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into “excellent water” for drinking purpose based on 
Entropy-weighted water quality index. Thereafter by 
principal component analysis, three potential sources 
of trace elements were extracted, including natu-
ral, anthropogenic, and mining activities. It is worth 
noting that geotherm and mining exploitation does 
not threaten drinking water safety. Finally, health 
risks were assessed using Monte Carlo technique. 
We found that the 95th percentiles of hazard index 
are 1.80, 0.80, and 0.79 for children, teenagers, and 
adults, indicating a non-carcinogenic risk for children, 
but no risks for the latter two age groups. In contrast, 
the probabilities of unacceptable cautionary risk are 
7.15, 2.95 and 0.69% through exposure to Cr, Ni, As, 
and Cd for adults, children, and teenagers. Sensitivity 
analyses reveal As concentration and ingestion rate 

Abstract  Due to the lack of monitoring systems 
and water purification facilities, residents in western 
China may face the risk of drinking water pollution. 
Therefore, 673 samples were collected from Lhasa’s 
agricultural and pastoral areas to reveal the status 
quo of drinking water. We used inductively coupled 
plasma-mass spectrometry to determine trace ele-
ments concentrations for water quality appraisal, 
source apportionment, and health risk assessment. 
The results indicate that concentrations of V, Cr, 
Mn, Fe, Co, Ni, Cu, Zn, Cd, Ba, and Pb are below 
the guidelines, while As concentrations in a few sam-
ples exceed the standard. All samples were classified 
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are most influential factors to health risk. Hence, local 
governments should pay more attention to monitoring 
and removal of As in the drinking water.

Keywords  Drinking water · Trace elements · 
Source apportionment · Probabilistic health risk · 
Monte Carlo simulation · Contamination control

Introduction

The drinking water resource is a basis for human sur-
vival and development. However, with the population 
growth and extension of anthropogenic activities, the 
drinking water is polluted widely (Islam et al., 2015; 
Li et  al., 2011). Among these pollutants in drinking 
water, trace elements cannot be ignored due to their 
high toxicity, long persistence, and bioaccumulation 
potential (Canpolat et  al., 2020; Tudi et  al., 2019). 
Although at low concentrations (Xie et  al., 2019), 
trace elements in aquatic ecosystems play an impor-
tant role for human health. Cu, Zn, Mo, Se are essen-
tial elements for human life (Ćurković et  al., 2016), 
but excessive ingestion of them is harmful (Lu et al., 
2015), whereas some other trace elements may pose 
seriously adverse health effects at a low content. For 
instance, kidney, nervous and hematopoietic system, 
respiratory tract and skin will be damaged by exces-
sive exposure to Cd, Pb, and Cr (Cao et  al., 2019; 
Panhwar et  al., 2016). Ingestion of Ba may cause 
hypertension (Phan et  al., 2013). What is worse, 
exposure to high levels of As was confirmed to cause 
different kinds of diseases, including hypertension, 
cerebrovascular disease, skin lesions, stillbirth, spon-
taneous abortion, cancers, and so on (Islam et  al., 
2012; Smith & Steinmaus, 2009; Wu et  al., 2012). 
In particular, the people in developing countries are 
facing more threats by exposure to trace elements in 
drinking water, due to the lack of monitoring systems 
and the proper treatments.

In China, it was reported that more than 200 
million people are still using unsafe water (Gao 
et  al., 2019; Qiu, 2009). It is estimated that every 
year 190 million people in China fall ill and 60,000 
people die from diseases caused by water pollu-
tion such as liver and gastric cancers (Qiu, 2011). 
So that it is urgent to conduct studies on drinking 
water safety nationwide. In recent years, studies 
on drinking water were carried out in major river 

basins in China, including the Yangtze River Basin 
(Gu et  al., 2020; Liang et  al., 2018), Yellow River 
Basin (Li et al., 2014), Hai River Basin (Gao et al., 
2019), Huai River Basin (Qiu et  al., 2021; Wang 
et  al., 2017), Pearl River Basin (Liu et  al., 2017), 
etc. These studies focused on the drinking water 
quality appraisal, pollutant sources apportionment, 
and potential health risk assessment. Overall, the 
water quality in northern China is worse than that 
in southern China and arsenic is the predominant 
contaminant (Xiao et  al., 2019). These results are 
the basis for local drinking water management and 
water resources utilization. However, the previous 
studies are mainly concerned with high-density 
population and developed areas in eastern China 
while those in the western regions are still very 
scarce.

