 2.20 0.75 0.38 0.06
BVb 22.19 20.68 67.34 68.33 28.47 0.13 9.15 0.024 618. 46 8.47
RSVc 100 170 300 250 190 0.6 20 1 -
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Pollution assessment of HMs

The contamination of topsoil samples ranged from 
the uncontaminated level to the extremely contami-
nated level, as determined by the classification of Igeo 
(Fig.  2a, Table  S1). Despite As and Ni, other HMs 
mostly exhibited levels of heavily contaminated or 
higher. In the cases of Zn, Cr, and Cd, the heavily 
contaminated samples appeared in the MS samples 
in the mining area. Generally, the contamination of 
HMs in topsoil displayed the order of Hg > Cu > Pb 
> Cd > Ni > Zn > Cr > As (Fig. S1). Distinct anthro-
pogenic activity intensity such as industrial produc-
tion, mining, and agricultural activities could have 
contributed to the soil contaminations (Chen et  al., 
2015, 2019; Marrugo-Negrete et  al., 2017; Wang 
et  al., 2019). Grassland (WG) samples appeared to 
be the least contaminated by HMs, i.e., the Igeo values 
were relatively lower than other land-use types. For 
the residential farmland (RF) samples, the Igeo values 
of Zn, Cd, Hg, Pb, and As were the highest, while the 

highest Igeo values for Cu, Ni, and Cr were observed 
in mine wastes (MS).

The EF of HMs ranged from the minimal enrich-
ment level to extremely high enrichment (Table  S1, 
Fig. 2b). Consistently, a majority of samples had sig-
nificant enrichment of Cu, Zn, Cd, and Hg, whereas 
only a few samples had significant enrichment of Ni, 
Pb, As, and Cr. Analogous to the Igeo, Hg was consid-
ered to be the most enriching parameter, and moder-
ate enrichment or above levels accounted for 25.74% 
of total samples (Fig. S3). In addition, the Pb and Cu 
samples at the similar level independently accounted 
for 14.85% and 9.9% of total samples, thereby they 
were also considered the prime contaminants in top-
soils. Comparatively, other HMs were mostly at the 
level of minimal enrichment or even lower. Among 
different land-use types, despite the MS samples, EF 
values of Zn, Cd, Hg, Pb, and As in RF samples were 
higher than the other two land-use types, also in line 
with the Igeo result. In contrast, the EF values of Cu, 
Ni, and Cr were the highest in MF samples located 

Fig. 2  Box diagrams of a Igeo and b EF in different sample types
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in mining farmland areas (Fig. 2b), and the high EF 
values of Hg in both WG and RF samples were also 
observed. The above results illustrated that the influ-
ence of anthropogenic activities on the accumula-
tion of HMs such as Hg, Cu, and Pb in the study area 
should be given prime attention.

Source investigation of HMs

Self‑organizing map (SOM) for source identification

Totally 54 (6 × 9) neurons and 4 clusters were selected 
according to Heuristic rules and the Davies–Boul-
din index (Fig. 3a). The samples in the same cluster 
likely had similar distributions of HMs; thus, these 
samples might have similar underlying sources. Each 
U-matrix map represented an index value obtained 
after dimension reduction, as marked by shades of 
blue to yellow (Lee et  al., 2019; Zhu et  al., 2020). 
The neurons with high values were shown in yellow, 
while the neurons with low values were indicated in 
blue (Fig. 3b). Afterward, informative and qualitative 
relations among the parameters including HMs and 

sample types were intuitively shown by comparing 
SOM graphs according to the color gradient.

The color change gradients of Cu, Cr, Ni, and Mn 
were similar, indicating that these HMs have positive 
inter-correlations (Fig.  3b). Similarly, Hg, Cd, Pb, 
and Zn had nearly consistent color change gradients, 
hinting that the possible factors affecting their con-
tents and distributions might be close. In contrast, As 
had a unique color change gradient, indicating that 
the factors affecting its distribution and source were 
different from those of other HMs. The D-matrix of 
SOM was then divided into three clusters, each of 
which likely represented different sources of HMs.

