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soils, with varying physicochemical characteristics, 
to assess their environmental and human health risks. 
The k values  (day−1) for the selected pesticides were 
inversely proportional to those of organic carbon 
(OC), silt, clay and Fe and Al oxides, and directly 
proportional to pH and sand content in soils. In con-
trast, the calculated values of  DT50 (days) of all the 
four pesticides in five soils positively correlated with 
OC, clay, silt and oxides of Fe and Al, whereas soil 
pH and sand content exhibited a negative correla-
tion. The calculated values of environmental indices, 
GUS and LIX, for the selected pesticides indicate 
their potential portability into water bodies, affect-
ing non-target organisms as well as food safety. The 
evaluation for human non-cancer risk of these pesti-
cides, based on the calculated values of hazard quo-
tient  (HQ) and hazard index  (HI), suggested that 
exposure of adults and children to soils, contaminated 
with 50% of initially applied concentrations, through 
ingestion, dermal and inhalation pathways might 
cause negligible to zero non-carcinogenic risks. The 
present data might help the stakeholders in applying 
recommended doses of pesticides in urban landscapes 
and regulatory bodies concerned in monitoring the 
overall environmental quality and implementing safe-
guard policies. Our study also clearly demonstrates 
the need for developing improved formulations and 
spraying technologies for pesticides to minimize 
human and environmental health risks.

Abstract Pesticides are the most cost-effective 
means of pest control; however, the serious concern is 
about the non-target effects due to their extensive and 
intensive use in both agricultural and non-agricul-
tural settings. The degradation rate constant (k) and 
half-life  (DT50) of four commonly used pesticides, 
glyphosate, 2,4-D, chlorothalonil and dimethoate 
were determined in five Australian urban landscape 
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Introduction

Globally, an average of three million tons of syn-
thetic pesticides is applied on annual basis in agri-
cultural and non-agricultural activities, resulting 
in unintentional toxicity to non-target biota (Fer-
nandes et  al., 2020; Shukla et  al., 2006). Intensive 
and improper use of these agrochemicals leads to 
soil and water contamination causing imminent 
environmental and health hazards (Ahmad et  al., 
2019; Fernandes et  al., 2020; Karimi et  al., 2021). 
The acute human health hazards like headaches, 
abdominal pain, nausea, vomiting, dizziness, skin 
and eye irritation, etc. are due to short-term expo-
sure to pesticides (Miah et al., 2014). Besides being 
possible human carcinogens, mutagens and acetyl-
cholinesterase inhibitors, most of these pesticides 
cause chronic toxicities like reproductive toxicity, 
genotoxicity, endocrine disruption, kidney damage, 
metabolic alterations, liver and bladder toxicity, 
gastrointestinal problems, etc. (EPA, 2017; Huang 
et  al., 2019; Ramakrishnan et  al., 2018; Zhang 
et al., 2015). Based on the joint report of UNEP and 

WHO, approximately 200,000 people die through-
out the world, and roughly 3 million are poisoned 
every year because of pesticides (Meftaul et  al., 
2020a; Pope et al., 1994). Though bulk amounts of 
pesticides are used in high-income countries, a vast 
majority (95%) of pesticide toxicity cases occur in 
developing nations due to lack of awareness, mis-
use, improper handling, etc. (Parven et  al., 2021; 
Yadav et al., 2015).

Nevertheless, several pesticides are extensively 
used at higher doses in urban agricultural and non-
agricultural settings that may result in increased 
contamination (Pino & Peñuela, 2011). In general, 
herbicides act as plant cell membrane disrupters 
besides being inhibitors of photosynthesis, pigment 
biosynthesis, lipid biosynthesis and amino acid syn-
thesis, while fungicides inhibit protein biosynthesis, 
ergosterol biosynthesis and mitochondrial respiration, 
and insecticides mostly affect muscle and nerves, 
energy production and eventually growth and devel-
opment of insect (Lushchak et al., 2018). The use of 
pesticides must ensure human and ecological safety 
from both the parent compounds and their hazardous 



1601Environ Geochem Health (2023) 45:1599–1614 

1 3
Vol.: (0123456789)

metabolites (Arias-Estévez et al., 2008). Indeed, deg-
radation is a vital process of reducing the levels of 
pesticide residues in soil (Hu et  al., 2018; Quintero 
et al., 2005). The process of pesticide transformation 
in soil mostly occurs through microbial degradation 
and abiotic degradation (hydrolysis, photolysis and 
oxidation), wherein biodegradation is dependent on 
the structure and physicochemical characteristics of 
both soils and pesticides (Cycoń et  al., 2017; Singh 
et  al., 2006). Pesticide degradation in soils yields 
metabolites of varying toxicities or sometimes results 
in complete mineralization (Singh et al., 2006). How-
ever, the environmental fate of pesticides depends on 
how strongly they are bound to the soil matrix and the 
degradation rate (Arias-Estévez et  al., 2008). Some 
pesticides that are insoluble in water have a tendency 
to get strongly sorbed to soil particles making them 
relatively unavailable for biodegradation and persist 
for longer periods thereby adversely affecting soil 
biology (Purnomo et  al., 2011; Wang et  al., 2013). 
The potential detrimental impacts of pesticides in soil 
include antagonistic effects on the population of soil 
microflora, alterations in activities of soil enzymes, 
changes in nitrogen balance of soil by inhibiting  N2 
fixation and ammonification, hostile effects on myc-
orrhizal symbiosis and nodulation in legumes, and 
eventually affecting soil fertility and plant growth 
(Das et al., 2016; Cycoń et al., 2017; El Alfy & Faraj, 
2017).

