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Abstract In this study, carbon emissions from

agricultural energy consumption (CEAEC) are fully

analyzed using data from the Yangtze River Economic

Belt (YEB) between 2000 and 2017. First, generalized

LMDI is adopted to decompose the drivers of CEAEC

into five components. Then, the decoupling indicator

and the decoupling effort indicator are constructed to

quantify the decoupling degrees and examine the

government’s emission reduction efforts, respectively.

The results show that (1) CEAEC in the YEB has

shown a phased increase, reaching a peak at

1732.25104t in 2012. Except for some decreases

found in Shanghai, Chongqing, and Guizhou, it is

shown that all provinces’ CEAEC have risen to

varying degrees. In contrast, the intensity of CEAEC

in the YEB has been declining since 2005. (2) The

economic output effect acts as the major contributor to

the growth of CEAEC, followed by the population

effect. In contrast, both the energy intensity effect and

the energy structure effect are the primary reasons for

reductions in CEAEC. The spatial difference in

CEAEC in the YEB increased significantly from

2000 to 2017. (3) There was an alternating change

from decoupling to coupling and then to negative

decoupling from 2000 to 2017. Based on the conclu-

sions mentioned above, it is proposed that the

formulation of low-carbon agricultural development

strategies should consider the structural adjustment of

agricultural energy consumption and the advance-

ments of agricultural technology.

Keywords The Yangtze River Economic Belt �
Carbon emissions from agricultural energy

consumption � LMDI � Decoupling index � Temporal

and spatial characteristics

Introduction

According to the IPCC’s Fifth Assessment Report, the

global average temperature increased by approxi-

mately 0.85 �C between 1880 and 2012 (IPCC, 2014).

Agriculture is one significant source of anthropogenic

greenhouse gas (GHG) emissions (Lynch, 2019). A

report published on the United Nations website on

December 30, 2019, titled ‘‘Agricultural sector plays a

pivotal role in mitigating climate change,’’ shows that

25% to 30% of global greenhouse gas emissions come
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from agriculture and land. Therefore, it is necessary to

consider agricultural economic benefits and environ-

mental friendliness and to ultimately achieve sustain-

able agricultural development. Reducing agricultural

carbon emissions is an essential part of improving

agriculture’s ability to respond to global warming.

Climate-smart agriculture should reshape conven-

tional agricultural production systems to improve

global food security (Lipper et al., 2014).

As one of the largest agricultural economies,

China’s greenhouse gas emissions from the agricul-

tural sector represent approximately 17% of its total

emissions, among which the CH4 and NO2 produced in

agricultural production account for 50% and 92%,

respectively (Rebolledo-Leiva et al., 2017). The

energy consumed in the agricultural sector of China

has been rising. One report from the Lawrence

Berkeley National Laboratory’s China Energy Group

showed that China’s agricultural energy consumption

was 77.99 million Tce in 2010, and it is forecasted that

China’s total agricultural energy usage will increase to

approximately 161.61 million Tce by 2025 (Fei & Lin,

2017). The primary element affecting agricultural

energy usage is the increasing popularity of agricul-

tural mechanization (Xu et al., 2020), and thus the

continuous promotion of agricultural mechanization

in China will unavoidably increase energy consump-

tion in the agricultural sector (Jiang et al., 2020).

The Chinese government made a solemn commit-

ment to decrease carbon emissions intensity by

40–45% by 2020 compared with its 2005 status,

demonstrating the Chinese government’s determina-

tion to deal with global climate change. It is vital to

coordinate the connection between agricultural output

and carbon emissions and thereby formulate reason-

able emission reduction policies. As one of the three

key growth engines to ensure China’s future economic

development, the Yangtze River Economic Belt

covers 2.05 million square kilometers, including 11

provinces from west to east; it is a favorable location

for agriculture, as it holds 36% of the country’s water

resources. In 2017, the YEB had a gross value of

agricultural production of 4570.2 billion Yuan, which

contributed approximately 42% of China’s gross

domestic product. Therefore, the YEB is chosen as a

case study to calculate agricultural carbon emissions

from energy consumption and identify its spatiotem-

poral characteristics.

The rest of this study is organized as follows. The

second part presents a review of the related literature

on factors affecting carbon emissions and the rela-

tionship between activity output and carbon emissions

from energy consumption in the agricultural sector.

The third part describes the data sources and presents

the theoretical models. The fourth part reports and

discusses the study results on agricultural carbon

emissions and their driving elements. The fifth section

makes some concluding remarks and proposes specific

policy implications.