Lhasa is the most developed city of Tibet; it is 
relatively isolated from other districts and is usu-
ally considered to be less disturbed by humans due 
to its high elevation and harsh climate conditions 
(Dai et  al., 2019). However, the rapidly growing 
economy and human development have induced 
some disturbance on the local environment, espe-
cially on the surface water quality (Huang et  al., 
2010; Li et al., 2013; Mao et al., 2019). In the agri-
cultural and pastoral areas of Lhasa, drinking water 
is mainly from surface rivers (Ye et al., 2016), trace 
elements in water may threaten human health for 
lack of proper treatments. To our best knowledge, 
there is no comprehensive research on the drinking 
water of Lhasa. Trace elements in drinking water 
have an influence not only on local residents but 
also on more populations downstream at home and 
abroad. Thus 673 drinking water samples in agri-
cultural and pastoral areas of Lhasa were collected 
to (1) determine the trace elements concentrations 
in drinking water of Lhasa, including V, Cr, Mn, 
Fe, Co, Ni, Cu, Zn, As, Cd, Ba, and Pb; (2) evalu-
ate the suitability of drinking water in Lhasa based 
on Entropy-weighted water quality index (EWQI); 
(3) use multivariate statistical methods to analyze 
the potential sources of trace elements in drinking 
water; and (4) perform a probabilistic health risk 
assessment with Monte Carlo simulation, finding 
out most contributing factors. Results of this study 
can provide a prior understanding of trace elements 
in the drinking water, which is essential for contam-
ination monitoring and removal in the future.
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Materials and methods

Study area

The study area (Fig. 1) is the agricultural and pasto-
ral areas of Lhasa (excluding Chengguan District), 
covering an area of 31,662 km2 (89°44′-92°38’ E, 
29°14′-31°3′ N), with the highest population density 
and industrial activity intensity in the Tibet Autono-
mous Region. Lhasa is one of the highest cities in 
the world, with an average elevation of 3650 m. The 
terrain is high in the north and low in the south. The 
middle and south regions are the valley plains of the 
Lhasa River, a main tributary of the Yarlung Zangbo 
River.

The study area belongs to the semi-arid mon-
soon climate, with an average annual precipitation of 
530 mm, most of which occurs during the monsoon 
period from June to September (Peng et  al., 2015). 
In the study area, the Lhasa River is the main stream. 
It originates from the Nyenqintangula Mountains on 

the Qinghai-Tibet Plateau, extending from northeast 
to southwest and eventually flowing into the Yarlung 
Zangbo River. Residents are mainly distributed along 
the Lhasa River and its five tributaries (Lhachu, Raz-
heng Tsangpo, Xuerong Tsangpo, Meldromarchu, 
and Tölungchu), where high intensity industrial and 
agricultural activities occupy, such as manufacturing, 
service industry, mining, and geothermal exploitation 
(Zhang et  al., 2018). In particular, the Gyama Val-
ley, the Yangbajain and the Yangyi geothermal plants 
have great potential for exploration (Wang et  al., 
2020; Ying et al., 2014), which might affect drinking 
water safety. Moreover, residents mainly drink sur-
face water lacking proper treatments, so the matter of 
drinking water safety should be focused on.

Sampling and analysis

According to the standard inspection method for 
drinking water (GB/T 5750.2-2006), we collected 673 
drinking water samples from households. Meanwhile, 

Fig. 1   Location of the study area and sampling sites
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a portable GPS was used to record the coordinate 
information of the sampling sites. After collection, 
the water samples were filtered through 0.45  μm 
cellulose acetate membrane (Whatman GmbH, Ger-
many) and stored in 1-L polyethylene bottles, which 
were pretreated with high-density nitric acid (Pesti-
cide residue grade, Germany MERCK) and ultra-pure 
water (18.5  MΩ). Afterward, the filtered samples 
were acidified (nitric acid 65% Suprapure® MERCK, 
Germany) to pH < 2 in suit and stored at 4  °C, pre-
venting any aging and pollution during transportation 
and storage.

Subsequently, the samples were sent to the Insti-
tute of Tibetan Plateau Research for laboratory 
analysis. The concentrations of trace elements were 
determined by inductively coupled plasma-mass spec-
trometry (ICP-MS; X-7 Thermo Elemental, USA). 
Each sample was measured twice in parallel, and the 
relative standard deviations (RSD) of trace elements 
were lower than 5%.