Cluster 1, characterized by the As (other met-
als did not fall within this area), was located on the 
left side of the D-matrix map in the SOM results. It 
was composed of approximately 75% topsoil sam-
ples in the study area. However, except for a few 
samples, the content of As in the topsoil samples 
was low (Fig. S1g) as also evidenced by the low 
Igeo and EF values (Fig. 2). These topsoil samples 
were widely distributed in the study area (Fig. 
S4), suggesting that the source of As was possibly 

Fig. 3  a The SOM matrix map of topsoil samples: the clus-
tering pattern in the SOM, different colors represent differ-
ent clusters, and the number in a hexagon denotes the sample 
number. b The SOM visualization of corresponding variables. 

The blue and yellow colors correspond to low and high values, 
respectively, which can detect the correlation between vari-
ables
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affected by geogenic sources, e.g., the weathering 
of rocks or soil parent materials.

Cluster 2, characterized by Hg, Cd, Pb, and 
Zn, was located at the upper-right corner of the 
D-matrix. Totally 8 RF samples and 3 MF sam-
ples were scattered in the upper part of the alluvial 
plain in the southwestern mountain of the study 
area, and some of them were close to the MS sam-
ples (Fig. S4). Based on the results of Igeo and EF 
(Fig. 2), the distribution and sources of these HMs 
(cluster 2) would have been severely affected by 
anthropogenic activities, such as mining and agri-
cultural activities.

Cluster 3, characterized by Cu, Cr, Ni, and Mn, 
was located in the lower-right part of the D-matrix, 
including 7 MS, 5 MF, and 2 RF samples. The sam-
ples were mainly located near the mining region 
in the southeastern mountainous of the study area 
(Fig. S4), suggesting that these HMs in topsoil 
were potentially affected by mining activities.

Pearson correlation and PMF model

Comprehensive analysis using Pearson linear cor-
relation and the PMF 5.0 model was employed to 
investigate the potential sources of HMs (Fig.  4). 

Pearson correlation analysis was employed to ini-
tially determine the correlations in the pairwise 
comparisons of HMs in topsoil, revealing a poten-
tial common source or geochemical characteristics 
(Cheng et al., 2020; Huang et al., 2021; Zuo et al., 
2022). Then, the factor contributions and the cor-
relation coefficients of variables were correlated to 
verify the results of the PMF model (Huang et  al., 
2021; Mao et  al., 2023; Zuo et  al., 2022). Nine 
variables and 101 samples were selected to inves-
tigate the source of HMs and the amount of their 
contribution utilizing the PMF model. Consider-
ing the results of SOM, 3–6 factors were examined 
with 20 base runs in random seed mode to find 
the “optimal solution” (Cheng et  al., 2020; Zhang 
et al., 2018). Four factors (Fig. 4a) were determined 
based on the minimum and stable objective func-
tion Q, which was applied to ensure residual matrix 
E (Cheng et  al., 2020; Salim et  al., 2019; Zanotti 
et al., 2019). The signal-to-noise ratios (S/N) of all 
HMs were larger than 4, defined as “strong,” and 
the most regression coefficients (R2) between the 
observations and predictions were larger than 0.6. It 
indicated that the PMF was applicable to locate the 
source, and the results were reliable (Jiang et  al., 

Fig. 4   Source apportionment of HMs. a The contribution of 
each factor in the results of PMF model. b Factor profiles of 
HMs in different types of topsoil derived from PMF model. c 
The Pearson correlations between HMs and the relationships 

with different sources using PMF model. The correlation coef-
ficient was represented by color gradient in pairwise compari-
sons of HMs. Factor contribution in PMF model was related to 
each HMs
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2020; Mao et  al., 2023; Norris et  al., 2014; Salim 
et al., 2019).

Factor 1, accounting for 24.9% of the contribution 
rate (Fig. 4a), was mainly explained by As (75.91%, 
Fig. 6b), followed by Cu, Pb, Zn, Cr, and Mn (below 
30%) (Fig.  4c). As illustrated by Igeo, EF, and SOM 
results, the source of As could be recognized as geo-
genic. As and Cr are widely distributed in the earth’s 
crust (Facchinelli et al., 2001; Šajn et al., 2011) and 
might be associated with natural sources (Jin et  al., 
2019; Zhang et  al., 2018). Although the sources of 
Cu, Pb, Zn, and Cr were related to intense anthro-
pogenic activities in many environments (Cai et  al., 
2019; Marrugo-Negrete et  al., 2017), the metallo-
genic geological background conditions of the non-
ferrous mineral resources (mainly lead–zinc ore, with 
a few copper ore) in the study area could contribute to 
their enrichment. Thus, Factor 1 could represent the 
effect of some natural sources (e.g., the weathering 
of rocks or soil parent materials). However, we can-
not exclude the possibility that a few topsoil samples 
were influenced by both anthropogenic and geogenic 
inputs.

Factor 2, with 6.6% of the total contribution rate, 
was mainly associated with Hg (79.35%, Fig.  4b), 
followed by Pb (Fig. 4c). The previous studies have 
shown that Hg in the topsoils could harbor diverse 
sources, such as the mining and smelting of gold or 
mercury mines (Árvay et  al., 2017; Csavina et  al., 
2012), copper ore smelting (Tomiyasu et al., 2017; 
Xiao et  al., 2017), tailpipe or fossil fuel burning 
emissions (Jiang et  al., 2006; Pacyna et  al., 2010), 
and mercury pesticide or sludge fertilizer (Dong 
et  al., 2017; Huang et  al., 2021). The mine wastes 
(MS) had the lowest Igeo and EF values for Hg, 
indicating that mining activities were not the main 
source of Hg in topsoil. Because Hg was signifi-
cantly correlated with Pb (Fig.  4c), the sources of 
Hg and Pb might be similar. As a major marker to 
identify traffic sources, Pb particles emitted from 
vehicle exhaust will contaminate the soil with dust 
(Duzgoren-Aydin et al., 2004; Fei et al., 2022; Kadi, 
2009; Sun et  al., 2019). Moreover, the spatial dis-
tribution showed that samples with high Hg content 
were mainly distributed in areas with the high popu-
lation density and frequent anthropogenic activities 
(Fig. S1h). Therefore, Factor 2 might be interpreted 
as mixed sources caused by multi-anthropogenic 
factors.

Factor 3, accounting for a 22.6% contribu-
tion rate, was mainly characterized by Cd and Zn 
(~ 50%, Fig.  4b), followed by Pb, Mn, Cu, and Cr 
(Fig. 4c). Cd exists in phosphate fertilizer (Hu et al., 
2018; Nan et al., 2002; Nicholson et al., 2003), nor-
mally referred to the hallmark of agricultural prac-
tice (Baltas et  al., 2020; Sun et  al., 2013). The Zn 
and Cu were found in almost all agricultural inputs, 
including fertilizers, pesticides, fungicides, and 
manures (Li et  al., 2006; Marrugo-Negrete et  al., 
2017). As such, agricultural activities would be one 
of the main sources of Cd, Zn, and Cu (Hu et  al., 
2018; Lu et  al., 2012; Nogueirol et  al., 2010). As 
observed by the Igeo and EF results (Fig.  2), some 
farmland soils, e.g., RF samples, were replete with 
Cd and Zn. Meanwhile, the spatial distribution of 
Cd and Zn in topsoil in the study area also exerted 
similar distributions (Fig. S1c and S1f), and the 
contents of Cd and Zn were significantly correlated 
(Fig. 4c), thereby Factor 3 might be tightly related 
to agricultural activities.