Literature review

Calculating carbon emissions from agricultural energy

consumption and identifying the impacting elements

is a critical task under the scenario of carbon

neutrality. Currently, an increasing number of studies

are concerned with the factors affecting the emissions

of carbon dioxide (Sun et al., 2021). The focus of

existing research has gradually changed from unilat-

eral to multidimensional analyses of agricultural

ecosystems. (Li et al., 2016) measured the carbon

emissions from agricultural production in the Euro-

pean Union, adopted the Shapley/Sun index to

decompose their driving effects into the carbon

emission factor and energy intensity and found that

energy intensity was the key driver behind dropping

agricultural carbon emissions. (Nwaka et al., 2020)

identified the linkage between agricultural carbon

emissions and economic growth among 15 ECOWAS

countries in West Africa by adopting quintile decom-

position techniques and showed that heterogeneity

existed in the conditional drivers with respect to

environmental quality. (Wang et al., 2014) adopted the

LMDI model to investigate the primary drivers

dominating energy usage in China between 1991 and

2011 and recognized that the energy intensity effect

had the primary impact on reducing energy consump-

tion. Similarly, (Xiong et al., 2016) identified that the

labor factor, labor productivity, and carbon intensity

were the key drivers producing agricultural carbon

emissions. (Asumadu-Sarkodie & Owusu, 2017) used

the partial least-squares regression model to investi-

gate the elements affecting environmental pollution

from 1971 to 2011 and found that there was a linear

correlation between agricultural growth and carbon

emissions. (Han et al., 2018) found that the economic
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effect played a leading role in raising the usage of

energy resources, while the energy intensity effect had

a key impact on dropping energy consumption.

There are also some studies investigating the

linkage between carbon emissions and economic

growth using different methods (Sun et al., 2020).

Wang and Su, (2020) studied the decoupling status

between economic growth and carbon emissions with

panel data of 192 countries between 2000 and 2014.

Wang et al. (2016) adopted the Tapio decoupling

model to examine the decoupling mechanisms of

carbon emissions from economic growth in China’s

industries and found two decoupling statuses: ‘‘weak

decoupling’’ and ‘‘expansive decoupling.’’ Bennetzen

et al. (2016) adopted the novel Kaya–Porter identity

framework and found that agricultural production had

been steadily decoupled from carbon emissions glob-

ally. Chen et al. (2018) analyzed the changes in

China’s agricultural carbon emissions between 2005

and 2013 and decomposed them into eight factors

using a two-chain LMDI model. Han et al. (2018)

investigated the coupling and decoupling status of

carbon emissions from economic growth and the

influencing factors. Some scholars further analyzed

the decoupling of agricultural production from carbon

emissions in the temporal and spatial dimensions.

Zhang et al. (2019) examined the nexus of the

environment-energy-economy and validated the

EKC hypothesis with agricultural panel data from

China’s thirteen provinces. Chen et al. (2020b)

quantified the decoupling degrees between energy

usage and economic development in the agricultural

sector using data from 89 countries from 2000 to 2016.

Tian et al. (2014) calculated the spatial–temporal

difference in agricultural carbon emissions in China

between 1995 and 2010. Castesana et al. (2020)

studied the temporal–spatial variability in N2O emis-

sions from Argentina’s agricultural sector at the

national, provincial, and district levels from 2000 to

2012.

The above review of the literature found that most

of the existing research on agricultural carbon emis-

sions accounts for emissions from agricultural land

use, agricultural chemical fertilizer, livestock and

poultry breeding, and farmland N2O, but it lacks

carbon emissions from agricultural energy consump-

tion (Qian et al., 2020). In addition, the existing

research mainly focuses on judging the level of

decoupling or the reasons for decoupling. However,

the effectiveness of decoupling efforts in various

regions to alleviate environmental pressure has not

been deeply studied. Furthermore, YEB covers

approximately 2.05 million km2 and makes up

approximately 21% of China’s total area, including

11 provinces. The total GDP of the YEB accounted for

over 44% of China’s GDP in 2017, while the

agricultural output value represented approximately

40% of China’s total. Rapid economic growth has

been accompanied by rising carbon emissions, and the

YEB accounts for approximately 44.6% of China’s

total emissions (Ding et al., 2019; He et al., 2020).

Nevertheless, only a few studies have focused on

carbon emissions from agricultural energy consump-

tion in the YEB. Therefore, there is a significant

research gap in studying the drivers resulting in carbon

emissions and their decoupling from economic growth

in the YEB’s agricultural sector.