Entropy‑weighted water quality index

Water quality index was proposed by the National 
Health Foundation of the United States in 2017, cur-
rently being applied worldwide (Meng et  al., 2016; 
Sener et al., 2017). It is an indicator for measuring the 
comprehensive impact of various pollutants on water 
quality and reflecting the overall status of water qual-
ity. The key of the water quality index calculation is 
to determine the weight of every pollutant. Herein, 
the principle of information entropy was adopted to 
determine the weights for eliminating the subjective 
effects (Wang & Li, 2022; Zhang et al., 2021). EWQI 
is calculated by four steps:

(1)	 Construction of eigenvalue matrix X. In Eq. (1), 
the matrix X contains the information of samples 
number and elements types:

where, m, n equal 673 and 12, respectively.
(2)	 Calculation of standard-grade matrix. Y is trans-

formed from X by normalization. To eliminate 
the effect of dimension quantity grade of water 

(1)X =
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quality variables, the normalization can be per-
formed by Eqs. (3) and (4):

xijmax
 , xijmin

 is the maximum and minimum concentra-
tion, respectively.
Equation (4)was selected here.
(3)	 Calculation of information entropy “ ej ” and 

entropy weight “wj”, according to Eqs. (5), (6), 
and (7):

�where, Pij is the index j value for sample i.
(4)	 Obtain the EWQI value using Eqs. (8), (9):

where, Cj is the concentration of ith element; Si is 
drinking water guidelines in China.

Statistical analysis

By using principal component analysis (PCA), inter-
relationships between various indexes are considered, 
with which multivariate indicators are converted into a 
few unrelated comprehensive indicators through a lin-
ear transformation. Thus we can obtain dimensionality 
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1 − ej∑n

i=1
(1 − ej)

(8)qj =
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× 100

(9)EWQI =

n∑
j=1

(wj × qj)
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reduction in multivariate data without information loss 
(Borůvka et al., 2005; Wu et al., 2009). For water qual-
ity analysis, this method is mainly used to extract pol-
lution factors and identify major sources of pollutions 
(Pekey et al., 2004).

PCA was performed in the Statistical Software Pack-
age SPSS (Version26.0) for Windows. Primarily, Kai-
ser–Meyer–Olkin (KMO) and Bartlett’s sphericity test 
were applied to judge the suitability of the dataset for 
PCA. It is feasible to run PCA when the value of KMO 
test is greater than 0.5 and the significance of Bartlett’s 
sphericity test is less than 0.05. The appropriate number 
of principal components is determined by filtrating the 
eigenvalues and the cumulative contribution of princi-
pal components.

Health risk assessment

We adopted the health risk assessment model recom-
mended by the United States Environmental Protec-
tion Agency (US EPA). This model is widely used for 
evaluating current and future health risks of pollutants 
in drinking water to the exposed population (Jafarzadeh 
et al., 2022; Zhang et al., 2017). Oral intake, air inha-
lation, and skin contact are considered as three main 
pathways through which pollutants pose a health risk to 
the human body. It was reported that the intake dose of 
pollutants through the first pathway is higher (Hossain 
& Patra, 2020; Ijumulana et al., 2020). Thereafter, chil-
dren, teenagers and adults were separated to assess the 
health risk through exposure to trace elements in drink-
ing water. According to the risk assessment manual of 
the US EPA, the exposure dose (ADD) was calculated 
using Eq. (10):

Thereafter, the health risk was evaluated based on 
ADD. Hazard index (HI) and hazard quotient ( HQ ) are 
used to characterize the potential non-carcinogenic risk 
(NCR). Where HQi and HI represent the NCR of the 
ith element and the total, respectively. The calculation 
equations are as follows:

(10)ADD =
Cw × IR × EF × ED

BW × AT

(11)HQ =
ADD

RfD

(12)HI = HQ
1
+ HQ

2
+⋯ + HQi

The carcinogenic risk (CR) is the possibility of 
cancer risk over a lifetime period due to exposure to 
the trace elements, by using Eq. (13):

All above input parameters were summarized in 
Table 1 and Table S1.