In urban agricultural activities that include home 
gardens, flowering and ornamental plants, large trees 
and non-agricultural settings such as golf courses, 
domestic lawns, garages, driveways, footpaths and 
other pavements, pesticides are extensively applied 
for controlling undesirable noxious weeds, woody 
species and other invasive species (Meftaul et  al., 
2020b). Moreover, the application rate of pesticides 
in urban landscapes worldwide is tenfold higher than 
in agricultural farms (USFWS, 2000). For example, 
the annual usage of pesticides on lawns is approxi-
mately 80 million pounds of active ingredients in the 
USA, wherein home and garden usage accounts for 
15, 10 and 8% of total insecticides/miticides, fungi-
cides and herbicides, respectively (Bush, 2018; Grube 
et  al., 2011). The range of organochlorine residues 
reported in urban soils was 0.0002–1243.68 mg  kg−1 
in Brazil (Fernandes et al., 2020), 0.01–62.80 µg  kg−1 
in Central India (Kumar et al., 2018), limit of detec-
tion (LOD)–182 ng   g−1 in Novi Sad, Serbia (Škrbić 

et al., 2017), 1.40–60.0 ng  g−1 in Nowshera, Pakistan 
(Zehra et  al., 2015), LOD–889.0  ng   g−1 in Roma-
nia (Ene et al., 2012), 4.0–1018.30 ng  g−1 in Europe 
(Holoubek et  al., 2009), 0.03–1282.58  ng   g–1 (Yang 
et  al., 2010) and 0.32–136.43  ng   g–1 (Yang et  al., 
2012) in Beijing, China. Indeed, the above concentra-
tions are considerably greater than reported in agri-
cultural soils, thus representing the higher risk factor 
in the urban areas (Fernandes et  al., 2020). Conse-
quently, children and pets could easily be exposed 
to a pesticide from the urban landscape, resulting in 
both acute and chronic health effects (Hoover, 2005).

The most frequently used pesticides in 
the urban environment include glyphosate 
(N-(phosphonomethyl) glycine), 2,4-D (2,4-dichlo-
rophenoxyacetic acid), dimethoate (O,O-dimethyl-S-
[2-(methylamino)-2-oxoethyl] dithiophosphate) and 
chlorothalonil (2,4,5,6-tetrachlorobenzene-1,3-di-
carbonitrile) to control pests and diseases (Meftaul 
et  al., 2020a). In fact, urban soil properties are con-
siderably altered due to anthropogenic activities and 
are distinct from other natural or agricultural soils 
(Bullock & Gregory, 2009; Yu et  al., 2012). The 
modifications that occur in the soil during urban 
infrastructure development are ped breakdown, 
micropore collapse and increase in bulk density, all 
of which alter the microbial activities and biomass, 
and soil organic matter (OM) quality (Pouyat et  al., 
2002; Scharenbroch et  al., 2005). The application 
of nutrients and  OM to soil greatly influences the 
activity and structure of fungal and bacterial popu-
lations through increased metabolism, consequently 
affecting pesticide degradation (Marin-Benito et  al., 
2012). Although pesticide application in the urban 
environment has been intensive throughout the globe 
(Eigenbrod & Gruda, 2015; Okada et  al., 2020), 
the degradation and risks of pesticide exposure are 
poorly understood in urban landscape soils. Gener-
ating such detailed knowledge on the degradation of 
most frequently used pesticides, such as glyphosate 
and 2,4-D (herbicides), dimethoate (insecticide) and 
chlorothalonil (fungicide), in urban landscape soils 
is greatly warranted in assessing their potential haz-
ards in human and environmental health. Therefore, 
the current novel investigation aimed to determine 
the half-life  (DT50) of the above four extensively used 
pesticides in five urban landscape soils with vary-
ing physicochemical characteristics for assessing the 
environmental and human health risks.
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Materials and methods

Chemicals

Four pesticides, viz. glyphosate, 2,4-D, chlorothalonil 
and dimethoate of ≥ 98% purity, were obtained from 
Merck. Acetonitrile and methanol (LC–MS grade), 
and certified standard chemicals (MS grade, ≥ 99.9% 
purity) like  CaCl2, KCl, formic acid, acetic acid, 
phosphoric acid, ammonium acetate and ammo-
nium formate were also purchased from Merck. The 
commercial formulations of the selected pesticides, 
glyphosate (100 g  L‒1 isopropylamine salt) and 2,4-D 
amine 625 (625 g  L‒1 dimethylamine and diethanola-
mine salts), chlortan 720 (720 g  L‒1 chlorothalonil), 
dimethoate (400  g  L‒1 dimethoate), were obtained 
from CRT Raymond’s Warehouse (suppliers of pes-
ticide products in Australia). Aliquots of 1000, 160, 
133.33 and 250 μL of the commercial formulations 
were diluted to 1.0 L with Milli-Q water to obtain 
100 mg  L‒1 stock solution of glyphosate and 2,4-D, 
chlorothalonil and dimethoate, respectively. Then, 
1.0 mL of each pesticide solution (100 mg  L‒1) was 
applied to 20 g soil to provide a final concentration of 
5 mg  L‒1.