Factor 4 with a contribution rate of 45.9% (Fig. 4a) 
was primarily characterized by Ni and Cr (~ 60%, 
Fig.  4b), followed by Cu and Mn (Fig.  4c). Gener-
ally, the earth’s crust parent materials and pedogen-
esis were considered to be the main sources of Cr, 
Ni, and Mn (Liu et al., 2020; Micó et al., 2006; Wang 
et  al., 2019). However, several studies have indi-
cated that Cr and Ni in topsoils were derived from 
industrial activities, including perennial mining, ore 
smelting, coal consumption, and steel production 
(Fei et  al., 2022; Li et  al., 2014; Yang et  al., 2018). 
Meanwhile, iron ore, chromite, gold, and other min-
ing activities were also potential sources of Cr and Ni 
in soils (Luo et al., 2010; Xue et al., 2000). The Cu, 
which contributed 45.86% in Factor 4, may be related 
to the smelting and processing of metals (Liu et  al., 
2020). Moreover, Cr and Ni were significantly cor-
related (p < 0.05), and Cu was also correlated with 
Ni. Furthermore, Cr, Ni, Cu, and Mn were negatively 
correlated with As that was initially determined as a 
geogenic product (Fig. 4c). Because the MF and MS 
samples located in the mining areas had high Igeo and 
EF values of Cr, Ni, and Cu (Fig. 2; Fig. S1), this fac-
tor would be assigned to mining activities.
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Potential ecological risks assessment

The above analyses suggested that the HMs con-
tamination potentially posed threats to local human 
health. The Er values of Hg and Cd in the RF and 
MF were relatively higher than those of other HMs 
(Fig. 5a). Approximately 61.19% of Hg and 32.84% 
of Cd in the RF samples were at the moderate-risk 
level or higher, and 2.99% of Pb and 1.49% of Cu 
samples were at the same level. In addition, 41.18% 
of Hg and 23.53% of Cd in the MF samples were 
at a moderate-risk level or higher. Among them, 
the very-high-risk level (Er > 320) was found in 
both MF and RF samples. The Er values of Hg in 
the WG samples at the moderate-risk level or higher 

were up to 85.71%. To sum up, the potential eco-
logical risk in the study area was mainly caused by 
Hg, followed by Cd.

For the total ecological risks, 62.69% of RF, 
52.94% of MF, 71.43% of WG, and 50% of MS sam-
ples presented a moderate-risk level or higher accord-
ing to the classification of RI (Fig. 5b, Table S2). In 
particular, 7 samples in RF and 3 samples in MF were 
at quite a strong risk level, and even 2 RF samples and 
1 MS sample showed extremely strong risk. Hence, 
the potential ecological risks of HMs decreased in 
the order of RF > MF > WG > MS. Due to the high 
ecotoxicity, HMs can still pose high ecological risks 
even at a low contamination level (Chen et al., 2019; 
Huang et al., 2021; Li et al., 2021). According to the 

Fig. 5  Statistical analysis of Er and RI for HMs in topsoil samples
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Er values of HMs, potential ecological risks were 
mainly caused by Hg and Cd.

Probabilistic health risks assessment

Except for two Pb samples for children, the maxi-
mum non-carcinogenic hazard quotient (HQ) of HMs 
(Cu, Pb, Zn, Ni, Hg, and Mn) in the samples for both 
children and adults in each land-use type showed an 
acceptable risk level (< 1) (Fig. S5). Additionally, the 
non-carcinogenic hazard index (HI) values of only 
3 topsoil samples for children were greater than the 
unacceptable risk level (> 1) (Fig. S5a). Moreover, all 
samples for adults posed negligible health risks (Fig. 
S5b). Nonetheless, the HI values for children were 
higher than that for adults, ranging from 0.364 to 
0.488, close to the unacceptable risk level (Table S5), 

in line with the previous studies (Huang et al., 2021; 
Long et al., 2021). As such, the non-carcinogenic risk 
for children generated by Pb, particularly in the area 
with frequent anthropogenic activities should be paid 
close attention.

The potential carcinogenic hazards to both chil-
dren and adults caused by Cd, As, and Cr had high 
levels of risk (CR >  10–6) (Fig.  6). The overall CR 
followed the order: Cr > As > Cd. Cr had the highest 
potential carcinogenic health risk level for both chil-
dren and adults, especially in MF samples (Fig.  6). 
Cr (VI), classified as class A carcinogen (Park et al. 
2004; WHO 2017), is a known source of carcinogens 
and toxicity and has been identified as a cause of 
gastric, liver, lung, oral, kidney, and urinary cancers 
(Tseng et al., 2018; Huang et al., 2021; Zhang et al., 
2021). Meanwhile, the carcinogenic risk level caused 

Fig. 6  Box diagram of carcinogenic risk value of HMs in topsoil samples: a and b represent the carcinogenic risk for children and 
adults of each land-use type
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by As was the second highest, while the level of Cd 
was the lowest (was tolerable or close to accept-
able, CR <  10–6) irrespective of some RF samples. As 
can lead to chronic arsenic poisoning (WHO, 2017, 
2020). Although the contaminations of Cr, As, and 
Cd were insignificant (Fig.  2), these HMs still pose 
significant carcinogenic hazards to both children and 
adults. The Pb and Ni were also classified as carcino-
genic indicators by the  IARC (2023) and WHO, but 
their carcinogenic risks were negligible (CR <  10–6).

The health risks of HMs under different land-
use types are shown in Table S5. The overall total 
carcinogenic risk level (TCR) of the land-use type 
followed the order: MS > MF > RF > WG, sug-
gesting that the mining activities could result in 
health risks to the surrounding soils. The TCR of 
the HMs for children was greater than the negligi-
ble level (<  10–6), and 8 topsoil samples exceeded 

the unacceptable risk values. The TCR of the HMs 
for adults was lower than that for children. The 
results of source-oriented HRA revealed that natu-
ral sources, mining activities, and natural sources 
should collectively cause significant impacts on 
the production of human health risks (Fig.  7). In 
addition to the natural sources, more proportion of 
agricultural activities contributed to the non-carci-
nogenic risk, whereas mining activities were more 
relevant to the carcinogenic risk. Consequently, 
when analyzing the comprehensive health risk 
assessment, especially for children, the potential 
carcinogenic health risks caused by exposure to Cr, 
As, and Cd should not be ignored. Therefore, tar-
geted risk management and remediation strategies 
and actions must be implemented to avoid long-last-
ing health impacts on local ecology and residents 
(Zhang et al., 2021; Zhang et al., 2022).

Fig. 7  Conceptual scheme of PMF results (illustrating the different sources of contamination) and the corresponding health risks 
(non-carcinogenic risk and carcinogenic risk)
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Conclusion

The spatial distribution of the investigated HMs con-
tents in the topsoil exhibited regional differences. The 
topsoil samples in the study area were largely con-
taminated with Hg and Cu as a result of the influences 
of anthropogenic activities. Comprehensive analy-
sis combining with SOM method, PMF model, and 
Pearson correlation analysis suggested that the natu-
ral, mixed, agricultural, and mining sources were the 
pivotal driving forces for the accumulation of HMs, 
whereas mining activities accounted for the highest 
proportion among the four sources due to the long-
term mining history. Owing to the high ecotoxicity, 
HMs can pose high ecological risks even at the low 
contamination level. The potential ecological risk in 
the study area was mainly caused by Hg, followed by 
Cd. As compared to the limited non-carcinogenic risk 
caused by agriculture activities, the potential carcino-
genic health risks caused by mining activities should 
be monitored.
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