Therefore, in light of the above facts, this study

calculates CEAEC in the YEB, including direct carbon

emissions from fossil energy such as coal and oil in

agricultural production and indirect carbon emissions

from electricity consumption. Then, the LMDI model

(Ang, 2004; Ang et al., 2015) is adopted to study the

factors driving CEAEC, identify the temporal decom-

position and spatial decomposition effects using panel

data from 2000 to 2017. Next, the Tapio decoupling

model developed by (Tapio, 2005) is adopted to test

the relationship between carbon emissions and eco-

nomic development. The decoupling effort indicator is

constructed based on the decomposition results,

quantifying the provincial governments’ emission

reduction efforts. The procedure mentioned above

provides a valuable and meaningful reference that the

government can use to formulate a win–win policy

between agricultural growth and emission reduction.

The innovations of this study are as follows:

(1) A framework for assessing carbon emissions

from agricultural energy consumption is devel-

oped based on the IPCCmethodology, including

direct and indirect energy sources, which can be

a benchmarking tool at the province scale.

(2) Temporal decomposition and spatial decompo-

sition are combined here to reveal the influential

factors of carbon emissions from four dimen-

sions, making the results tell more information

than a separate model.
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(3) By dividing 11 provinces into upstream, middle,

and downstream, the decoupling analyses con-

sider the spatial difference. In addition, a

decoupling effort indicator is designed to esti-

mate the efforts devoted by provincial govern-

ments, which is helpful to find the efforts gap

between provinces and make differentiating

policies.

Data and methodology

The theoretical framework of this study consists of

three parts, namely, calculation, decomposition, and

decoupling. These three parts are naturally linked

together via carbon emissions step by step. The

calculation of CEAEC is the basis of the whole study

and is required for the analysis of decomposition and

decoupling. Then, the decomposition process is

developed based on the LMDI model to identify the

causes influencing the changes in CEAEC. Here, five

components are considered in the developed LMDI

model in reference to the related literature: the

emission factor, structure, intensity, activity, and

population. Finally, decoupling analysis is carried

out to quantify the linkage between carbon emissions

and production output, and the efforts of the regional

government to decouple them are also assessed. The

data required by this study come from official

institutions and is deemed quite reliable.

Calculation of CEAEC

At present, China’s agricultural carbon emissions data

cannot be obtained through the statistical bulletin.

According to the IPCC Guidelines, the general carbon

emission calculation is that the amount of emissions

equals the product of the amount of energy usage and

the carbon emission coefficients (Xu et al., 2014).

Here, the carbon emissions resulting from the com-

bustion of fuels such as coal and coke in agricultural

production and the carbon emissions due to electricity

usage are considered. As stated in the ‘‘China Energy

Statistical Yearbook,’’ agricultural energy is divided

into seven types: coal, coke, gasoline, kerosene, fuel

oil, diesel, and electricity. The calculation of carbon

emissions is shown in Formula (1):

C ¼
Xn

i¼1

Ci ¼
Xn

i¼1

Ei � bi ð1Þ

In Formula (1), C is the amount of CEAEC;Ci is

CEAEC from the ith energy source; Ei is the energy

usage of the ith energy source, and it is the amount of

the ith fuel consumed as found in the original data and

converted into a standard quantity according to the

conversion coefficient. bi is the carbon emission

coefficient of the ith energy source; i is the type of

energy source. The coefficients are shown in Table 1.

LMDI method

Structural and index decomposition analysis (SDA/

IDA) are models commonly adopted in the decompo-

sition literature. The former is based on the IO

framework and require extensive disaggregated data.

IDA uses aggregated data and is more convenient for

spatiotemporal research (Wang et al., 2017). Among

IDA methods, the LMDI method is more popular

because it can handle zeros and negative value

problems. In this study, the LMDI method is adopted

for its robustness and convenience. The LMDI struc-

ture is founded on the Kaya identity to incorporate

multiple drivers by considering that there are seven

types of fossil fuel. Here, the changes in emissions

resulting from agricultural energy usage were ana-

lyzed by decomposing the contributions to five driving

effects: emissions factor, structure, intensity, activity,

and population.

The CEAEC is decomposed into five drivers, as

shown in Formula (2):

C ¼
Xn

i¼1

Ci ¼
Xn

i¼1

Ci

Ei
� Ei

E
� E

G
� G

P
� P

¼
Xn

i¼1

fi � mi � e � g � P ð2Þ

In Formula (2), C is the amount of carbon emissions

from energy consumption in the agricultural sec-

tor.E ¼
P

i Ei is the quantity of consumed energy in

YEB’s agricultural sector; G is the agricultural output

value; P is the local population; and fi is the emission

parameter of the ith fuel type, which is a fixed value

during the research period, as shown in Table 1. mi is

the proportion of the ith fuel type to the total

agricultural energy usage, which is known as the

energy consumption structure in the fields of energy

123

2990 Environ Geochem Health (2022) 44:2987–3006



economics; e is the energy usage per unit of agricul-

tural output, that is, energy consumption intensity; g is

G per capita, and measures economic scale. CEAEC is

linked with energy type, economic output, and pop-

ulation change through the above formula.