Soil sampling and analysis

Five fresh urban soils, dedicated initially for growing 
vegetables, lawn grass, flowers, ornamental plants, 
etc., were obtained from the surface (0–15  cm) in 
the Hunter region, Australia (Fig. S1). Five bulk soil 
samples were collected randomly from each location 
and mixed thoroughly to obtain a composite sample. 
The soil samples were assigned with specific IDs 
(Table S1), air-dried, sieved through a 2-mm-diame-
ter mesh and stored at 21 ± 1 °C. The physicochemi-
cal characteristics of each urban soil were deter-
mined using triplicate (n = 3) samples (Table  S1). 
The hydrometer method (Gee & Or, 2002) was fol-
lowed to determine the soil texture, in terms of % 
sand, silt and clay. Electrical conductivity (EC) and 
soil pH were determined using a pH meter (Laqua, 
Horiba Scientific) in a suspension containing 5-g soil 
and 25 mL Milli-Q water. The percentage of soil OC 
was determined in a LECO analyser equipped with a 
non-dispersive infrared detector (LECO Corporation, 
Australia). Fe and Al were extracted from 0.50 g soil 
samples using 5 mL aqua regia solution, digested in a 

Microwave Digestion System (MARS 6™, USA) and 
measured by ICP-OES (PerkinElmer Pvt Ltd, Singa-
pore). Following Fourier transform infrared spectros-
copy (FT-IR, Agilent Technologies, USA), the func-
tional groups of soil organic matter were analysed 
(Fig. S2). The soil mineral composition was deter-
mined using peaks from X-ray diffractometer (PANa-
lytical, the Netherlands). The physicochemical char-
acteristics of the five selected urban landscape soils 
are shown in Table S1.

Pesticide degradation experiments

A set of 20-g portions of each soil, contained in cen-
trifuge tubes covered with perforated aluminium 
foil, was stored in dark at 21 ± 1 °C for 30 days, and 
moisture content of the soil was maintained at 15% 
on weight basis before the start of degradation stud-
ies (Hiller et al., 2010). Soils were then spiked with 
1.0  mL of 100  mg  L‒1 aqueous solutions prepared 
from commercial formulations of the selected pes-
ticides to provide a final pesticide concentration of 
∼5 mg  kg‒1 active ingredient in the soil matrix. The 
soils were thoroughly mixed and allowed for two 
h for equilibration. The soil moisture content was 
maintained at 70% of water-holding capacity by the 
addition of appropriate aliquots of Milli-Q water and 
incubated in dark at 21 ± 1 °C to check for microbial 
degradation (Hiller et al., 2010). Another set of tubes 
with soil-applied pesticides was incubated at ‒20 °C 
in a cold room to check for chemical degradation. 
A set of tubes that received no pesticides served as 
control. Duplicates of each soil sample (10  g) were 
taken at 0, 3, 7, 10, 15, 20, 30, 45, 60, 90, 120 and 
150  days of incubation to extract and determine the 
residues of pesticides remained in soil samples. Pesti-
cides were extracted by shaking the soil samples with 
50 mL of methanol for three h. After centrifuging at 
2750 × g for 15 min, 2 mL aliquots from supernatants 
were used for the analysis of glyphosate, 2,4-D and 
dimethoate using LC–MS, and chlorothalonil follow-
ing LC-DAD system.

Analytical methods

Concentrations of glyphosate, 2,4-D and dimethoate 
in aliquots of the extracts were determined using 
an LC–MS (Agilent 1260/6150B, Agilent Tech-
nologies, USA) fitted with Zorbax Eclipse plus 
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C18 column of 4.6 × 150 mm and 3.5 μm dia (Agi-
lent Technologies, USA). The set parameters for 
single quadrupole mass spectrometer were as fol-
lows: oven temperature 60  °C (glyphosate) and 
35 ℃ (2,4-D and dimethoate), capillary voltage of 
4000 V, drying gas flow of 12.0 mL  min‒1 at 300 ℃, 
100 V fragmentor voltage, 35 psi nebuliser pressure 
and sheath gas flow of 3.0 mL  min−1 at 150 °C, neg-
ative mode with SIM ion 124 → 168 amu (glypho-
sate), 219 → 221 amu (2,4-D) and positive mode 
with 125 → 230 amu (dimethoate). For analysis 
of glyphosate, mobile phases used were 1% aque-
ous acetic acid (A) and 1% acetic acid in methanol 
(B) with a flow rate of 0.4  mL   min−1, following a 
gradient starting with 95% B at 0.0 → 1.5 min, lin-
ear ramping down to 5% B at 2.5 → 6.5  min and 
then increased to 95% B at 8.0  min with a post-
run time of 4.0  min (Kaczyński & Łozowicka, 
2015). The mobile phases included for 2,4-D were 
10 mM aqueous ammonium acetate (A) and meth-
anol (B), and the gradient used was as described 
earlier (Meftaul et  al., 2020b). The mobile phases 
for dimethoate were 10  mM aqueous ammonium 
formate (A) and methanol (B) (Utture et  al., 2012; 
Meftaul et al., 2020c). The data obtained were pro-
cessed using Agilent OpenLAB CDS ChemStation 
software. The standard curves were linear over the 
tested concentration range of glyphosate, 2,4-D and 
dimethoate with R2 values of 0.9958, 0.9980 and 
0.9989, respectively. The values of LOD (limit of 
detection) and LOQ (limit of quantitation) obtained 
were 0.0039 and 0.0078  mg  L‒1, respectively. The 
mean recoveries (n = 3) of spiked glyphosate, 2,4-D 
and dimethoate ranged from 0.0078 to 1.0 mg  L‒1, 
and % recoveries were in the range of 83.84–101.01, 
87.98–117.94 and 96.42–107.18, respectively.

LC-DAD system (Agilent Technologies, USA) 
with the detector wavelength set at 233 nm was used 
to quantify chlorothalonil from the aqueous samples 
(Báez et al., 2017). The mobile phase includes 0.01 M 
aqueous solution of phosphoric acid (A) and acetoni-
trile (B) with a flow rate of 0.50 mL  min‒1. The injec-
tion volume was 30 μL with a gradient involving 90% 
B at 0.0 → 4.0 min, 98% B at 4.0 → 9.0 min, 20% B 
at 9.0 → 10.0  min, then 90% B at 10.0 → 12.0  min 
followed by a post-run for 1.0  min  (Meftaul et  al., 
2021b). The data obtained were processed using Agi-
lent OpenLAB CDS ChemStation software. A linear 
standard curve with a correlation coefficient (R2) of 

0.9989 was obtained over the concentration range 
used. The LOD and LOQ values for chlorothalonil 
were 0.0078 and 0.0156  mg  L‒1, respectively. The 
mean recoveries (n = 3) of chlorothalonil ranged from 
0.0156 to 1.0  mg  L–1, whereas the recoveries were 
in the range of 93.43–105.84%. Thus, the methods 
adopted here appeared to be reliable and accurate to 
quantify all four pesticides in different urban land-
scape soils.

Data analysis

The rate of degradation of pesticides was calculated 
using the following equation:

where  Ct and  C0 are the amounts (mg  kg‒1) of pes-
ticide remaining in soil at a given time t and zero, 
respectively, and k is the degradation rate constant 
 (day‒1). The  DT50, which represents the time (days) 
needed for 50% disappearance of the initial amount 
of pesticide, was calculated from k using the equation 
(Hiller et al., 2012):

Environmental health risk assessment

The groundwater ubiquity score (GUS) and leachabil-
ity index (LIX) were calculated using the Eqs. (3) and 
(4), respectively (Hall et al., 2015; Martins et al., 2018; 
Peruchi et al., 2015; Spadotto, 2002).

where  DT50 is the half-life (days) of pesticide in soil, 
k is the degradation rate constant  (day−1) and Koc is 
the coefficient of organic carbon (L  g−1) in soil. Kd is 
the solid–aqueous phase distribution coefficient (Hall 
et al., 2015).

(1)lnCt = −kt + lnC
0

(2)DT
50

=
ln2

k

(3)GUS = logt1∕2(4 − logKoc)

(4)LIX = exp(−k × Koc)

(5)Koc =
Kd

%OC
× 100
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Human non‑cancer risk assessment

The potential non-cancer health risk for adults and 
children was determined following the widely adopted 
methods of USEPA (2020). The exposure pathway of 
pesticide from contaminated soil via ingestion was used 
while considering human health risk. The non-dietary 
chronic daily intake  (CDIi) of pesticide (mg  kg−1  day−1) 
via the incidental ingestion of the contaminated soil in 
adults and children was calculated based on the follow-
ing equations (Bhandari et al., 2020).

where  Cs (mg  kg−1) is the concentration of pesti-
cide residue in the soil after 50% degradation, EF is 
the exposure frequency (days  yr−1), ED is the expo-
sure duration (yrs),  IRi is the rate of contaminated 
soil ingestion (mg  day−1), AT is the average lifetime 
(days), BW is the average body weight (kg) and CF is 
the conversion factor (kg  mg−1).

where  CDId is the estimated non-dietary CDI (mg 
 kg‒1   day‒1) of pesticide-contaminated soil particles 
via dermal contact, DA is the exposed dermal area 
 (cm2  day‒1), DAF is the dermal adherence factor (mg 
 cm‒2) for soil and AF (dimensionless) is the dermal 
absorption factor.

where  CDIih is the estimated non-dietary CDI (mg 
 kg−1   day‒1) of pesticide-contaminated soil particles 
via inhalation pathway,  IRih is the rate of inhalation 
 (m3  day‒1) and PEF is the particle emission factor 
 (m3  kg‒1).

The non-cancer risk of pesticides is expressed as 
hazard quotient (HQ), whereas hazard index (HI) is the 
sum of HQ of individual pesticides, which was calcu-
lated following the equation (Afrin et al., 2021; Nisha 
et al., 2021; USEPA, 2020):

(6)CDIi =
Cs × EF × ED × IRi

AT × BW
× CF

(7)CDId =
Cs × DA × DAF × AF × EF × ED

AT × BW
× CF

(8)CDIih =
Cs × EF × ED × IRih

PEF × AT × BW

(9)HQ =
CDI

RfD

where RfD is the reference dose (mg  kg‒1   day‒1) 
of a pesticide. The maximum acceptable reference 
doses (RfDs) in humans for glyphosate, 2,4‒D, chlo-
rothalonil and dimethoate considered are 1 ×  10‒1, 
1 ×  10‒2, 1.5 ×  10‒2 and 2 ×  10‒4  mg   kg‒1   day‒1, 
respectively (MMDH, 2017; OEHHA, 2017a, 2017b; 
USEPA, 2016; USEPA, 1987a, 1987b).

Statistical analysis

The experimental data obtained were processed 
using Microsoft Excel (Excel 2016). To establish 
the degree of correlation (P < 0.05) between mul-
tiple soil properties (predictors) and  DT50 values 
of four pesticides in five urban soils, multivariate 
analysis was carried out using JMP pro 14/2021 
software. Principle component analysis (PCA) was 
performed to determine the potential linear rela-
tionships (P < 0.05) between environmental param-
eters, soil Kd, GUS, LIX and  DT50 values of the 
pesticides.

Results and discussion

Degradation of selected pesticides in urban landscape 
soils

The data on pesticide degradation rate constant, k 
 (day‒1), and calculated  DT50 values of four pesticides 
(two herbicides, one insecticide and one fungicide) in 
five urban landscape soils are presented in Fig. 1 and 
Table  1. Degradation rate constants of glyphosate, 
2,4-D, chlorothalonil and dimethoate in the selected 
urban soils were in the range of 0.009 (ATC)–0.041 
(MAR). The values of coefficient of determina-
tion (R2) for the pesticides in five soils were in the 
range of 0.908–0.982, 0.871–0.971, 0.901–0.960 and 
0.843–0.977 for glyphosate, 2,4-D, chlorothalonil 
and dimethoate, respectively (Table  S2). The calcu-
lated  DT50 values, which can vary with the environ-
mental conditions, soil depth and microbial activities 
(Oliveira et  al., 2013), for glyphosate, 2,4-D, chlo-
rothalonil and dimethoate in five urban landscape 
soils were in the range of 53–78, 32–75, 17–32 and 

(10)HI =
∑

HQPesticide
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24–36, respectively (Table  1). Thus, the half-life of 
pesticides in soils tested followed the order: g lyp hos 
ate > 2,4-D > dimethoate > chlorothalonil.

The present results of  DT50 values are in conform-
ity with the half-lives reported for glyphosate (Mef-
taul et al., 2020d), 2,4-D (Jote, 2019), chlorothalonil 
(Van Scoy & Tjeerdema, 2014) and dimethoate 
(Martikainen, 1996). The slower degradation rate 
and longer  DT50 values observed for glyphosate and 
2,4-D might be due to their higher sorption capacity 
to soil minerals or dissolved OC limiting the access 
of pesticides to microbial degradation. The degra-
dation of pesticides could be largely affected by the 
extent of soil organic matter content (Marin-Benito 
et  al., 2012). However, some organic amendments 
may decrease the degradation rate of pesticides by 
augmenting the sorption capacity (Fernandes et  al., 
2006; Rodríguez-Cruz & Lacorte, 2005), whereas 
some of them favour degradation through stimulat-
ing microbial activity (Kadian et  al., 2008; Marin-
Benito et al., 2012). In contrast, the rapid degradation 
rate of chlorothalonil and dimethoate associated with 

shorter  DT50 values could be due to their lower sorp-
tion capacity to soil matrix (Dhareesank et al., 2005). 
Generally, pesticides are known to bind to soil par-
ticles immediately after the entry or dissolve in soil 
solution and then desorb making them readily avail-
able for microbial degradation (Kočárek et al., 2018). 
The reason for relatively weak/irreversible bonding 
of pesticides and their availability in soil solution 
for biodegradation could be due to the occurrence of 
undecomposed or partially decomposed OC that was 
observed floating in the centrifuge tubes. In some 
cases, pesticides sorbed on to dissolved OC could 
increase the bioavailability and consequent biodegra-
dation (Marin-Benito et al., 2012).

Impact of urban soil properties on pesticide 
degradation

Degradation or transformation of a pesticide is 
strongly influenced by its bioavailability and phys-
icochemical properties of soil (Singh et  al., 2006). 
Some pesticides are strongly bound to soil particles, 

Fig. 1  Ct/C0 vs degradation time of (a) glyphosate, (b) 2,4-D, (c) chlorothalonil and (d) dimethoate in five urban landscape soils
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become unavailable for biodegradation and persist for 
extended periods in soil (Purnomo et al., 2011; Wang 
et al., 2013). The degradation rate constant, k  (day−1) 
of glyphosate, 2,4-D, chlorothalonil and dimethoate 
in five urban soils was inversely proportional to the 
content of soil organic carbon (OC). For instance, 
slower degradation followed by higher  DT50 values 
of these pesticides were observed in soils ATC, TAR 
and FLE that contained higher amounts of OC (7.66, 
2.02 and 1.29%, respectively) as compared to other 
two soils (MAR and SAL) (Table S1). Also, the pres-
ence of higher amounts of clay in soils ATC, TAR 
and FLE was found to be the reason for decreased 
rate of pesticide degradation and higher  DT50 val-
ues. Thus, soil OC together and clay content seem to 
be the predominant factors that play a pivotal role in 
pesticide degradation rate in urban soils since bound 
residues are not readily available for further transport 
and degradation (Koskinen et al., 2001). These obser-
vations clearly corroborate with those reported for 
agricultural soils by Purnomo et al. (2011) and Wang 
et al. (2013). Though the selected urban soils exhib-
ited varying levels (0.21–7.66%) of OC (Table  S1), 
the presence of undecomposed or partially decom-
posed OC that was floating in the centrifuge tubes 
could be the fact for almost similar degradation rates 
of pesticides in the tested soils. Moreover, it has been 
well established that pesticides are strongly bound to 
well-decomposed organic carbon making them una-
vailable for biodegradation (Ren et al., 2018).

The reason for strong binding of pesticides to OC 
observed in the selected soils might be the occur-
rence of varying functional groups such as O–H, 
C = O, C–H and C = C (Fig. S2) that have electro-
static/covalent/H bonds. In particular, C = O and C–H 
groups are more reactive and are implicated in solu-
bility, cation exchange, polarity, chemical reactivity 
and wettability (Meftaul et  al., 2021a, 2021b). Fur-
thermore, the negatively charged clay minerals con-
sist of tetrahedral silicate and octahedral aluminate 
groups that might react with pesticides via electro-
static interaction or cation exchange. Pesticide mol-
ecules become immobilized with soil clay minerals 
by forming surface complexes with metal ions (Barja 
& dos Santos, 2005). The extent of pesticide degra-
dation was significantly less, followed by an increase 
in  DT50 values of pesticides in soils containing higher 
amounts of silt, and Fe and Al oxides. The soils TAR, 
ATC and FLE that contained higher amounts of silt 

(55, 41.20 and 23.80%, respectively) showed a slower 
rate of pesticide degradation and prolonged  DT50 val-
ues when compared with soils MAR and SAL having 
16.20 and 1.20% silt (Table S1). The rate of pesticide 
degradation was low in soils that contained higher 
amounts of Fe and Al oxides in the clay fraction 
(Okada et  al., 2020) since negatively charged pesti-
cides molecules have strong affinity towards transi-
tion metals to form complexes in soil solutions (Barja 
& dos Santos, 2005). Thus, the degradation rate of 
pesticides was slower in soils that contained higher 
amounts of OC, clay, silt and oxides of Fe and Al, 
while OC and clay were the significant contributors.

The urban landscape soils used in the present study 
had similar types of minerals, while quartz was the 
predominant mineral constituent among albite, zeo-
lite, sodalite, dolomite, orthoclase, hyalophane, etc., 
and their role on degradation of pesticides was almost 
the same. In contrast, urban soils exhibited higher 
pH (slightly alkaline) with more sand that increased 
the degradation rate of pesticides. In fact, soils with 
higher pH decrease the partition of pesticides mol-
ecules probably due to electrostatic repulsion caused 
by the presence of more net negative surface charges 
of soil minerals (Okada et al., 2020). In most cases, 
the degradation rate was slower in soil ATC having 
pH 5.8, and faster degradation was observed in soil 
MAR with pH 8.0. The pesticide degradation rate 
was higher in soils SAL and MAR with 97.60 and 
76.30% sand, whereas it was slower in soil ATC hav-
ing 51.30% sand (Table S1).

The data on multivariate analysis, performed to 
further establish the interactions between soil char-
acteristics (predictors) and  DT50 values of pesticides, 
are presented in Fig.  2. Among all the predictors 
tested, OC (R2 = 0.276), %clay (R2 = 0.027), %silt 
(R2 = 0.073) and oxides of Fe (R2 = 0.101) and Al 
(R2 = 0.129) exhibited a significant positive correla-
tion (P < 0.05) with  DT50 values (R2 = 1.0) of all the 
selected pesticides. In contrast, soil pH (R2 = ‒0.08, 
P < 0.05) and sand content (R2 = ‒0.069) showed a 
negative correlation (P < 0.05) towards  DT50 values 
of the pesticides. These observations indicate that the 
degradation of pesticides in soils was affected by sev-
eral characteristics, including soil OC, clay and silt 
content, oxides of Fe and Al, and soil pH. However, 
the soil parameters showed a statistically significant 
negative correlation with the rate of pesticide degra-
dation in most cases. Our finding clearly suggests that 
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most of the soil properties are inversely correlated 
with the degradation rate and positively correlated 
with the observed  DT50 values of pesticides.

Environmental health risk assessment

Pesticide contamination of water bodies is a growing 
global concern because it affects non-target organ-
isms, drinking water quality and food safety. Assess-
ing the leaching potential is crucial while considering 
the environmental risk of pesticides, which is deter-
mined by Koc based on Kd values. Using the values of 

 DT50 and Koc, the environmental indices such as GUS 
and LIX were calculated, and the data are presented 
in Table 1. The Kd values determined for glyphosate, 
2,4-D, chlorothalonil and dimethoate in the selected 
urban soils were in the range of 1.19–5.95 (Table 1), 
while the Koc values ranged from 39.57 to 1870.37 
(Table S2).

The range of calculated GUS values for glyphosate, 
2,4-D, chlorothalonil and dimethoate was 1.57–3.42, 
1.10–4.50, 1.53–3.18 and 1.72–3.47, respectively 
(Table  1). Generally, soils could be considered as 
leachers, transitional and non-leachers if the GUS 

Fig. 2  Relationship between soil properties (predictors), and half-life  (DT50) values (outcome variable) of four pesticides in five 
urban landscape soils
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values are > 2.80, 1.80–2.80 and < 1.80, respectively 
(Martins et  al., 2018; Meftaul et  al., 2020c). Thus, 
soils ATC is considered as transitional, TAR and 
FLE soils are the potential leachers, and soils SAL 
and MAR are the non-leachers for glyphosate. For 
2,4-D, soils ATC and FLE are the potential leachers, 
while soil TAR is the transitional, and soils MAR and 
SAL are the non-leachers. In case of chlorothalonil, 
soil ATC is the potential leachers, while soils TAR 
and FLE are the transitional, and MAR and SAL are 
the non-leachers. Soils ATC and MAR are the poten-
tial leachers, soils TAR and FLE are the transitional, 

and SAL is the non-leacher for dimethoate. Thus, our 
findings indicate the high leaching potential of all the 
four pesticides in urban soils, posing potential envi-
ronmental hazards through contamination of water 
sources.

The calculated LIX values for glyphosate, 2,4-
D, chlorothalonil and dimethoate were in the 
range of ˂0.01‒0.25, ˂0.01‒0.69, ˂0.01‒0.19 
and ˂0.01‒0.36, respectively (Table  1). Gener-
ally, LIX values vary between 0.0 and 1.0, which 
indicate the least and profuse leaching poten-
tial, respectively (Martins et  al., 2018; Mef-
taul et  al., 2020a). Accordingly, leaching poten-
tial of the tested urban soils followed the order: 
TAR > FLE > ATC > SAL > MAR for glypho-
sate; ATC > FLE > TAR > SAL > MAR for 2,4-
D; ATC > FLE > TAR > SAL > MAR for chloro-
thalonil; and ATC > MAR > FLE > TAR > SAL for 
dimethoate. These findings indicate the moderate 
to least leaching potential of the selected pesticides, 
which might pose environmental hazards by con-
taminating both surface and groundwater reservoirs. 
Likewise, the calculated values of both GUS and 
LIX clearly suggest that the pesticides leach into 
water sources from soil surface in urban landscapes 
and pose a potential threat to the health of aquatic 
organisms and other non-target biota.

To further establish the interaction effects of mul-
tiple environmental parameters (predictors) and  DT50 
values of pesticides, principal component analysis 
(PCA) was performed and the results are presented 
in Fig. 3. PCA is an important multivariate analysis 
that converts the bulk of data input variables to some 
common factors that are correlated (Shahid et  al., 

Fig. 3  PCA score plots showing relationship among environ-
mental parameters and half-life  (DT50) values of four pesti-
cides in five urban landscape soils

Table 2  Constant 
parameters and their values 
for the estimation of non‒
carcinogenic risk in adults 
and children (based on data 
from Bhandari et al., 2020)

S.no. Exposure factor Human adults Children

1 Ingestion rate  (IRi) 100 mg  day‒1 100 mg  day‒1

2 Inhalation rate  (IRih) 17.50  m3  day‒1 17.50  m3  day‒1

3 Body weight (BW) 62 kg 12 kg
4 Averaging lifetime (AT) 70 years (25,550 days) 70 years (25,550 days)
5 Exposure frequency (EF) 350 days  yr‒1 350 days  year‒1

6 Exposure duration (ED) 30 years 3 years
7 Exposed dermal area (DA) 5700  cm2  day‒1 1050  cm2  day‒1

8 Dermal adherence factor (DAF) 0.07 mg  cm‒2 0.20 mg  cm‒2

9 Dermal absorption factor (AF) 0.13 mg  cm‒2 0.13 mg  cm‒2

10 Particle emission factor (PEF) 1.36 ×  109  m3  kg‒1 1.36 ×  109  m3  kg‒1

11 Conversion factor (CF) 1 ×  10‒6 kg  mg‒1 1 ×  10‒6 kg  mg‒1
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2020). Among all the predictors, Koc (R2 = 0.083), 
GUS (R2 = 0.365) and LIX (R2 = 0.403) exhibited a 
significant positive correlation (R2 = 1.0, P < 0.05) 
with  DT50 values of pesticides. The PCA converted 
the whole data into four major component factors. 
The corresponding variance values for the predic-
tors and  DT50 values were 24.51, 17.60, 6.33 and 
0.48%, respectively. The calculated eigenvalues for 
the above predictors were 1.22, 0.88, 0.32 and 0.03, 
respectively (Fig. 3). The first two principal compo-
nents were attributed to approximately 51.08% of the 
cumulative variance with an eigenvalue of 2.55. In 
contrast, Kd values negative correlated (R2 = ‒0.389, 
P < 0.05) with  DT50 values of pesticides.

Human health risk assessment

Health risk for adults and children, in terms of non-can-
cer ailments associated with the exposure to pesticide-
contaminated soil, was evaluated using widely adopted 
equations and constant parameters (Table 2). The data 
on non-dietary chronic daily intake (CDI) of pesticide 
from contaminated soils through ingestion, dermal 
and inhalation pathways and well-established USEPA 
models were used to calculate the potential non-cancer 
risks in adults and children caused by pesticide expo-
sure. The non-cancer risk of pesticide exposure through 
a pathway is denoted as the hazard quotient (HQ), 
which is the ratio of the estimated average non-dietary 
CDI value and the RfD of a contaminant (Brum et al., 
2021). The data obtained for non-cancer risk associ-
ated with the exposure to pesticide-contaminated urban 
soils after 50% degradation are presented in Table 1 and 
Table  S2. The calculated values of non-dietary CDI 
(mg  kg‒1  day‒1) for adults upon exposure to pesticide-
contaminated urban soils through ingestion, dermal and 
inhalation pathways for the four pesticides were signifi-
cantly higher than those for children (Table S2). Simi-
larly, the HQ values determined for glyphosate, 2,4-D, 
chlorothalonil or dimethoate exposure of adults via 
ingestion, dermal and inhalation pathways in five urban 
soils were significantly higher than those observed 
for children (Table 1). On the other hand, the HI val-
ues of pesticides in five urban landscape soils obtained 
for adults via ingestion, dermal and inhalation path-
ways were significantly higher than those for children 
(Table S3). If the value of HQ or HI is < 1, it indicates 
that the people exposed to pesticides are safe, whereas 
a value > 1 indicates a non-cancer health risk (Bhandari 

et al., 2020; Parven et al., 2021). The HQ and HI val-
ues for the selected four pesticides in five urban soils 
were several times lower than the recommended thresh-
old values of HQ and HI. Our present data demonstrate 
that human exposure to pesticide residues after 50% 
degradation in urban soils through ingestion, dermal 
and inhalation pathways would cause extremely low or 
unnoticeable non-cancer risks for adults and children. 
Human non-cancer risk estimates of pesticide residues 
in urban soils were also lower than those reported in 
Central India by Kumar et al. (2018), in Novi Sad, Ser-
bia, by Škrbić et al. (2017) and in Nepal by Bhandari 
et al. (2020). However, there could be a health hazard to 
pets and children if exposed immediately after pesticide 
application to the ornamental plants, lawns and parks in 
urban landscapes (Meftaul et al., 2021a). To our knowl-
edge, this is the first comprehensive study that investi-
gated the possible hazards of human and environmental 
health associated with four pesticides used extensively 
in urban landscapes.

Conclusion

The current novel study determined the values of 
degradation rate constant, k, and  DT50 of four pes-
ticides in five urban landscape soils to establish the 
associated human and environmental health risks. 
The k values of four pesticides significantly corre-
lated with soil properties: a positive correlation with 
pH and sand content and a negative correlation with 
OC, clay, silt and oxides of Fe and Al. On the con-
trary, the calculated  DT50 values of four pesticides 
in urban soils were positively correlated with OC, 
clay, silt and oxides of Fe and Al, while a negative 
correlation was evident with soil pH and sand con-
tent. The environmental risk assessment, in terms of 
GUS and LIX indices of glyphosate, 2,4-D, chloro-
thalonil and dimethoate indicated the portability of 
pesticides from the soil surface to water bodies that 
might affect non-target biota. Human non-cancer 
risk of pesticides, based on calculated values of HQ 
and HI indices for adults and children via ingestion, 
dermal and inhalation pathways, suggested that 
exposure to pesticide-contaminated soils, after 50% 
degradation, might cause zero or negligible non-
carcinogenic risks. To minimize the exposure risks 
and safeguard the environmental and human health, 
improved formulations with microbially derived 
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pesticides should be applied in urban landscapes. 
In addition, precision band spraying might limit the 
pesticide usage and its transport besides avoiding 
the build-up of resistant target organisms.
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