Probabilistic risk modeling and sensitivity analysis

High uncertainties remain during the health risk 
assessment when the deterministic method is adopted 
(Zhang et  al., 2017). The input parameters of the 
health risk assessment model are all single-point 
values, which often take the upper limit of the pos-
sible range, leading to the conservatism and uncer-
tainty of the model (Kaur et al., 2020). To overcome 
this matter, Monte Carlo simulation technique was 
introduced, with which the exposure dose was calcu-
lated by repeated simulations from randomly chosen 
values within their range of variability (Glorennec 
et  al., 2007). The simulation was performed using 
Oracle Crystal Ball (Version 11) loaded in Microsoft 
Excel with 10,000 times running. Before running the 
model, we used the "Fit Distribution" tool to obtain 
the optimal concentration distribution of 12 trace 
elements. The other parameters were collected from 
previous studies. Meanwhile, sensitivity analysis was 
performed to further determine the most contributing 
variables to health risk assessment. All results were 
visualized by MATLAB and OriginPro software.

Results and discussion

Statistical characteristics of trace elements

The statistical results of 12 trace elements concen-
trations measured from 673 samples are shown in 
Table 1. The mean concentration of 12 trace elements 
are in the following order: Fe(64.12 μg/L) > Zn(23.3
8  μg/L) > Ba(14.71  μg/L) > Cu(12.48  μg/L) > As(2.1
4 μg/L) > Cr(1.67 μg/L) > Mn(1.31 μg/L) > V(0.74 μg
/L) > Ni(0.36  μg/L) > Pb(0.15  μg/L) > Co(0.04  μg/L) 
> Cd(0.02 μg/L). According to the classification prin-
ciple of Xiao et al. (2014), 12 were divided into three 
groups: (1) Dominant trace elements: Fe, Zn, Ba and 
Cu (> 10 μg/L); (2) Moderate trace elements: As, Cr, 

(13)CR = ADD × SF × 10
−3
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Mn, V, Ni and Pb (0.1 μg/L ~ 10 μg/L), and (3) Low 
trace elements: Co and Cd (< 0.1  μg/L). By com-
parison, the concentrations of trace elements in our 
study are lower than the other major rivers in China. 
The possible reason is less disturbance by anthropo-
genic activities in the study area than the other major 
basins, where the studies of water quality often focus 
on polluted regions such as industrial and agricul-
tural areas. However, the average concentrations of 
Cr, Cu, Zn, As, and Pb in this study are higher than 
the worldwide average (Gaillardet et al., 2014). These 
heavy metals are associated with human production 
and life, such as industry effluents and domestic sew-
age (Wang et al., 2017; Xiao et al., 2019), which sug-
gests that the local drinking water has been affected 
by social and economic activities to a certain extent. 
Of note, the peak value of As concentration is up to 
85.28  μg/L, which significantly exceeds the drink-
ing water standard value (WHO, 2011). Some recent 
studies indicated that the As concentration ranges 
from 1.0 to 257.6  μg/L in water of the southern 
Tibetan Plateau (Huang et al., 2011; Li et al., 2013). 
Therefore, the local government should pay attention 
to the monitoring and disposal of arsenic.

The higher the coefficient of variation, the more 
heterogeneous the spatial distribution of pollutants, 
which indicates the greater potential disturbance by 
human activities. Wilding (1985) proposed that the 
high, moderate and mild variation corresponded to 
CV > 36%, 36% > CV > 16% and CV < 16%. Thus, the 
concentrations of 12 TEs in the study area all belong 
to high variation, of which Cd, Pb, Zn, Mn, and Cu 
have the highest coefficients of variation. It is likely 
to be induced by human activities input and spatial 
heterogeneities of the natural environment.

Water quality appraisal

In the present study, water quality appraisal contains 
two aspects. Firstly, 12 trace elements concentra-
tions were compared with the standards of drinking 
water. As shown in Table  1, the mean values of all 
12 trace elements concentrations are within the stand-
ards. In addition, except for Zn, As and Pb, the peak 
concentrations of other trace elements are also lower 
than Chinese standard and WHO standard limits. Of 
note, the peak concentration of As is 8.5 times higher 
than the guideline (WHO, 2011), probably causing a 
threat to human health. It is worth noting that 23 out 