Time difference decomposition model

The decomposition framework proposed and further

developed by (Ang et al., 2015) was adopted to study

the temporal-spatial characteristics of CEAEC in the

YEB. Assuming time changes from 0 to T, year 0 is the

base year, and year T is the target year. Here, C0 and

CT represent carbon emissions in year 0 and year T,

respectively. The total change in CEAEC from 0 to T

equals the sum of changes in structure, intensity,

economic output, and population in the case of the

additive decomposition framework, as shown in

Formula (3):

DCT�0 ¼ CT � C0

¼ DmT�0 þ DeT�0 þ DgT�0 þ DpT�0 ð3Þ

Furthermore, the components of change DmT�0,

DeT�0, DgT�0, and DpT�0 are calculated as shown in

Formulas (4)–(7):

DmT�0 ¼
Xn

i¼1

Wi t�ð Þ ln
mT

m0

� �
ð4Þ

DeT�0 ¼
Xn

i¼1

Wi t�ð Þ ln
eT

e0

� �
ð5Þ

DgT�0 ¼
Xn

i¼1

Wi t�ð Þ ln
gT

g0

� �
ð6Þ

DpT�0 ¼
Xn

i¼1

Wi t�ð Þ ln
pT

p0

� �
ð7Þ

In Formula (3), DCT�0 is the total change in

CEAEC, which can be decomposed into

DmT�0,DeT�0,DgT�0,DpT�0, where DmT�0 is defined

as the energy structure effect (ESE), reflecting the

influence of energy structure changes on CEAEC.

DeT�0 is the energy intensity effect (EIE), which

demonstrates the impact of changes in agricultural

energy intensity on CEAEC. DgT�0 is the economic

output effect (EOE), which reflects the impact of

economic growth on CEAEC. DpT�0 is the population

effect (PE), which demonstrates the impact of popu-

lation changes on CEAEC.

According to (De Boer & Rodrigues, 2020), the

logarithmic mean function of the two endpoints of the

variable is used as the decomposition weight, which is

defined as shown in Formula (8):

L a; bð Þ ¼
a � bð Þ= ln a � ln bð Þ; a 6¼ b

a; a ¼ b 6¼ 0

0; a ¼ b ¼ 0

8
<

:

9
=

; ð8Þ

Then, based on the definition of the logarithmic

mean function, the calculation of the weight function

value can be obtained as shown in Formula (9):

Wi t�ð Þ ¼ CT
i � C0

i

lnCT
i � lnC0

i

ð9Þ

Table 1 Fixed coefficients given by energy source

Energy source Conversion factor

(kg standard coal)

Carbon emission factor

(ton carbon/ton standard coal)

Coal 0.7143 0.7570

Coke 0.9714 0.8553

Gasoline 1.4714 0.5516

Kerosene 1.4714 0.5682

Diesel 1.4571 0.5930

Fuel oil 1.4286 0.6114

Electricity 0.1229 1.7729

Data source: Conversion coefficients are sourced from the IPCC and China’s National Development and Reform Commission;

emission parameters are sourced from China’s National Bureau of Statistics
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Spatial difference decomposition model

A multiregional spatial decomposition model can be

constructed to describe the influencing elements that

lead to carbon emissions variations among various

regions. This model developed by (Ang, 2015) has

been commonly applied in studies on carbon and

energy, such as (Román-Collado & Morales-Carrión,

2018; Wang et al., 2020; Zhang et al., 2021). In fact,

this model has some significant strengths and is more

elaborate than the bilateral–regional and radial–re-

gional models compared and summarized by (Ang,

2015). In this study, the spatial difference of the

CEAEC in the YEB agricultural sector is represented

by the difference in average carbon emissions among

the 11 provinces. The spatial decomposition analysis

can be further expressed in Formula (10):

DCRj�Rl ¼ CRj � CRl

¼ DmRj�Rl þ DeRj�Rl þ DgRj�Rl þ DpRj�Rl

ð10Þ

In Formula (10), DCRj�Rl is the total change in

CEAEC, which is then decomposed into

DmRj�Rl ,DeRj�Rl ,DgRj�Rl , and DpRj�Rl . CRj and CRl

respectively represent carbon emissions generated by

region j and the group average of carbon emissions in

the YEB. DmRj�Rl , DeRj�Rl , DgRj�Rl , and DpRj�Rl are

calculated as shown in Formulas (11)–(14):

DmRj�Rl ¼
Xn

i¼1

Wi r�ð Þ ln
mRj

mRl

� �
ð11Þ

DeRj�Rl ¼
Xn

i¼1

Wi r�ð Þ ln
eRj

eRl

� �
ð12Þ

DgRj�Rl ¼
Xn

i¼1

Wi r�ð Þ ln
gRj

gRl

� �
ð13Þ

DpRj�Rl ¼
Xn

i¼1

Wi r�ð Þ ln
pRj

pRl

� �
ð14Þ

In Formula (10), DmRj�Rl is the energy structure

effect, which stands for the impact of the variation in

the energy structure effect between region j and the

regional average in the spatial variations in CEAEC.

DeRj�Rl is the energy intensity effect, which represents

the impact of the difference in energy intensity

between region j and the regional average level on

the spatial difference of CEAEC. DgRj�Rl is the

economic output effect and reflects the impact of the

difference in economic output between region j and

the regional average economic growth on the spatial

difference in CEAEC.DpRj�Rl is the population effect,

which reflects the impact of the change in population

between region j and the regional average on the

spatial difference in CEAEC.

Decoupling model

The decoupling indicator developed by Tapio is used

in this study, referring to Wang et al. (2020), which is

obtained by the variations in CEAEC divided by the

change in economic output. Its formula is as shown in

Formula (15):

b ¼ DC=C

DG=G
ð15Þ

In Formula (15), b is the decoupling indicator

between CEAEC and gross agricultural output value.

DC is the gap in CEAEC between year 0 and year T.

Table 2 Criteria for the classification of decoupling indicators

States b DC/C DGDP/GDP Grades No

Decoupling b\ 0 \ 0 [ 0 Strong decoupling I

0 B b B 0.8 [ 0 [ 0 Weak decoupling II

b[ 1.2 \ 0 \ 0 Recessive decoupling III

Negative decoupling b\ 0 [ 0 \ 0 Strong negative decoupling IV

0 B b B 0.8 \ 0 \ 0 Weak negative decoupling V

b[ 1.2 [ 0 [ 0 Expansive negative decoupling VI

Coupling 0.8 B b B 1.2 [ 0 [ 0 Expansive coupling VII

0.8 B b B 1.2 \ 0 \ 0 Recessive coupling VIII
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DG is the variation in gross agricultural output value

between year 0 and year T.

According to the literature, the decoupling statuses

can be divided into three types according to the value

of b, referring to (Song & Zhang, 2017): decoupling,

negative decoupling, and coupling. The detailed

classification and criteria corresponding to these types

are displayed in Table 2.

To test the effectiveness of the government’s

decoupling efforts in agricultural carbon emissions,

only if the government makes sufficient efforts to

reduce carbon emissions can it offset the expansion of

carbon emissions due to agricultural economic devel-

opment. The decoupling efforts were defined by

Diakoulaki (Diakoulaki & Mandaraka, 2007), and

the indicators of decoupling efforts are as shown in

Formulas (16)–(17):

DL ¼ DC � DG ¼ DM þ DE þ DP ð16Þ

D ¼ � DL

DG
¼ �DM þ DE þ DP

DG

¼ �DM

DG
� DE

DG
� DP

DG
¼ Dm þ De þ Dp ð17Þ

In Formula (17), DL is the variation in emissions

excluding EOE, and D is the decoupling effort

indicator. Dm, De and Dp respectively represent the

degree of decoupling effort due to the variations with

respect to energy structure, energy intensity, and

population size.

There exist three types of decoupling efforts:

(1) D C 1, defined as ‘‘strong decoupling effort,’’

indicates that the hindering effect ofDm,De, and

Dp on CEAEC is greater than the driving effect

of economic development, namely, that total

CO2 emissions drop while the economy

increases;

(2) 0\D\ 1, defined as ‘‘weak decoupling

effort,’’ indicates that the hindering effect of

Dm, De, and Dp has been significantly offset by

economic growth; in other words, CEAEC

increases to some extent followed by economic

growth;

(3) D B 0, defined as ‘‘no decoupling effort,’’

signifies that CEAEC is rising to a larger extent

than economic output.

Data sources

By considering statistical consistency and data avail-

ability, this study covers the period of 2000–2017. The

total agricultural output value and regional population

data are collected from China’s National Bureau of

Statistics. The data on energy consumption come from

the China Energy Statistics Yearbook. Furthermore,

there are some adjustments and additional details

listed as follows:

(1) The agricultural economic output value (G).

G was adjusted according to the constant 2000

price in all provinces in the YEB. That is, all

data were converted into the constant price of

2000 based on the relevant index of the output of

agriculture (last year = 100).

(2) The population index. The population data use

the year-end population in the YEB. (Unit: ten

thousand people)

(3) The agricultural energy consumption index.

This includes seven kinds of energy sources,

which are converted into tons of standard coal

equivalent.

Results and discussion

Spatiotemporal differentiation characteristics

of CEAEC in the YEB

Temporal change in CEAEC in the YEB

In 2000, the total CEAEC in the YEB was

1039:037� 104t; it increased to 1627:843� 104t in

2017 and reached its peak value in 2012 at

1732:25� 104t. Figure 1 was drawn to visually

observe the temporal changes in CEAEC in the YEB

from 2000 to 2017 and clearly identify the changing

trends. The CEAEC showed a phased upward trend,

with an overall increase of 57% from 2000 to 2017.

Only in 2000–2001, 2007–2008, 2012–2013, and

2015–2016 was there a slight decline, of which the

largest drop was in 2012–2013. The main reason for

the downward trend in 2012 was that provinces

actively responded to the national ‘‘12th Five-Year

Plan for Energy Conservation and Emission Reduc-

tion’’ and focused on their agricultural carbon
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emissions. The implementation of the ‘‘Action Plan

for Energy Conservation, Emission Reduction, and

Low-carbon Development for 2014–2015’’ promoted

the transformation of energy conservation technolo-

gies and thus, to a certain extent, the development of

low-carbon agriculture.

Carbon emission intensity generally displayed a

decreasing trend, as shown in Fig. 1. This is in

accordance with the statistical results from FAOSTAT

by the Food and Agriculture Organization of the

United Nations. Huang et al. (2019) also found that

carbon emission intensity exhibits significant spatial

variations resulting from crop portfolios and mixed

patterns of land and energy use (Zhao et al., 2018).

After 2005, the agricultural carbon emission intensity

displayed an apparent decreasing trend from 0.11t/104

Fig. 1 Changes in CEAEC and carbon intensity in the YEB between 2000 and 2017

Fig. 2 Total CEAEC in provinces in the YEB from 2000 to 2017
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RMB to 0.08t/104 RMB between 2005 and 2017.

However, overall, the decline has been relatively mild,

indicating that there is still some space to enhance

energy usage efficiency in the agriculture sector, and

more efforts should be dedicated to agricultural

emissions reduction.

Spatial change in CEAEC in the YEB

There was a spatial difference in CEAEC in the YEB

from 2000 to 2017 (see Fig. 2). Hunan, Hubei,

Zhejiang, and Jiangsu have a large amount of CEAEC,

accounting for 15.23%, 13.37%, 12.62%, and 12.53%,

respectively, and altogether representing 53.76% of

the total, and they have had a significant impact on the

control of CEAEC. Due to developed agricultural

production and high grain output, they are the main

contributors to high CEAEC. Shanghai’s CEAEC

accounts for 5.6%, which is the smallest value among

the 11 provinces. To explain the spatial variations,

food categories and farming systems may be essential

causes of carbon emissions (Pieper et al., 2020). In

fact, each province may have its particularities result-

ing from different driving factors, in which case, ‘‘one-

size-fits-all’’ solutions should be avoided to coordinate

carbon emissions (Wang & Feng, 2021).

Temporal–spatial changes in CEAEC in the YEB

From the perspective of temporal-spatial changes (see

Fig. 3), CEAEC shows an increasing trend, except for

in Shanghai, Chongqing, and Guizhou. CEAEC in

Hunan, Hubei, Jiangsu, and Sichuan shows an appar-

ent rising trend, while CEAEC in Chongqing shows an

evident downward trend after 2012. However, it is

worth noting that the CEAEC in Shanghai is contin-

uously declining, while that in Chongqing and

Guizhou is volatile.

Agricultural energy consumption structure in the YEB

From the perspective of the carbon emission structure

from 2000 to 2017 (see Fig. 4), the carbon emissions

from coal and diesel were the primary source of

CEAEC. Among them, the main source of CEAEC in

the upstream region is diesel, while in the downstream

region, it is coal. In addition, the long-term structure of

energy consumption in the agricultural sector in the

YEB remained unimproved. Coal and diesel consis-

tently comprised a relatively large percentage of the

total consumption in the provinces, and the agricul-

tural energy usage mixture in each province did not

vary significantly. This shows that carbon emissions

reduction efforts have not changed the traditional

energy consumption structure, and high-carbon

energy sources still dominate the agricultural sector.

This finding is supported by the findings of other

related studies on China’s energy consumption in

agriculture (Long & Tang, 2021; Yu et al., 2020).

Studies have also found that high-carbon energy

sources, for example, coal and diesel, continue to be

the primary contributors to agricultural carbon emis-

sions. Therefore, there is indeed an urgent need to

optimize crop portfolios and change the agricultural

Fig. 3 The trend in CEAEC in provinces in the YEB from 2000 to 2017
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energy consumption mix to achieve a carbon emis-

sions peak by approximately 2030.

In summary, CEAEC in the YEB shows a rising

trend, while agricultural carbon emission intensity

shows a declining trend. Moreover, the decrease in

magnitude is relatively flat, indicating a rich gap for an

upswing in energy efficiency and the promotion of

low-carbon practices. In addition, the quantity of

CEAEC varies significantly among provinces. In

terms of energy structure, it did not change signifi-

cantly from 2000 to 2017, and diesel and coal

remained the two most important energy sources.

This indicates that agriculture in the YEB is facing a

transformation of its energy consumption structure,

which is crucial to achieving agricultural carbon

emission reduction.

Decomposition analysis

Temporal differentiation

Based on the national economic and social policy, the

research period was divided into four stages, namely,

the 10th Five-Year Plan (FYP) (2001–2005), the 11th

FYP (2006–2010), the 12th FYP (2011–2015), and the

13th FYP (2016–2017). As displayed in Fig. 5,

CEAEC would greatly increase because the total

effect was at a high level between 2000 and 2005.

Fig. 4 The share of energy consumption by energy source

Fig. 5 The factors driving CEAEC in each subperiod of the YEB from 2000 to 2017
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However, the total effect was reduced by approxi-

mately three-quarters from the 10th FYP to the 11th

FYP period. Although there was a slight rise in the

total effect during the 12th FYP, it became a negative

value during the 13th FYP, which would be due to

China’s emphasis on developing low-carbon agricul-

ture and implementing a sustainable agricultural

development strategy.

Fig. 6 Contribution trend in driving factors of CEAEC in the YEB from 2000 to 2017

Table 3 Decomposition results for changes and the contribution values of CEAEC in the YEB

Year Total

effect

ESE EIE EOE PE

Share Contribution

(%)

Share Contribution

(%)

Share Contribution

(%)

Share Contribution

(%)

2000–2001 - 2.66 10.56 - 397.19% - 45.63 1715.96 26.63 - 1001.32 5.78 - 217.45

2001–2002 42.49 - 2.62 - 6.17% 11.23 26.44 27.67 65.12 6.21 14.61

2002–2003 76.22 - 16.56 - 21.72% 52.82 69.29 31.63 41.50 8.34 10.94

2003–2004 105.65 2.68 2.54% 40.28 38.13 54.13 51.24 8.55 8.10

2004–2005 176.40 - 19.02 - 10.78% 140.50 79.65 66.30 37.59 - 11.38 - 6.45

2005–2006 19.04 - 3.73 - 19.61% - 35.06 - 184.17 52.46 275.59 5.37 28.19

2006–2007 7.18 - 7.20 - 100.37% - 48.35 - 673.78 57.30 798.49 5.43 75.66

2007–2008 3.37 12.04 357.06% - 86.70 - 2571.63 70.92 2103.59 7.11 210.97

2008–2009 42.98 4.58 10.65% - 30.69 - 71.39 62.13 144.54 6.96 16.19

2009–2010 30.50 3.83 12.56% - 37.07 - 121.51 53.00 173.75 10.74 35.20

2010–2011 74.68 - 2.34 - 3.14% 13.10 17.55 56.51 75.67 7.41 9.92

2011–2012 117.50 - 3.13 - 2.67% 45.31 38.56 67.34 57.31 7.99 6.80

2012–2013 - 158.81 - 21.08 13.28% - 194.42 122.42 48.22 - 30.36 8.47 - 5.34

2013–2014 50.07 15.57 31.09% - 30.45 - 60.80 58.15 116.13 6.80 13.58

2014–2015 38.70 - 9.94 - 25.70% - 10.70 - 27.64 49.89 128.89 9.46 24.44

2015–2016 - 23.05 7.13 - 30.94% - 85.25 369.84 44.92 - 194.89 10.14 - 44.01

2016–2017 15.17 2.86 18.88% - 46.66 - 307.55 48.88 322.23 10.08 66.44

Total 615.45 - 26.38 - 4.29% - 347.72 - 56.50 876.09 142.35 113.46 18.44
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Using the LMDI method, the changes in the

contribution of the ESE, EIE, EOE, and PE to CEAEC

over time are shown in Table 3 and Fig. 6.

The change in the total effect is 615:45� 104t, with

a yearly average rate of increase of 5.56%. Specifi-

cally, EOE was the most significant contributor to

CEAEC, with PE being the second largest contributor

during the investigation. This result is consistent with

(Li et al., 2014), in which EOE and PE are the top two

contributors to carbon emissions. Chen et al. (2018)

found that the population effect was one of the causes

of energy-related carbon emissions even though it was

obviously weak in China’s agriculture sector.

However, the energy intensity effect negatively

contributed a cumulative quantity of 347:72� 104t,

with a contribution rate of - 56.50% to CEAEC. It

increased CEAEC in the 10th FYP period and then

decreased it in the 11th, 12th, and 13th FYPs. The

energy structure effect also offset the increase in

CEAEC by -4.29%, causing a cumulative reduction

of 26:38� 104t during the whole period. This result is

slightly different from that of Yu et al. (2020), in

which the energy structure effect promoted agricul-

tural carbon emissions. Some studies do support our

findings, such as Chen et al. (2020a) and Xiong et al.

(2020), who found that the energy structure effect

inhibited carbon emissions to some extent.

As shown in Fig. 5, the energy intensity effect was

larger than zero only during the 10th FYP period and

became negative in the subsequent FYP periods.

Correspondingly, the energy intensity effect increased

CEAEC significantly in the 10th FYP period to

approximately the same level as the economic output

effect. In contrast, the energy intensity effect

decreased CEAEC in the 11th, 12th, and 13th FYP

periods. The economic output effect was the largest

source of the growth in CEAEC from 2000 to 2017,

with an increase of 48:9685� 104t, accounting for a

contribution rate of 142.35%. In addition, the eco-

nomic output effect has been increasing annually since

2000. Since the 11th FYP period (except for 2011 and

2012), the increment in CEAEC resulting from the

economic output effect completely offset the inhibit-

ing effects of other factors and independently was

already much higher than the actual measured value.

Therefore, under the premise of rapid economic

development, reasonable and flexible emission reduc-

tion measures should be adopted to curb the increase.

The population effect was an essential driving

factor increasing CEAEC in the YEB and accounted

for 18.44%. After 2000, China’s population growth

clearly slowed, but the growth rate remained positive.

Coupled with the constant adjustment of the fertility

policy, the population in the YEB continued to

expand, with a yearly mean rate of 0.43%. The

increase in rural population naturally drove the

demand for agricultural products, which would result

in greater energy consumption and increase CEAEC.

The energy intensity effect was the foremost

restraint on the growth of CEAEC in the YEB, and

the contribution rate was 17% in 2001, while it rose to

-307.55% by 2017. Since the 12th five-year plan,

low-carbon technologies have been vigorously devel-

oped and applied, improving energy efficiency and

effectively curbing agricultural carbon emissions

without affecting economic development. With the

issuance of the ‘‘Outline of Yangtze River Economic

Belt Development Plan’’ in the 13th FYP period and

the realization of the proposal to ‘‘step up conservation

of the Yangtze River and stop its overdevelopment’’,

the energy intensity effect has increasingly and

significantly been hindering CEAEC, which reflects

remarkable achievements in emission reduction.

Based on the above decomposition analysis, the

energy structure effect has a few influences on

CEAEC. From 2000 to 2017, the agricultural devel-

opment of the YEB maintained an energy structure

dominated by high-carbon energy sources such as coal

and diesel, and the energy usage structure was not

effectively improved. Therefore, similar conclusions

regarding the benefits of optimizing agricultural

energy usage mixtures and improving energy effi-

ciency are supported by existing studies (Colinet

Carmona & Román Collado, 2016; Ren et al., 2021).

Spatial differentiation

The multiregion model introduced in ‘‘Spatial differ-

ence decomposition model’’ section was applied to

study the spatial variations in CEAEC. Each region’s

energy consumption is compared with a benchmark

reference given by the average of the 11 provinces,

and the difference is decomposed, as shown in Table 4.

In terms of the energy structure effect, Guizhou

showed the largest deviation from the average level,

with only 18:3� 104t in 2000, whereas Hunan saw the
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greatest effect at 41:3� 104t in 2017. In both 2000 and

2017, the absolute value of CEAEC caused by each

province’s energy structure effect was no more than

30� 104t, and only that of Hunan was more than

20� 104t, which indicates that the regional differ-

ences between the 11 provinces are not obvious.

Agricultural development has consistently maintained

an energy structure dominated by high-carbon energy

such as coal.

A positive EIE value in one province indicated that

it was less efficient in energy consumption than the

average level in the YEB. In 2000, Shanghai,

Zhejiang, Hunan, