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investigations, activity concentrations of gamma-
emitting radioactive elements discovered in soils are 
higher than the global average crustal values, espe-
cially around mining activities. Adsorption technique 
is the most prevalent remedial method for decontami-
nating radiochemically polluted sites. However, there 
is a need to investigate integrated approaches/combi-
nation techniques. Although complete radionuclide 
decontamination utilizing the various technologies is 
feasible, future research should focus on cost-effec-
tiveness, waste minimization, sustainability, and rapid 
radionuclide decontamination. Radioactive materials 
can be harnessed as fuel for nuclear power generation 

Abstract  Several anthropogenic activities produce 
radioactive materials into the environment. Accord-
ing to reports, exposure to high concentrations of 
radioactive elements such as potassium (40K), ura-
nium (238U and 235U), and thorium (232Th) poses seri-
ous health concerns. The scarcity of reviews address-
ing the occurrence/sources, distribution, and remedial 
solutions of radioactive contamination in the ecosys-
tems has fueled data collection for this bibliometric 
survey. In rivers and potable water, reports show 
that several parts of Europe and Asia have recorded 
radionuclide concentrations much higher than the 
permissible level of 1  Bq/L. According to various 
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to meet worldwide energy demand. However, proper 
infrastructure must be put in place to prevent cata-
strophic disasters.

Keywords  Environment

Nuclear power · Radioactive waste · 
Radionuclides · Remediation

Introduction

Radioactive wastes are generated from nuclear 
reactions, nuclear power generation, mining 
activities, and nuclear by-products from medicine and 
scientific research (Adebiyi et al., 2021; IAEA, 2019; 
Noor et  al., 2020). There is a massive surge in the 
production capacity of industries around the globe; 
improvements from 1.2 billion tons to 2.3 billion tons 
between the years 2000 and 2017 have been reported 
(Sanganyado, 2021). With the increase in world 
population and exponential growth in the number of 
industries, there is a growing demand for power to 
drive industrialization, and nuclear energy has been 
explored as an alternative (IAEA, 2022a; Rypkema, 
2018; Uhunamure et al., 2021).

Radioactive waste can be defined as substances 
that are made or polluted with radionuclides/
radioisotopes at concentrations or activities higher 
than established permissible levels by regulatory 
authorities (UNSCEAR, 2008; WHO, 2016). The 
higher the radionuclide activity concentration, the 
greater the risk posed by radioactive waste to humans 
and the environment. Human acute/chronic radiation 
exposure may lead to cell damage, skin burns, cancer, 
respiratory diseases, and death (L’Annunziata, 2016; 
WHO, 2016). Radon inhalation has been associated 
with lung cancer, which can also be caused by 
smoking (Ilori & Chetty, 2020). At various biological 
scales, harmful effects of radiation exposure on 
wildlife have been documented (Kesäniemi et  al., 
2019). These include biodiversity loss, decreased 
sperm motility and reproductive problems in animals 
and humans, cellular damage from DNA distortion, 
chromosomal abnormalities, oxidative stress and 
mutation, and fatalities of both humans and animals 
(Sia et  al., 2020). Due to these adverse effects, the 

management of radioactive wastes became vital for 
health and environmental safety.

Due to scientific advancements, most nuclear/
radioactive wastes emanate from nuclear power 
plants used for energy production and ammunition 
manufacturing operations, while the contribution of 
naturally occurring radioactive materials cannot be 
ruled out (Adebiyi et  al., 2021; IAEA, 2019;  Khan 
et  al., 2019). In terms of the volume of radioactive 
waste in existence, 95% is very low-level or low-level 
radioactivity, 4% has intermediate-level radioactivity, 
and high-level waste is less than 1% (IAEA, 2022b). 
Improper handling of radioactive wastes/radiochemicals 
and accidental release of technologically enhanced 
naturally occurring radioactive materials (TENORMs) 
have resulted in environmental pollution/contamination. 
Radioactive contamination and high activity have been 
reported in different environmental compartments 
such as water, soil, and atmosphere, and this has raised 
enormous public health concerns (Adeola et al., 2021a; 
Akingboye et  al., 2021, 2022; Momoh et  al., 2020). 
The public health impact of improper radioactive 
waste management is experienced in both developed 
and developing countries (Adebiyi et al., 2021; Jasaitis 
et al., 2020; Kumar et al., 2022).

Furthermore, there is a need for global safety 
awareness on the handling and disposal of hazardous 
radioactive materials, and the need to establish better 
radioactive waste management programs. The occur-
rence and ecotoxicology of radioactive elements in 
the terrestrial and aquatic environments have been the 
subject of recent scientific research (Adebiyi et  al., 
2021; Ajibola et  al., 2021; Akingboye et  al., 2022; 
Bodunrin et  al., 2021; Jasaitis et  al., 2020; Kang 
et  al., 2020; Tochaikul et  al., 2022; van Hullebusch 
et  al., 2005). However, extensive literature revealed 
that there is a paucity of systematic reviews focused 
on environmental occurrence, remediation toward 
ensuring environmental protection, public health 
safety, and sustainable power generation.

Therefore, the article comprehensively reports 
the environmental occurrence of radionuclide 
contamination (NORMs & TENORMs), sources, 
classes, and handling specification of radioactive 
waste; remediation technologies for radionuclide 
decontamination, and highlights challenges and 
prospects in the management of radionuclide 
pollution.
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Classification of radioactive waste and sources 
of radionuclide contamination

Radioactive has been classified based on the decay 
time (half-live) and level of radioactivity. These 
attributes majorly determine the best form of treat-
ment, storage, and/or disposal (Petrangeli, 2020). 
Radioactive waste has been classified into three broad 
categories, high-level, intermediate, and low-level; 
however, the International Atomic Energy Agency 
reported a broader classification (Fig.  1). These 
classifications are based on the amount of activity/
radionuclide concentrations exhibited per volume of 
radioactive waste. Long-term containment for many 
years is a precautionary approach to handling radio-
active wastes, as they cannot be neutralized like other 
hazardous waste (IAEA, 2022a; Rosenfeld & Feng, 
2011). Due to the long decay time of radioactive 
wastes, they are stored to prevent radiation exposure 
to humans. High-level radioactive wastes are stored 
for a longer period (> 50 years), than low-level radio-
active wastes before being disposed (Tochaikul et al., 
2022; WNA, 2020).

Radioactive materials have found various 
applications such as in medicine (for diagnosis 

and radiotherapy of health problems, i.e., 
hyperthyroidism, tumor, cancer, etc.), agriculture 
(radiological enhancement of crop yields), nuclear 
power production (for making nuclear reactors, fuels, 
and power plants), nuclear weapons, archaeology 
(carbon dating and estimating the age ancient 
materials), radio-sensors development, and other 
applications (Chao et  al., 2018; Jeon, 2019; Pucci 
et al., 2019; Rosenfeld & Feng, 2011). The utilization 
of radionuclides for diagnostic and therapeutic 
purposes has improved the quality of life, especially 
with regard to the detection and treatment of tumors 
and cancerous growth. However, patient urine 
and excrement or hospital liquid waste discharge 
might release these radionuclides into the soil, 
surface waters, or wastewater collecting systems. 
Additionally, many nations have approved laws 
allowing hospitals to discharge their liquid waste 
directly into the central wastewater collecting system, 
opening more pathways to radiation or accidental 
radionuclide hazards (Hossain, 2020). The collection 
system for these radionuclides could deteriorate, 
causing leaks that would release radioactive materials 
into the soil, the atmosphere, or sources of drinkable 

Fig. 1   International 
Atomic Energy Agency 
classification of radioactive 
waste (https://​www-​pub.​
iaea.​org/​MTCD/​Publi​catio​
ns/​PDF/​Pub14​19_​web.​pdf)

https://www-pub.iaea.org/MTCD/Publications/PDF/Pub1419_web.pdf
https://www-pub.iaea.org/MTCD/Publications/PDF/Pub1419_web.pdf
https://www-pub.iaea.org/MTCD/Publications/PDF/Pub1419_web.pdf
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water from other point or non-point sources of 
radionuclides.

The annual background radiation dose people 
are exposed to is primarily caused by NORMs and 
is frequently within permissible levels. Accidental 
radionuclide releases and the by-products of 
their decay caused by mining operations, nuclear 
explosions, and natural disasters often have an acute 
effect, such as death from exposure to high radiation 
doses in a short amount of time. Several fatal accidents 
and radiation incidents have occurred around the 
World, notably the Three Mile Island accident (1979), 
the Chornobyl disaster (1986), and Fukushima 
Daiichi nuclear disaster (2011) (Hossain, 2020). 
Therefore, strict and effective treatment methods 
are sacrosanct to prevent the accidental release of 
radionuclides/radioisotopes in the environment from 
those plants. Groundwater around the Chernobyl NPP 
(ChNNP) Sarcophagus was severely polluted after the 
Chernobyl accident by 137Cs (highest concentration 
was 50  MBq/L), 134Cs, 131I, 90Sr, 239Pu, 240Pu, 
106Ru, and 241Am. 137Cs, 90Sr, 239Pu, and 240Pu had 
maximum groundwater concentrations of 200, 3800, 
7, and 7 Bq/L, respectively, as of 2001. Radioisotope 
fallout, discharge of highly contaminated wastewater, 
damage to the Sarcophagus, and cooling pond of 
ChNNP were the leading causes of radionuclide 
pollution (Bugai, 2014). However, the extent of geo-
distribution and the fate of the radionuclides in that 
area are still relatively unknown.

Coal contains uranium, thorium, potassium-40, 
and the by-products of their decay (WNA, 2020). 
Depending on the geochemical nature of the source 
of the coal, the total concentrations of radionuclides 
usually are not high. They are generally comparable 
to those found in rocks close to coal. Higher sulfur 
content and other heavy metals are frequently linked 
to increased radioactive concentration in coal (Font 
et  al., 1993). Up to 4  ppm of uranium is present in 
coal from the USA, Australia, India, and the UK; 
up to 13 ppm is present in coal from Germany; and 
up to 20  ppm is present in coal from Brazil and 
China (WNA, 2020). Therefore, coal processing 
and combustion may lead to the release of airborne 
radionuclides, which are bound to particulate matter 
and soot, as well as radionuclide residues that may 
contaminate the soil. Similarly, nuclear waste from 
power plant operation, decommissioning, and spent 
fuel storage may contribute to the environmental 

burden of radioactive contamination (Uhunamure 
et al., 2021).

Mining practices include both open-pit and 
underground operations, with on-site ore processing. 
The ore is treated using crushing, grinding, acid 
treatment, and finally, sodium hydroxide is used to 
precipitate the radionuclide (Ramadan et al., 2022). A 
significant amount of slurry waste, debris, and residue 
from mine tailings are generated and, if not handled 
properly, may result in radionuclide contamination 
of the environment. Aborisade et al. (2018) reported 
the activity concentration of 40K, 238U, and 232Th in 
samples collected from eight mining sites in Nigeria. 
Results showed that for all the sampling locations, 
40K ranged from < 15.44 to 13,035.99  Bq/kg, 238U 
ranged from < 8.09 to 26.77  Bq/kg, and 232Th 
ranged from < 3.09 to 17.32  Bq/kg, respectively. 
Furthermore, radionuclides may not be mobilized 
from the geological formations that contain them 
(Brown, 2014). However, during the extraction of oil 
and gas, 224Ra, 226Ra, 228Ra, and 210Pb are mobilized 
and primarily found in the wastewater that is also 
generated. Significant radionuclides are released 
during hydraulic fracturing for the production of gas 
in some geological conditions both in drill cuttings 
and water (Ouyang et al., 2019).

Following the Fukushima accident, approximately 
18,000 teraBq of 137Cs was discharged into the 
Pacific Ocean. Radionuclide concentrations in the 
area as of July 2013 were 11 and 22 kBq/L for 134Cs 
and 137Cs, respectively. A sizable amount of the 
radioisotopes is still in the ocean and groundwater. 
The Three Mile Island accident also led to the 
discharge of a considerable amount of radionuclide 
into the atmosphere and soil (between 481 and 
629 GBq of 131I) (Kim et al., 2019; Hossain, 2020). 
Naturally occurring radioactive materials (NORMs) 
also contribute to radionuclide concentrations in 
different environmental compartments; however, 
they are often non-catastrophic with regard to 
activity concentrations (Adebiyi et  al., 2021). These 
radionuclides may adversely affect people and 
ecosystems, regardless of the exposure mechanisms.

Ionizing and non‑ionizing radiations

Ionizing radiations are regarded as radiation 
(consisting of subatomic particles or electromagnetic, 
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EM, waves) that possesses energy capable of 
liberating electrons from atoms or molecules, after 
which they become ionized. On the other hand, 
non-ionizing radiation refers to electromagnetic 
radiation that does not possess enough photon energy 
that can ionize atoms/molecules—and excite them 
in the process (Adebiyi et  al., 2021; UNSCEAR, 
2008). Ionizing radiation that consists of energetic 
subatomic particles, ions, or atoms travels faster 
than 1% of the speed of light (an EM wave). Ionizing 
radiation includes Alpha (α), Beta (β), and photon 
radiations (Gamma [γ] & X-rays), and exposure to 
these radiations often causes damage to living tissue 
and can lead to cancer, genetic mutation, and death 
(WHO, 2016).

Alpha radiation is made up of alpha particles that 
include two protons and two neutrons and have a 
double positive charge (Eq.  1) and cannot permeate 
the outer layer of the skin. Examples of radioactive 
elements that emit alpha radiation include radon, 
uranium, radium, and thorium (Khan, 2017). 
When alpha-emitting compounds are ingested or 
breathed into the body, bodily tissues may absorb 
alpha radiation, which may pose an internal hazard 
(Adebiyi et al., 2021; Khan, 2017)

Beta radiation consists of charged particles similar to 
electrons that are released from the atomic nucleus. 
Beta particles are small, negatively charged (Eq.  2), 
and have higher penetrating power than alpha 
particles.

Exposure to beta-emitting substances can be harmful 
to the body; however, beta-emitting substances can 
be shielded by sheets of plastic, glass, or metal. Beta 
radiation can pass through the top layer of skin and 
release energy within active skin cells, but it cannot 
pass into the body’s tissues and organs. Beta emitters 
include sulfur-35, hydrogen-3 phosphorus-33, 
phosphorus-32, and carbon-14 (Khan, 2017).

Photon radiations are electromagnetic radiations 
of two types: gamma (γ) and X-ray. Gamma radiation 
ejects photons from the nucleus of an atom, while 
X-ray radiation releases photons of lower energy than 
gamma from outside the nucleus (Eq. 3)

(1)A

Z
X →

A−4

Z−2
Y +

4

2
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(2)A

Z
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Z−1
Y +

0

+1
e
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Photon radiation can travel further than alpha and 
beta radiations and has very high penetrating power, 
and only dense materials such as lead or steel can 
offer protection. Photon radiation can penetrate 
body tissues and organs (Adegunwa et  al., 2019). 
Electrically neutral, gamma particles have a great 
speed and penetration power and can be stopped 
by a thick sheet of lead, steel, concrete, or many 
meters of water. Cobalt-60, zinc-65, cesium-137, and 
radium-226 are all gamma emitters (Adebiyi et  al., 
2021; Khan, 2017).

Naturally occurring radioactive materials 
(NORMs)

The prevalence of primeval radionuclides in the 
earth’s crust, as well as the interaction of cosmic 
rays with the atmosphere, causes harmful radiation 
exposure (Ajibola et  al., 2021). These radionuclides 
include 232Th, 238U, 235U, and 40K, while the cos-
mogenic radionuclides include 3H, 7Be, 10Be, 14C, 
32Si, and 36Cl (Adebiyi et  al., 2021). These radioac-
tive materials possess half-lives that are deducible 
from their disintegration products and can be used 
to extrapolate the age of the earth (Mahamood et al., 
2020). It is assumed that the occurrence of NORMs 
in the environment does not significantly distort 
the ecosystem because non-cosmogenic radionu-
clides are expected to decay to an undetectable level 
(Akpanowo et  al., 2020; L’Annunziata, 2016; Liu & 
Lin, 2018). Nonetheless, elevated levels of NORMs 
due to biomagnification and their redistribution in 
the environment may pose a threat to humans and the 
ecosystem. Table  1 presents the half-lives, isotopic 
abundance, and decay information of selected long-
lived NORMS, while a representative decay pattern 
of uranium (U), thorium (Th), and neptunium (Np) 
is presented in Fig. 2. Most radionuclides in NORM 
(i.e., radium and radon) are generated by the decay 
of larger radioactive materials (i.e., uranium and 
thorium).

Industrial processes involving natural resources 
often release concentrated radionuclides that may be 
hazardous to humans and the environment (Alnab-
hani et al., 2018; IAEA, 2022a). Radionuclide-con-
taining natural resources, whose radioactive levels 

(3)A∗

Z
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A

Z
X +

0
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are concentrated due to technological processes, are 
called technologically enhanced naturally occurring 

radioactive materials (TENORM) (Ojovan & Lee, 
2014). TENORM are large-volume, low-activity 

Table 1   Naturally 
occurring radioactive 
materials (NORMs) with 
long half-lives (Lide, 2010)

EC electron capture

Radionuclide Half-life (years) Isotopic 
abundance (%)

Decay mode Decay products

40

19
K 1.26 × 10

9 0.0117 �
− , EC 40

20
Ca(�−),40

18
Ar(EC)

50

23
V 1.4 × 10

17 0.25 �
− , EC 50

24
Cr(�−),50

22
Ti(EC)

87

37
Rb 4.88 × 10

10 27.835 �
− 87

38
Sr

113

48
Cd 9 × 10

15 12.22 �
− 113

49
In

115

49
In 4.4 × 10

14 95.71 �
− 115

50
Sn

123

52
Te 1.3 × 10

13 0.908 EC 123

51
Sb

232

90
Th 1.4 × 10

10 100 � 228

88
Ra

235

92
U 7.04 × 10

8 0.72 � 231

90
Th

238

92
U 4.46 × 10

9 99.27 � 234

90
Th

144

60
Nd 2.1 × 10

15 23.8 � 140

58
Ce

Fig. 2   Radioactive decay series for thorium and uranium. Adapted with modification from the decay chains at https://​en.​wikip​edia.​
org/​wiki/​Decay_​chain

https://en.wikipedia.org/wiki/Decay_chain
https://en.wikipedia.org/wiki/Decay_chain
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radioactive waste generated from hospitals, nuclear 
power plants, mining, ore beneficiation, fertilizer 
manufacturing, borehole drilling and water treat-
ment, paper and pulp production, oil and gas explo-
ration and refining, combustion of coal, waste metal 
recycling and incineration, catalysts manufacturing, 
etc. (Adebiyi et al., 2021; Hossain, 2020; Valković, 
2019). Upon release to the environment, they may 
pose a severe threat. Their fate, behavior, and activ-
ity (emission of ionizing or non-ionizing radiation) 
are mainly controlled by their chemistry and the 
nature of their host environment (Siegel & Bryan, 
2014).

Radionuclide concentrations in soils

The earth’s crust and the aquifer are composed of 
mineral and organic components, and they serve as a 
major source of radiation emanating from anthropo-
genic contaminants such as radionuclides/radioactive 

waste (Adebiyi et al., 2021). NORMs are part of sev-
eral types of rocks and soils and are often a result of 
weathering and disintegration of rocks, a process that 
may also facilitate the release of radionuclides. The 
characteristics of soils control the behavior, concen-
tration, and transport of radionuclides (Kang et  al., 
2020). Several reports suggest that radionuclides can 
be taken up by plants depending on the soil’s phys-
icochemical properties, plant species, and agricul-
tural practices (Ibikunle et  al., 2019; Ilori & Chetty, 
2020). The translocation of radionuclides from soil to 
edible plants presents a major risk of human exposure 
to hazardous radionuclides (El-Gamal et al., 2019a). 
Dust from mining activities containing radionu-
clides can be carried by the wind and poses an inha-
lation risk due to ionizing radiation generated that 
destroys body cells and tissues (Castillo et al., 2013; 
Dudu et  al., 2018). Furthermore, radioactive wastes 
in household trash of nuclear medicine patients are 
being detected in municipal landfills, which may 

Table 2   Selected radionuclides concentration reported in soils in different parts of the world

Location Radionuclides Concentration (Bq/kg) References

Lahore, Pakistan 226Ra, 232Th, and 40K 25.8, 49.2, and 561.6 Akhtar et al. (2005)
Ordu, Turkey 226Ra, 232Th, 40K, and 137Cs 34.5, 26.9, 378.4, and 275.3 Celik et al. (2010)
Japan 226Ra, 232Th, and 40K 320, 200, and 1100 Hassan et al. (2010)
Gulf Aqaba, Jordon 226Ra, 232Th, and 40K 9.5, 10, and 734 Ababneh et al. (2010)
Vietnam 226Ra, 232Th, and 40K 2.7, 59.8, and 411.9 Huy et al. (2012)
Tehran city, Iran 226Ra, 232Th, and 40K 45.4, 57.1, and 768.5 Asgharizadeh et al. (2013)
Sithonia Peninsula, Greece 238U, 232Th, 226Ra, and 40K 62, 80, 69, and 777 Papadopoulos et al. (2014)
Sungai Petani, Malaysia 226Ra, 232Th, and 40K 51.06, 78.44, and 125.66 Ahmad et al. (2015)
South Sinai, Egypt 238U, 232Th, and 40K 46.39, 65.76, and 1186.45 Darwish et al. (2015)
Rajasthan, India 226Ra, 232Th, and 40K 24, 55, and 549 Rani et al. (2015)
Western Regions of Ghana 238U, 232Th, and 40K 25.51, 28.04, and 238.98 Adukpo et al. (2015)
Punjab, India 226Ra, 232Th, and 40K 46, 98, and 756 Bangotra et al. (2016)
Quseir Harbor, Egypt 226Ra, 232Th, and 40K 26, 19, and 458 El-Taher et al. (2018)
Kızılırmak Deltas, Turkey 238U, 232Th, 40K, and 137Cs 28.59, 17.48, 150.53, and 5.32 Arıman and Gümüş (2018)
Richards Bay, South Africa 238U, 232Th, 226Ra, and 40K 28.26, 29.64, 32.18, and 146.77 Masok et al. (2018)
Rio de Janeiro, Brazil 226Ra, 228Ra, and 40K 29.7, 67.1, and 111.1, Ribeiro et al. (2018)
Chittagong, Bangladesh 238U, 232Th, and 40K 65.9, 83.2, and 946.9 Yasmin et al. (2018)
Delta Abyan, Yemen 226Ra, 232Th, and 40K 33.15, 77.25, and 1220.59 El-Gamal et al. (2019a)
Khrami Massif, Georgia 238U, 232Th, and 40K 38.57, 53.18, and 879.76 Kapanadze et al. (2019)
Plateau, Nigeria 226Ra, 232Th, and 40K 242.13, 1776.08, and 374.01 Adesiji and Ademola (2019)
Uttarakhand, India 226Ra, 232Th, and 40K 76, 69, and 549 Anamika et al. (2020)
Jeju Island, Korea 226Ra, 232Th, 40K, and 137Cs 33.3, 40.6, 421, and 5.67 Kang et al. (2020)
Sao Paulo, Brazil 238U, 232Th, and 226Ra 37, 91, and 66 Gonçalves et al. (2021)
Perak, Malaysia 226Ra, 232Th, and 40K 10, 25, and 5.8 Rahmat et al. (2022)
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contribute to environmental exposures via leaching, 
the action of wind and rainfalls (Siegel & Bryan, 
2014; Siegel & Sparks, 2002).

According to the United Nations Scientific 
Committee on the Effects of Atomic Radia-
tion (UNSCEAR), the world average for 238U, 
232Th, 226Ra, and 40K is 35, 45, 32, and 420  Bq/
kg (UNSCEAR, 2008). According to Table 2, it is 
evident that while some radionuclide average activ-
ity concentrations reported in soils are below the 
world average, many of the activity concentrations 
obtained exceeds one or more world average activ-
ity concentration, especially those reported in Asia 
(El-Gamal et al., 2019a; Hassan et al., 2010; Rani 
et al., 2015). The locations with high radionuclide 
activity concentrations (such as Japan and Plateau 
Nigeria) have a history of volcanic eruption, earth-
quakes, nuclear accident, nuclear bombing (Hiro-
shima and Nagasaki), construction, and mining 
activities, which suggest that a significant amount 
of primordial radioactive materials is exposed to 
the biosphere from underground sources (Abella 
et  al., 2019; Adesiji and Ademola 2019; Kang 

et  al., 2020; Khandaker et  al., 2012; UNSCEAR, 
2016).

Furthermore, advanced research must focus on 
the risk evaluation of radioactive waste pollution 
of soils under varying environmental conditions. 
The impact of radionuclides on geochemistry, soil 
biodiversity, and agriculture should be investigated 
under various climatic conditions in the light of the 
Sustainable Development Goals (SDGs).

Radionuclide concentrations in water and sediments

The exposure of aquatic systems to radioactive waste 
may cause ecotoxicological impacts, such as cellular 
mutation, malignant growth/tumor, cancer, death of 
marine species, and disruption of food chains (Ade-
biyi et al., 2021). The biomagnification tendency and 
food chain led to human exposure and risk, especially 
in coastal communities that source food and potable 
water from the marine systems. Table 3 summarizes 
recent research that reveals radioactive amounts in 
water and sediments around the world. Aquatic sys-
tems contribute significantly to the distribution and 
transport of NORM, TENORM, and other radioactive 

Table 3   Activity concentrations of radioactive materials reported in water and sediments

Location Sample type Radionuclide concentration (Bq/L) Reference
238U 232Th 40K 226Ra

Kadugli, Sudan Groundwater 1.720 0.039 – 0.014 Osman et al. (2008)
Serbia Drinking water – < 50 < 250 < 70 Janković et al. (2012)
Slovenia Mineral water – – – < 33 Benedik & Jeran, 2012)
Ass-Alh, Yemen Groundwater – 2.93 – 6.55 El-Mageed et al. (2013)
Tamilnadu, India Sediment (Bq/kg) 3.67 37.23 387.17 – Ravisankar et al. (2014)
Ghana Surface water – 0.0012 – 0.0014 Kpeglo et al. (2014)
Žirovski Vrh, Slovenia Tap water 0.362 – – 0.017 Benedik et al. (2015)
Malaysia Mineral water – 3.39 25.39 3.30 Khandaker et al. (2017)
Saronikos Gulf, Greece Sediment (Bq/kg) 29 7.8 360 25 Papaefthymiou et al. (2017)
Chittagong, Bangladesh Sediment (Bq/kg) 94.4 121.9 498.0 114.0 Yasmin et al. (2018)
Assiut, Egypt Drinking water – 0.107 0.836 0.192 El-Gamal et al. (2019b)
Delta state, Nigeria Water 5.67 2.86 1.67 – Iwetan et al. (2019)

Sediment (Bq/kg) 302.15 8.66 11.66 –
Crimea, Russia Sediment (Bq/kg) – 1.872 1.440 1.620 Shadrin et al. (2020)
Lagos, Nigeria Water 1.96 2.42 0.4 – Adedokun et al. (2020)
Dnieper river, Ukraine Sediment (Bq/kg) 69.9 55.6 350 22.4 Semerikov et al. (2021)
Calabria, Italy Sediment (Bq/kg) – 1266.12 6551.94 4329 Caridi et al., (2016, 2021)
Russia Sediment (Bq/kg) – 9.98 235.7 7.52 Menshikova et al. (2021)
Ogun, Nigeria Sediment (Bq/kg) – 128.7 453.9 42.3 Adewoyin et al. (2022)
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waste residues (Novikov, 2010). The physicochemi-
cal, biogeochemical properties and mobility of 
radionuclides contribute to their fate in the hydro-
ecosystem (Adebiyi et al., 2021; Caridi et al., 2021). 
The amount of biomass, natural organic matter, 
and aquatic species all contribute to the adsorption, 
accumulation, and half-life of radionuclides in sedi-
ments, as well as the volume and depth of the water 
column, the flow rate, sediment composition, sedi-
mentation intensity, and the presence of geochemical 
(Ravisankar et al., 2014; Semerikov et al., 2021).

Sediment acts as a sink and diffuse source of 
pollutants including radioactive elements in the water 
bodies, partly due to input from marine systems 
(Jibiri & Okeyode, 2012). Higher concentrations 
of radionuclides have been reported in sediments 
than in water Table  3. Furthermore, when primary 
radionuclide sources are depleted, resuspension 
and remobilization of radioactive materials from 
pre-contaminated deposits become a vital diffuse/
secondary source (Jibiri & Okeyode, 2012; Salbu 
& Lind, 2020). Secondary sources of aquatic 
contamination by radioactive materials also include 
leaching/seepage from contaminated terrestrial areas. 
Surface run-off and erosion from terrestrial systems 
may also lead to aquatic contamination, and episodic 
occurrences such as flooding and the transport of 
contaminated sediments trapped in “dirty” ice are 
all routes to radionuclide contamination of water 
bodies (Hong et al., 2012; Landa et al., 1998). These 
events lead to the transport of freshwater sediments to 
marine waters, which contributes to the mobility of 
associated radionuclides (Vives i Batlle, 2012).

The distribution coefficient or partition coefficient 
(Kd (L/g)) of radionuclides between sediment and 
water is given below (Eq. 4) (Kumar et al., 2020):

Kd is one of the major parameters controlling the 
distribution of radionuclides in the aquatic envi-
ronment: a high value of Kd means that more radi-
onuclides will be found in sediment (Kumar et  al., 
2020). This further suggests higher adsorption 
strength to the sediment, which limits the mobility 
of radionuclides in a water–sediment system (Kumar 
et al., 2020).

(4)K
d
=

Bq

g
Sediment

Bq

L
Water

Radioactive elements can adhere to sediment 
phases from the aqueous phase by physical processes 
(e.g., sedimentation), chemical (e.g., polymerization, 
colloidal clustering/aggregation, ion exchange), and 
biological (e.g., detritus) processes (van Hullebusch 
et al., 2005; Vives i Batlle, 2012). Remobilization of 
NORMs and radioactive contamination from sedi-
ments to water may occur via natural or anthropo-
genic perturbation and resuspension, e.g., mineral or 
crude oil exploration, transportation, flooding, dredg-
ing or constructions, hurricane, etc. The removal of 
radioactive waste and landfills from coastal areas 
may be one of the precautionary measures needed to 
ensure marine and environmental protection.

Management of radioactive pollution 
in environmental matrices

The management approaches for radioactive pollution 
can be broadly categorized into the three major 
remediation strategies, which are physical, chemical, 
and biological remediation (Table 4) (Adebiyi et al., 
2021; Strand et al., 2022). The physical remediation 
approach entails the removal of the top layer of soil of 
the contaminated sites, or the disposal of radioactive 
waste in deep geographical areas, often regarded as 
the best physical remediation approach (Dushenkov, 
2003; Noor et al., 2020). The utilization of peroxides, 
citrates, carbonates, and inorganic/organic chelating 
agents in the cleanup of radionuclides by promoting 
their desorption from contaminated sites is part 
of the chemical remediation method (Valdovinos 
et  al., 2014). The bioremediation technique uses 
algae (also called, phycoremediation), plants 
(phytoremediation), fungi (mycoremediation), and 
microbes (microremediation) in the elimination of 
radionuclides from a polluted environment (Galanda 
et al., 2014; Liu et al., 2014; Ore & Adeola, 2021).

Recent advances in the management of radioac-
tive wastes/pollution have involved the development 
of methodical approaches such as natural attenua-
tion, soil washing, adsorption, and electrochemical 
processes (Canner et al., 2018; Lingamdinne et al., 
2017; McElroy et  al., 2020; Song et  al., 2015). 
Tables  5 and 6 provide an overview of the strate-
gies employed in the cleanup of radioactive con-
taminants. The fundamental ideas and applications 
of the various strategies are briefly explored here.
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Electroremediation

Electrochemical remediation is also known as electro-
kinetics or electroreclamation (Reddy & Cameselle, 
2009; Reddy et  al., 2006; Saichek & Reddy, 2005). 
Electroremediation is a science that involves pass-
ing a low-intensity electric current through polluted 
soil between the cathode and anode. Electromigra-
tion and electro-osmosis are core mechanisms driving 
electroremediation (Cameselle & Reddy, 2012). The 
introduction of direct current moves water and ions 
toward the electrodes and has been used to decon-
taminate radioactive elements present in aquatic 
matrices. The well of the electrode accumulates the 
contaminants driven toward it via the movement of 
water and ions, and a circulation system ensures the 
removal of pollutants from the electrode wells. This 
continuous process is only discontinued when the 
desired removal efficiency is achieved (Cameselle & 
Gouveia, 2019).

The utilization of electroremediation for the 
treatment of radionuclide-polluted soils, water, 
and sediments has been limited, but few recent 
investigations in the literature have reported its 
usefulness. The electrochemical recovery of ura-
nium in an aqueous solution was evaluated in 

0.1  M KCl on poly(3,4-ethylenedioxythiophene) 
poly(styrenesulfonate) modified platinum (PEDOT: 
PSS/Pt) electrode (Agarwal & Sharma, 2018). The 
presence of uranium on the electrode was confirmed 
by ICP-MS data that showed a 94% recovery rate. 
Similarly, batch electrocoagulation has been used 
to remove uranium from mine water under various 
reaction times and electrode combinations (Nariyan 
et al., 2018). Using electrode combinations made of 
aluminum–stainless steel and iron–stainless steel, 
the best elimination of uranium from mine water 
was 97.69 and 99.73%, respectively. The first-order 
kinetics model best described the process, implying 
a physical or non-bonding interaction involving the 
coagulant and the uranium.

Uranium contamination in groundwater was 
addressed using a novel direct electro-reductive tech-
nique (Liu et  al., 2019). It was observed that U(VI) 
was reduced to U(IV)O2 which resulted in reduction 
of the pollutant accumulation on Ti electrode sur-
face with electric current efficiency > 90%. Uranium 
recovery of 98% was obtained dipping the Ti elec-
trode in dilute HNO3. Another study investigated 
the permeable reactive barrier-assisted electrokinetic 
treatment of uranium-contaminated soil utilizing a 
composite electrolyte of citric acid and ferric chloride 

Table 5   Radionuclide decontamination using electroremediation techniques

CD current density

Technique Sample type Radio-
nuclide 
targeted

Electrode types Optimum process 
condition and 
removal performance 
(%)

References

Electrocoagulation Mine water (16.7 °C) Uranium Stainless steel and iron Time: 2 h; CD: 
70 mA/cm2; 99.7%

Time: 2 h; CD: 
40 mA/cm2; 98.0%

Nariyan et al. (2018)

Stainless steel–
aluminum

Time: 2 h; CD: 
70 mA/cm2; 97.7%

Electroactive film Wastewater (25 °C) Cesium Copper hexacyanoferrate 
with stainless steel–
platinum

Time: 2 h; CD: 
70 mA/cm2; 97.7%

Chen et al. (2017)

Iron-
electrocoagulation 
and organic ligands

Water (25 °C) Uranium Sheets of pure iron and 
graphite

Time: 24 min; CD: 
0.6 mA/cm2; 99.7%

Li et al. (2017)

Electrodeposition Water (25 °C) Uranium Poly(3,4-ethylene-
dioxythiophene) 
poly(styrenesulfonate) 
modified platinum

Time: 8 h; 94% Agarwal and Sharma 
(2018)
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Table 6   Various techniques for remediation of radionuclide contamination in aqueous media

Remediation technique Radionuclide Removal efficiency (%) Reference

Electroremediation Uranium 94 Agarwal and Sharma (2018)
Electroremediation Uranium 97.7 and 99.7 Nariyan et al. (2018)
Electroremediation Uranium 98 Liu et al. (2019)
Electroremediation Uranium 80.6 Xiao et al. (2020a)
Electroremediation Uranium 61.6 Xiao et al. (2020b)
Bioremediation Uranium 47 Shukla et al. (2020)
Bioremediation Uranium > 60 Coelho et al. (2020a)
Bioremediation Uranium 90 Vijay et al. (2020)
Bioremediation Uranium 93.2–97.5, 38–92 Coelho et al. (2020b)
Bioremediation Thorium and uranium > 95 Ozdemir et al. (2020)
Adsorption Uranium 85.3, 79.2 Zhang et al. (2021b)
Adsorption Uranium > 90 Zhang et al. (2021a)
Adsorption Uranium 91.1, 86.5 Wen et al. (2021)
Adsorption Uranium 100 Liu et al. (2021)
Adsorption Uranium 87.5 Zhang et al. (2020)
Adsorption Uranium 80–87 Sharma et al. (2020)
Adsorption Uranium 69.5, 88.9, and 95.1 Wang et al. (2021)
Adsorption Uranium 97.8 Chen et al. (2021)
Bioremediation Uranium 118.6 Chen et al. (2020)
Adsorption Uranium 30.71 Wei et al. (2020)
Adsorption Uranium 99 Hu et al. (2020)
Adsorption Uranium > 90 Liao and Zhang (2020)
Adsorption Uranium 99.8 Duan et al. (2020)
Adsorption Uranium > 90 Ma et al. (2020)
Adsorption Cobalt 90 Sheng et al. (2012)
Adsorption Europium 65 Song et al. (2019a)
Adsorption Europium 100 Huang et al. (2018)
Adsorption Radon 99 Baeza et al. (2017)
Adsorption Cesium 55.3 Sakamoto and Kawase (2016)
Adsorption Strontium 100 Mihara et al. (2019)
Adsorption Strontium 48–59 Rae et al. (2019)
Adsorption Americium 93.4–95.4 Yao et al. (2018)
Forward osmosis Iodine 99.7 Lee et al. (2018)
Forward osmosis Cobalt 99.9 Liu et al. (2017)
Membrane distillation Cobalt 99.9 Wen et al. (2016)
Nanofiltration Cesium 88 Chen et al. (2014)
Nanofiltration Strontium 95
Nanofiltration Cobalt 96
Ultrafiltration Iodine 60 Sancho et al. (2006)
Membrane distillation Cesium and cobalt 97.7–99.9 Zakrzewska-Trznadel et al. (1999)
Ion-exchange Strontium 84.6–98.3 Rae et al. (2019)
Ion-exchange Strontium, cesium, cobalt 59–100 Fang et al. (2016)
Precipitation Strontium 99.9 Wu et al. (2014)
Precipitation Cesium 92.7 Rogers et al. (2012)
Photocatalysis Uranium 100 Li et al. (2019)
Photoreduction Uranium 99.9 Zhu et al. (2019)
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mixture (Fig. 3). The optimum uranium removal rate 
was 80.6% (Xiao et  al., 2020a). Similarly, several 
electrolytes were used to investigate electrochemi-
cal remediation of uranium-polluted red soil. The 
researchers discovered that using an ideal dosage of 
0.03 mol/L FeCl3 and 0.1 mol/L citric acid increased 
uranium removal effectiveness to 61.6%. In addition, 
after electroremediation, the study found that there 
was less soil damage and decreased leaching toxicity 
(Xiao et al., 2020b).

The application of electroremediation technique 
in the remediation of radionuclide contamina-
tion in different environmental compartments is 
regarded as efficient, except for a few reports that 
suggested that 232Th and 238U are more recalcitrant 
in soils (Kim et  al., 2003, 2012; Mohamed Johar 
& Embong, 2015). This trend can be attributed to 

trace concentrations of radionuclides and limited 
electromigration due to the low permeability of the 
soils. The amount of radionuclide contamination 
in soils is proportionate to the mobile ions present 
for electromigration (Kim et  al., 2003). Further-
more, the performance of the electrokinetic reme-
diation is influenced by the applied voltage and the 
AC/DC voltage ratio; therefore, energy costs must 
be considered, particularly for extremely polluted 
locations.

A novel, portable battery-type column that sequen-
tially removes calcium from sewage using copper 
hexacyanoferrate nanoparticle film (CuHCF NPs 
film) was reported by Chen et al. (2017). This is dis-
tinct from chemical spray, chemical bath, or electro-
chemical deposition. The battery-style column dem-
onstrated electrochemical redox cesium adsorption of 

Table 6   (continued)

Remediation technique Radionuclide Removal efficiency (%) Reference

Biomineralization Cesium, strontium, technetium 70, 95, 81.3 Lee et al. (2014)

Fig. 3   A permeable reactive barrier made of iron and activated carbon for electroremediation of uranium-contaminated soil. 
Adapted with permission from Xiao et al. Copyright 2020, Elsevier
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CuHCF NPs screen by varying the potentials between 
two sandwiched electrodes. The electrochemical oxi-
dation–reduction of Fe (II/III) and electrostatic attrac-
tion played a role in cesium removal. In another study, 
uranium removal from the mine water in Pyhäsalmi, 
Finland, was achieved via electrocoagulation. The 
removal efficiency, current density, and reaction time 
were studied. For both the iron–stainless steel and 
aluminum–stainless steel anode/cathode pairings, 
current density was found to be a determinant factor 
(Table 5). However, the quadratic model for the alu-
minum–stainless steel combination only considered 

the reaction time as an essential parameter (Nariyan 
et al., 2018).

Bioremediation

Bioremediation involves the application of biologi-
cal substances such as plants, microorganisms, and 
their enzymes for the decontamination of polluted 
environments (Arora, 2018; Gouma et  al., 2014). 
Biological organisms such as fungi, plants, and bac-
teria have become choice agents of decontamination 
over the years, which is due to their detoxifying capa-
bilities, and ability to trap and degrade contaminants 

Fig. 4   Microorganism-induced remediation of uranium contamination. Adapted from Chemical Geology, Newsome et al. 363, 164–
184, Copyright 2014 Elsevier
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(Patel et al., 2022; Psaltou & Zouboulis, 2020). Plants 
that are suited for bioremediation should have an 
advanced root system, resistant to disease, and be 
able to develop quickly (Yan et al., 2020). The main 
mechanisms involved in bioremediation are—bio-
accumulation, bioreduction, biomineralization, and 
biosorption, and these are features of the interaction 
between radioactive elements and microorganisms 
(Fig.  4) (Newsome et  al., 2014). Phytoremediation 
has created environmentally benign and reasonably 
inexpensive methods for removing radioactive pol-
lutants. Phytostabilization (immobilization of pollut-
ants), phytoaccumulation (sorption and bioaccumula-
tion in plant tissues), phytovolatilization (conversion 
of contaminants to volatile form to potentially trap-
ping them in the air), and phytofiltration are some of 
the different strategies of bioremediation (recovery of 
dissolved contaminants by extra- and intra-cellular 
accumulation) (Sharma et al., 2015; Yan et al., 2020).

Staphylococcus aureus  biofilms have been 
investigated for the bioremediation of uranium 
contamination, regardless of its pathogenicity (Shukla 
et al., 2020). The study reported that the addition of 
phosphate enhanced the efficiency of Staphylococcus 
aureus, upon treatment with uranyl nitrate solution, 
and an efficiency of 47% was recorded for U(VI) 
removal. A related study reported the isolation of 
fifty-seven fungi and investigated bioremediation 
potential against uranium. Over 60% of uranium was 
removed from an aqueous media by eleven fungi 
(Coelho et al., 2020a). The application of Penicillium 
piscarium was evaluated in the remediation of 
radioactive waste-polluted sites. The fungi exhibited 
between 93.2 and 97.5% decontamination efficiency 
of uranium at pH 3.5, whereas between 38 and 92% 
removal efficiency was obtained at pH 5.5, according 
to the study (Coelho et al., 2020b).

A consortium of denitrifying bacteria was 
employed by Vijay et  al. (2020) to investigate the 
performance of microbial fuel cells. To manufacture 
insoluble uranyl phosphate, mineral phosphate 
produced from glycerol 3 phosphate is coupled 
successfully with uranium (VI). The uranium was 
extracted as uranyl phosphate, which resulted in 
a 90% removal efficiency. (Vijay et  al., 2020). 
Thorium and uranium were targeted in a similar 
investigation by Ozdemir et  al. (2020), a novel 
thermophilic bacterium was created to preconcentrate 
radionuclides in environmental matrices. Bacillus 

cereus SO-14 was utilized as a biosorbent for solid-
phase extraction, with the process parameters and 
detection limits optimized (LOD). The thorium and 
uranium extraction recoveries in this investigation 
were both better than 95%.

Although bioremediation is thought to be 
effective in the treatment of polluted soil and 
water (Adeola & Forbes, 2021; Azubuike et  al., 
2016). Bioremediation’s limitations include low 
efficacy in highly contaminated locations, a lack 
of suitable environmental conditions for microbe 
development, the existence of communities of 
metabolically active microbes, and a detrimental 
effect on biodiversity (Kuppusamy et  al., 2015, 
2016; Patel et  al., 2022). Furthermore, substantial 
remediation is time-consuming since microbial 
culture, process implementation, and optimization 
all take time. Furthermore, using plants demands 
special management procedures and safeguards, 
as herbivores like sheep, cattle, and other livestock 
may consume the plants, providing a risk of human 
exposure through the food chain.

Adsorption

Chemical pollutants are moved from the liquid phase 
to the surface or pores of solid material during the 
mass transfer process known as adsorption (Fig.  5) 
(Adeola et  al., 2021b; Ibigbami et  al., 2022; Ore & 
Adeola, 2021). To remove and recover radionuclides 
from various waste sources, a variety of technologies 
have been developed and studied. Adsorption, on the 
other hand, has several benefits over other types of 
cleanups. Some of these benefits include easy regen-
eration and reusability of spent adsorbent, ease of 
operation, and a lower risk of sludge and/or second-
ary pollutants (Adeola & Forbes, 2021). The primary 
mechanisms driving the adsorption of radionuclides 
in water include an amalgam of Lewis’ acid–base 
interaction, electrostatic interaction, ion exchange, 
hydrogen bonding, and coordination interactions, 
as well as adsorption–reduction (Feng et  al., 2018; 
Huang et al., 2018; Sukatis & Aris, 2021).

Zhang et  al. (2021a) studied how quartz sand 
coated with zero-valent iron (ZVI-S) can be used to 
remove uranium from groundwater. Experiments 
were carried out to see how concentration, con-
tact time, and solution pH affected the results. The 
hydraulic loads and particle sizes used by the ZVI-S 
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were changed. In batch tests, the removal efficiency 
of uranium was found to be 85.3%, while in column 
experiments, it was shown to be 79.2%. Similarly, a 
novel supramolecular poly(amidoxime) (PAO)-loaded 
macroporous resin (PLMR) adsorbent for the removal 
of uranium from seawater and wastewater was inves-
tigated by Wen et  al. (2021). After immersion, the 
PAO was loaded onto the microporous resin through 
hydrophobic interaction. In wastewater and seawater, 
the PLMR adsorbent showed 91.1 and 86.5% effi-
ciency, respectively. The efficiency of photocatalysis-
assisted uranium sorption was investigated with the 
aid of CN550, a new carbon nitride made by heat-
ing a combination of ZnCl2 and melamine in an inert 
atmosphere. After 390  min of irradiation, nearly all 
of the uranium in the solution had been removed (Liu 
et al., 2021).

For uranium removal from sewage water, Zhang 
et  al. (2021b) developed an activated biochar-
loaded nano zero-valent iron (A-BC-NZVI). 
The A-BC-NZVI composite was synthesized 
using aqueous phase reduction in a nitrogen 
environment at 800  °C. The investigations used 
factors like temperature, time, concentration, 
and solution pH. The effectiveness of uranium’s 
adsorption was still greater than 90% after five 
cycles of sorption–desorption experiments. This 
demonstrated the possibility of employing A-BC-
NZVI as an environmentally friendly adsorbent 
in uranium-polluted water restoration. Nitro-
oxidized carboxycellulose nanofibers (NOCNF) 
were generated utilizing the nitro-oxidation 
process in a work by Sharma et  al. (2020). The 
NOCNF obtained had a high surface charge and a 
high carboxylate content. The uranium removal 

Fig. 5   Adsorption of U(VI) and Eu(III) through the formation 
of strong surface complexes in an aqueous solution. Reprinted 
from Chemical Engineering Journal, 353, Huang et al., Unex-

pected ultrafast and high adsorption of U(VI) and Eu(III) from 
solution using porous Al2O3 microspheres derived from MIL-
53, 157–166, 2018, with permission from Elsevier
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mechanism of negatively charged NOCNF showed 
maximum removal efficacy at neutral pH (80–87%).

Table  6 revealed that the adsorption method is 
the most widely utilized technique for the treatment 
of radionuclide contamination in water/water. 
However, various factors must be considered before 
selecting an appropriate adsorbent for the treatment 
of radiochemical-related pollution, including the 
material’s efficiency, availability, non-toxicity, 
adaptability, robustness, reusability, and so on. 
Following the treatment of extremely polluted sites, 
a routine post-remediation check is required.

Integrated techniques and other remediation methods 
for radionuclide decontamination

Several treatment techniques often have shortcomings 
or limitations relating to stability, reusability, opera-
tional cost, sustainability, and treatment efficiency. 
Therefore, hyphenated methods or integrated tech-
niques are considered viable alternatives to address 
these challenges (Adeola & Forbes, 2021). These 
integrated methods may involve chemical–physi-
cal (such as adsorption and photocatalysis), biologi-
cal–physical (e.g., bioremediation and precipitation), 
biological–chemical (such as bioremediation and 
photocatalytic reduction), physical–physical or chem-
ical–chemical processes (Table 7).

Coagulation, flocculation, and integration of both 
techniques have been developed and utilized to elimi-
nate pathogens, colloidal particles, metals, and other 
organics from contaminated water (Sharma & Bhat-
tacharya, 2017). According to Rout et al. (2006), the 
rate of radioactive removal from chemical sludge 
was consistently greater and faster when flocculant 
was included. In addition, bridging between a sub-
strate (i.e., BaSO4), radioisotopes, and flocculants 
was improved by minimizing repulsive forces in the 
double layer. The choice of coagulant and flocculant 
is often determined by the desired rate of settlement, 
decontamination efficiency, and volume of sludge/
wastewater to be treated.

Photocatalytic degradation involves the remedia-
tion of organic chemicals, radionuclides, and heavy 
metals in environmental compartments with the aid 
of ultraviolet (UV) or solar light irradiation (Li et al., 
2019; Zhu et al., 2019). To photoreduce U(VI), Zhu 
et al. (2019) reported the synthesis of a nanocompos-
ite comprising hybridized graphene oxide nanosheets 
and K2Ti6O13 nanohybrid. Due to the reduction of 
surface oxygen-related defects and the creation of a 
Schottky-like barrier at the interface between GO and 
KTO, it has been discovered that the combination 
of GO and KTO can significantly increase the sepa-
ration ability of photo-electrons and holes. This can 
effectively reduce the recombination of electrons and 

Table 7   Integrated/
combined techniques 
for radionuclide 
decontamination

Integrated techniques Radionuclide Removal 
efficiency 
(%)

Reference

Bioremediation–co-precipitation Cobalt 85 Lack et al. (2002)
Ultrafiltration–reverse osmosis Iodine 80 Sancho et al. (2006)
Flocculation–microfiltration Americium 81–99.9 Yong et al. (2004)
Coagulation–flocculation Manganese, 

antimony, 
ruthenium, cobalt

99.25 Kim et al. (2019)

Coagulation–flocculation Antimony, cesium, 
ruthenium, cobalt, 
iodine

75–100 Kim et al. (2016)

Coagulation–flocculation Strontium, cesium 65–95 Rout et al. (2006)
Adsorption–photocatalytic reduction Uranium 88 Liu et al. (2018)
Biosorption–biotransformation Uranium 90 Song et al. (2019b)
Biosorption–Bioremediation Cesium 95 Lee et al. (2019)
Biosorption-biomineralization Uranium 98 Zheng et al. (2018)
Phytoremediation–bioaccumulation Cobalt 98 Soudek et al. (2004)
Adsorption–photocatalysis Uranium 97.6 He et al. (2020)
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holes, thereby optimizing the overall performance of 
the photoreduction process.

Chemical precipitation is a treatment method 
where co-precipitation, Ostwald ripening, and pH 
change mechanisms can be successfully employed 
to efficiently separate radionuclides in aqueous 
media. Wu et  al. (2014) presented an integrated 
co-precipitation microfiltration technology for 
removing strontium from wastewater. The nucleation, 
aggregation, Ostwald ripening, and formation of new 
particles facilitate the precipitation and separation. 
The strontianite formation and strontium sorption on 
or within the CaCO3 crystal strengthened the removal 
of strontium (SrCO3). The membrane filtration 
procedure was used to improve strontium’s stable 
separation.

On the contrary, Rae et  al. (2019) employed 
commercially available resins for strontium ion-
exchange separation/recovery. A removal efficiency 
ranging from 84.6 to 98.3% was recorded without 
interference by competing ions. Zeolite was reported 
to effectively remove  strontium, cesium and cobalt 
from wastewater with removal efficiency ranging 
from 59 to 100% (Fang et  al., 2016). The presence 
of organics and clay had no discernible effects on the 
ion-exchange process for Cs+ and Sr2+, but both had a 
considerable impact on the adsorption of Co2+.

Challenges, prospects, and opportunities

The utilization of radioactive materials in various sec-
tors of the economy has implications for the environ-
ment, health, and safety, not to mention ethical con-
siderations. Nuclear power has enormous potential to 
serve as an alternative to fossil fuels with competent 
engineering and monitoring. Still, public confidence 
in nuclear facilities is naturally low following the dis-
asters at Three Mile Island (1979), Chernobyl (1986), 
and Fukushima (2011). However, nuclear power 
has the highest capacity factor of all energy sources 
(Fig. 6) and can be a viable alternative to fossil fuels. 
Nuclear power systems generate high-capacity base-
load electricity while emitting very few pollutants 
(Muth et al., 2021; Pioro & Duffey, 2019). Concerns 
about the proliferation of weapons-grade nuclear 
materials, the implications of accidents, and the dif-
ficulties of long-term storage of radioactive waste 
are all challenges that hinder the complete transition 
to nuclear energy and nuclear research and develop-
ment (Brook et al., 2014; Hannah, 2022).

Due to the vast application of radioactive materials 
in various sectors such as medicine, agriculture, 
energy, industry, archaeology/mining activities, 
and radio-sensors development, there is a need for 
multiple management strategies for incidental and 
accidental environmental pollution. The creation 
of fast and inexpensive hybrid or integrated 
decontamination techniques requires urgent attention 
due to the proliferation of radioactive waste pollution. 
Various adsorbents have been developed for the rapid 
decontamination of radioisotopes, but challenges 
such as the difficulty in ion recovery from sorbents, 
adsorbent cost, reusability, and scalability, remain a 
challenge to field applications. The development of 
nanocomposites with the enhanced specific surface 
area from cheap materials such as biomass or 
abundant geosorbents may promote the application 
of the adsorption process for large-scale radionuclide 
decontamination.

Bioremediation/phytoremediation is often slow 
and requires a carefully controlled environment 
to prevent the death or non-performance of 
microorganisms or plants. Furthermore, specific 
radionuclides are recalcitrant/resistant to microbial 
remediation, but this can potentially be addressed by 
genetically enhancing the effectiveness of carefully 
selected microorganisms to prevent the adverse 

Fig. 6   The capacity factor of different energy sources in 2020. 
Adapted with slight modification from US Energy Information 
Administration, 2021
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anthropogenic impact of the genetically modified 
agents. Although membrane techniques have shown 
excellent filtration properties and rapid treatment 
of large volumes of water, biological and chemical 
fouling remains a challenge. Reducing sludge during 
coagulation–flocculation, filtration, and biological 
treatment is critical. Chemical sludge must be 
handled carefully since it is challenging to separate 
coagulants and radionuclides for recycling and reuse. 
Reducing sample volume, aeration, and powering 
operations using solar or other renewable energy may 
reduce operational process costs.

Conclusion

For environmental monitoring and protection, 
understanding the distribution of radionuclides in the 
environment is critical. An increase in radioactive 
waste and accompanying environmental pollution 
may result from anthropogenic activities such as 
mining, agriculture, crude oil exploration, and nuclear 
power plant decommissioning. The redistribution of 
radioactive materials in the environment poses health 
and environmental concerns. Nuclear power is not 
renewable, but it is virtually inexhaustible due to the 
vast amount of source materials accessible. It emits 
no greenhouse gases, making it a great energy source 
from the standpoint of limiting climate change.

This bibliometric survey identifies hot spots of 
radioactive pollution from numerous sources, as well 
as potential health risks associated with radionuclide 
exposure. The type of remediation approach that 
might be used is influenced by environmental 
sustainability as well as economic costs. Future 
studies should concentrate on improving the 
efficiency of remediation procedures, particularly 
in densely populated residential areas. For the long-
term and efficient remediation of extremely polluted 
sites, an integrated method such as adsorption-
photocatalysis, coagulation–flocculation, and so on is 
required.

To find potential hot spots and protect the 
environment, it is important to analyze additional 
radionuclides, such as alpha- and beta-emitting 
radionuclides, globally in water and sediments. 
To conduct a full risk assessment and build 
effective radioactive waste management systems, 
a collaborative effort between worldwide and 

regional regulatory organizations, in collaboration 
with universities, is required. Furthermore, national 
government talks should focus on implementing 
regulations aimed at reducing the health concerns 
connected with the indiscriminate disposal of 
radioactive wastes. Radioactive materials can 
serve as fuel for nuclear power generation to meet 
global demands due to increased population and 
industrialization. However, adequate infrastructure 
must be put in place to avert catastrophic disasters.
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