of 673 samples have excessive concentrations of As, 
which are located in Nyemo County (8), Damxung 
County (5), Dazi County (3), Lhunzhub County (3), 
Maizhokunggar County (2), and Quxur County (2). 
Previous studies proposed most high As concentra-
tions occur in the central and southern rivers of the 
Qinghai-Tibet Plateau (Guo et  al., 2009; Li et  al., 
2013), probably for the contributions of arsenic-rich 
soils and geothermal springs distributed in these 
regions (Huang et al., 2011; Li et al., 2013). In addi-
tion, anthropogenic activities may also contribute to 
As in water, including mining and smelting activi-
ties, the use of arsenical pesticides in agriculture, 
the discharge of domestic sewage and landfill (Gao 
et al., 2019; Mao et al., 2019; Qiong et al., 2019), etc. 
The implementation of environmental protection in 
Lhasa is backward, and there has been mixing drink-
ing water both for people and animals for a long time, 
which may cause drinking water pollution.

Secondly, we use EWQI to evaluate the quality 
status of drinking water comprehensively. Compared 
with the traditional method, EWQI weakens the 
comparison error because it has a robust and logical 
weighting technique (Amiri et al., 2014; Islam et al., 
2020). Gorgij et al. (2017) proposed that the physio-
chemical parameters with larger entropy weight due 
to the minimal information entropy value have greater 
impacts on general water quality. Table  S2 shows 
that the contributions of 12 trace elements on EWQI 
decrease in the order: Ni > Fe > V > Ba > Cr > Cu > A
s > Zn > Mn > Co > Cd > Pb. The box plot in Fig.  2a 
shows statistical values of EWQI for 7 counties in 
Lhasa. According to Meng et  al. (2016), the qual-
ity of drinking water was classified into five groups 
based on EWQI, from excellent to undrinkable grade. 
Hence, the water is suitable for drinking due to the 
mean values of EWQI being far less than 50. It was 
reported that the EWQI value of the southwest river 
basin in China is the smallest (Tong et  al., 2021), 
due to less disturbance by humans. In contrast, mean 
values in our study are little less than their results. A 
possible reason is that smaller weights were deter-
mined for As, Mn, and Pb as their greater information 
entropy in our study. Furthermore, IDW (Inverse Dis-
tance Weighting) method was applied in ArcGIS10.5 
to draw the spatial distribution map of EWQI in agri-
cultural and pastoral areas of Lhasa. Figure 2b shows 
that high EWQI is mainly distributed in the upper 
reaches of Laqu, the middle and lower reaches of the 
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Lhasa River. In particular, the higher EWQI appears 
in the northeast of Damxung County, so that drink-
ing water in this region should be considered in the 
future. The exploitation of safe drinking water sources 
and water quality monitoring equipment is necessary. 
To sum up, concentrations of trace elements in more 
than 96% of samples are within safety limits, suggest-
ing that the water in Lhasa’s agricultural and pastoral 
areas is suitable for drinking purposes. However, it is 
important to note that the effects of As on drinking 
water safety for residents cannot be ignored.

Source apportionment

Multivariate statistical analysis is often used to iden-
tify possible sources of pollutants (Pekey et al., 2004; 
Wu et  al., 2009). Herein, correlation analysis and 
principal component analysis (PCA) were used to 
identify the possible sources of trace elements in the 
drinking water of the study area.

Correlation analysis

A 2-tailed correlation analysis for 12 trace elements 
was performed. In Fig. 3, except for the pairs V–Ni, 
V–Ba, and Cr–Cd, the strong correlations (P ≤ 0.01) 
between each pair of trace elements, Cr, Mn, Fe, Co, 
Ni, Cu, Zn, are positive, extending from 0.085 to 
0.83. High correlation coefficients (r ≥ 0.30) are bold 
in the lower triangle area. For instance, correlation 

coefficients of the pairs Cr–Fe, Fe–Ni, Fe–Ba, and 
Co–Ni are 0.79, 0.83, 0.60, and 0.61, respectively. It 
was confirmed that trace elements with high correla-
tion coefficients might have a common source of ori-
gin and mutual dependence during transport (Suresh 
et al., 2011). So that Cr, Fe, Co, Ni, and Ba probably 
have common sources, whereas correlations of Zn, 
As, Cd, Pb with other trace elements are weaker, indi-
cating possibly from multiple sources (Kukrer et al., 
2014).

Principal component analysis

Previous studies proposed that the contents of trace 
elements in the Yarlung Tsangpo River basin var-
ied with the differences in the weathering of rocks, 
groundwater supply, rainwater, and human inputs (Qu 
et al., 2017; Tatsi et al., 2015). Thus PCA was carried 
out to identify the sources of trace elements in detail. 
To begin with, the raw data were log-transformed 
to obtain a normal-distribution dataset (Devic et  al., 
2014). Kaiser–Meyer–Olkin (KMO) value was 0.674 
and the significance level of Bartlett’s sphericity test 
was ≤ 0.01, suggesting the measured data were suit-
able for PCA (Varol, 2011). Three principal compo-
nents (PCs) (eigenvalue > 1) were extracted from 12 
trace elements, which were grouped in rotated space 
(Fig. 4).

Table  S3 shows 64.51% of the total variance is 
interpreted by three PCs. PC1 is heavily loaded with 

Fig. 2   Box plots of a EWQI and b mean EWQI value map of drinking water in seven counties of Lhasa
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Cr, Fe, Co, Ni, As, and Ba, accounting for 32.86% of 
the total variance. As mentioned earlier, mean con-
centrations of all trace elements are far lower than 
the safety limits, and concentrations of Co and Ni are 
lower than the worldwide average. Previous studies 
revealed water chemistry compositions of the Tibetan 
Plateau are mainly controlled by the bedrock and soil 
constituents (Huang et al., 2009). It was reported that 
Fe in the Niyang River mainly comes from the weath-
ering of chlorite and calcite (Wu et al., 2020). Co and 
Ni are siderophile elements, which are mainly from 
parent material weathering and the pedogenic process 
(Xiao et  al., 2019). It is confirmed by the high cor-
relation coefficients of the pairs of Fe–Co and Fe–Ni 
(Fig.  3). In addition, the samples near the Yangba-
jain and the Yangyi geothermal stations did not show 
higher As concentrations, indicating As loading in 
PC1 is more likely affected by arsenic-rich soils. 

Hence, PC1 is interpreted as natural sources, such as 
bedrock weathering, soil leaching, and atmospheric 
precipitation. Accounting for 16.56% of the total vari-
ance, PC2 is strongly loaded with Mn and Cu. While 
Co, Ni, Zn, and Cd are moderate loading factors in 
PC2. As is known, these trace metals are affected by 
human activities to a large extent, especially with 
Lhasa’s accelerated development (Huang et al., 2011). 
It was reported that Cu, Mn, and Zn are associated 
with industrial processes such as metallurgy, petro-
chemical plants, as well as domestic wastewater (Li 
et al., 2011; Vu et al., 2017). According to previous 
studies, Zn and Cd may originate from agricultural 
activities, such as the use of chemical fertilizers and 
pesticides (Ke et al., 2017; Wang et al., 2015). Hence 
we speculated that PC2 represents anthropogenic 
sources. 15.09% of the total variance is explained by 
PC3, in which Zn, Cd, and Pb have strong loading. 

Fig. 3   Correlation coefficient heat map of 12 trace elements in drinking water samples
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According to Huang et  al. (2010), the study area is 
rich in nonferrous mineral resources, such as Cu, Zn, 
Pb, etc. Mining is an important industry in Lhasa. A 
recent study suggested that mining production is a 
possible source of Pb in the Lhasa River (Mao et al., 
2019). At the same time, the higher measured values 
of Zn and Pb appeared close to the Gyama mining 
area. All of which supports that PC3 represents a min-
ing source.

Trace elements in the drinking water of the study 
area are mainly from natural sources, being affected 
by anthropogenic input and mining production to a 
lesser extent. The influence on the local environment 
caused by geothermal exploitation has been a concern 
for a long time, especially for the Yangbajain geother-
mal plant. Our results indicate there are no As excess 
risks in drinking water imposed by geothermal dis-
charge. On the one hand, during the exploitation of 
the Yangbajain geothermal power plant, much atten-
tion has been paid to the control of geothermal efflu-
ent recharge (An, 2017), which effectively decreases 
the discharge of geothermal wastewater. On the 
other hand, with the dilution and adsorption of riv-
erbed sediment downstream, most geothermal As 
can be removed from river water at a short distance 
away from the wastewater discharge sites (Guo et al., 
2015). Therefore, local geotherm exploitation has no 
adverse effects on drinking water downstream.

Probabilistic health risk assessment

Non‑carcinogenic risk assessment

By using Monte Carlo simulation technique, we eval-
uated the probabilistic health risk through exposure 
to 12 trace elements in drinking water of the study 
area for different populations (children, teenagers, 
and adults). Figure  5 shows the cumulative prob-
ability distribution of potential NCR. In total, the 
NCR of 12 trace elements decrease in the order: As 
> Cr > Mn > Cu > Co > V > Fe > Ba > Zn > Pb > Ni > 
Cd (Fig. S1). HQ < 1 represents there is no potential 
NCR to humans (Ravindra & Mor, 2019). In addi-
tion, the 95th percentile is usually selected to judge 
whether the health risk of trace elements exceeds the 
standard or not, aiming to avoid the effect of extreme 
values on the evaluation (Saha & Rahman, 2020). 
Figure S1 shows that the 95th percentile value range 
of HQ is 2.89E-03 ~ 8.61E-02, 1.30E-03 ~ 3.86E-02, 
and 1.22E-03 ~ 3.68E-02 for children, teenagers, and 
adults, respectively, except for As. So that the NCR 
imposed by the former 11 trace elements are within 
the safety threshold. The red color padded areas 
(Fig. S1) represent cautionary risk. For Mn and Cu, 
the probabilities of excessive NCR are rare, while 
As poses a high probability that NCR exceeds the 
safety threshold. The probabilities of excessive NCR 

Fig. 4   Principal component 
analysis of trace elements in 
drinking water samples: a 
screen plot and b compo-
nent plot in rotated space
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through exposure to As for children, teenagers, and 
adults are 9.53, 3.26, and 2.98%, respectively. HI is 
the sum of HQ of 12 trace elements (Fig. 5a). It can 
be seen that the 95th percentiles of HI for teenagers 
and adults are less than 1, whereas the value for chil-
dren is greater than 1. Thus there is no NCR for teen-
agers and adults, but excessive NCR for children. The 
probability of excessive NCR for children is 11.23%, 
of which As is the main contributor to HI value.

Meanwhile, the results reveal distinctions of 
NCR exist among different populations. The mean 
value range of HQ is 8.12E-04 ~ 4.40E-01, 3.69E-
04 ~ 1.97E-01, and 3.67E-04 ~ 1.96E-01 for children, 
teenagers, and adults, respectively. The potential 
NCR is highest in children, while those of teenag-
ers and adults are comparable, which is in line with 
previous studies (Jafarzadeh et al., 2022; Kaur et al., 
2020; Tong et  al., 2021). This might be associated 
with the lower body weights of children. Overall, 
there is a need to concentrate on NCR imposed by As.

Carcinogenic risk assessment

According to the NCR results, As was determined 
to estimate CR. In addition, Cr, Ni, and Cd are also 

considered to be elements with potential carcinogenic 
effects (Cao et  al., 2014). The cancer slope factors 
(SF, (kg∙d)/mg) of Cr, Ni, As, and Cd are 0.501, 1.7, 
1.5, and 0.63, respectively. The CR can be obtained 
by multiplying SF and ADD. Generally speaking, 
1.0E-06 is considered as the threshold of negligible 
risk (MEPRC, 2019). CR through exposure to these 
four trace elements are different, the mean values 
decrease in the order: As > Cr > Ni > Cd. For Cd, the 
95th percentile of CR falls into the negligible region 
(Fig. S2). While for Cr, Ni, and As, there are prob-
abilities of cautionary risk. Fortunately, there are no 
unacceptable risks for Cr and Ni.

Figure  6b shows that the CR imposed by As is 
significant. The unacceptable risk probabilities of 
As are 2.47% for children, 0.64% for teenagers, and 
5.61% for adults. Compared with Fig.  6a, As is the 
main contributor to the total carcinogenic risk, not 
only for high-value SF of As but also for its exces-
sive concentration (Huang et  al., 2008; Tian et  al., 
2016). If the deterministic method is used for calcula-
tion, when the CR of As reaches 1.0E-04, the corre-
sponding concentration of As is 11 μg/L for children, 
25 μg/L for teenagers, and 6 μg/L for adults. As above 
mentioned, the peak concentration of As in the study 

Fig. 5   The cumulative probability distribution of a total non-
carcinogenic risk, that is HI; and b non-carcinogenic risk of 
As. The blue and red, vertical, dashed line represents the mean 
value. The cumulative probability reaches 95% at the horizon-

tal dashed lines. The green, vertical, dashed line was omitted 
as the mean non-carcinogenic risks of teenagers and adults are 
very close
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area reached 85.28  μg/L, resulting in an inevitable 
probability of unacceptable risk, which may lead to 
lung, skin, kidney, and liver cancer in human beings 
(Cogliano et al., 2011). Especially for the susceptible 
children group, a previous study reported that expo-
sure to As is related to neurobehavioral defects dur-
ing the early years of life (Calatayud et  al., 2019). 
Further, the CR among the three age groups differs 
from the NCR results, decreasing in the order of 
adults, children, and teenagers. The CR imposed by 
four selected trace elements for adults is rough twice 
as much as children and four times as much as teen-
agers. This is possible because adults have a signifi-
cantly higher exposure duration than the other two 
populations, while children have lighter body weights 
than teenagers. Overall, As in drinking water of the 
study area has potential cancer risks, and adults are 
the most susceptible group.

Sensitivity analysis

To further determine the contribution of input vari-
ables on health risk calculation, sensitivity analyses 
based on Monte Carlo simulation results were per-
formed (Islam et al., 2020). For NCR, we only consid-
ered the sensitivity of As concentration and the rest 

parameters (Fig.  7a). It indicates Bw has a negative 
contribution to the NCR for three populations, but the 
contribution can be negligible, which is in line with 
the results of previous studies (Gao et al., 2019; Hos-
sain & Patra, 2020). It is worth noting that Bw has a 
more significant effect on NCR in the children group. 
By contrast, the other three parameters contribute pos-
itively to NCR, the sensitivities decrease in the order: 
C–As > IR > EF. Among them, As concentration is 
the most important parameter and its contribution 
reaches 80.05% for children, 83.35% for teenagers, 
and 89.84% for adults, respectively. In contrast, as for 
concentration adults are more sensitive, while for IR 
children are more sensitive. For TCR, Fig. 7b shows 
the sensitivity of each parameter decreasing in the 
order: C–As > IR > C–Cr > EF > C–Ni > Bw > C–Cd. 
Due to low contents, the contribution of Cd to TCR is 
negligible. In addition, similar to the results of NCR 
analysis, Bw is a variable with negative contribution; 
As concentration and ingestion rate are the primary 
factors affecting TCR, and the sensitivity of param-
eter C–As is more than 50% for three populations.

To sum up, concentration and IR are the most 
influential factors. The variation coefficient of As 
concentration measured in the study area is signifi-
cant, which may affect the precision of probabilistic 

Fig. 6   The cumulative probability distribution: a total carci-
nogenic risk and b carcinogenic risk of As. The red, blue and 
green, vertical, dashed line represents the mean value. And the 

gray, vertical, dashed lines represent the acceptable/unaccepta-
ble thresholds (1.0E-06/1.0E-04), respectively
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health risk assessment. Further studies should over-
come this problem by increasing the number of 
samples.

Conclusion

In this study, comprehensive analyses on trace ele-
ments in drinking water in the agricultural and 
pastoral areas of Lhasa were carried out. The main 

findings are as follows: (1) the water in the study 
area is suitable for drinking, as the mean concentra-
tions of 12 trace elements are within the guidelines 
and the values of EWQI are less than 50; (2) by 
combining correlation analysis with PCA, natural, 
anthropogenic and mining activities were identified 
as potential sources of trace elements in drinking 
water. The contribution of natural processes such as 
rock weathering and soil leaching is predominant, 
accounting for 32.86% of trace elements in drink-
ing water; (3) the probabilistic health risk assess-
ment using Monte Carlo technique shows there is 
no health risk through exposure to trace elements 
except for As. The probabilities of cautionary risk 
were attributed to excessive concentrations of As in 
a few samples, and (4) As concentration and inges-
tion rate are more sensitive to health risk outcomes 
for three populations.

Overall, our study provides a basic understanding 
of trace elements in drinking water in Lhasa’s agri-
cultural and pastoral areas for the first time, which 
is essential for the local drinking water management 
services. However, we acknowledge there are limi-
tations that we did not obtain the actual exposure 
parameters of the local residents. Since the proba-
bilistic health risk assessment considerably relies on 
input parameters, including concentrations of trace 
elements, body weight, ingestion rate, etc. Thus more 
precise input parameters of residents are needed to 
reduce the simulation bias. Meanwhile, temporal var-
iation of trace elements concentrations and drinking 
water intake can be considered in the future.
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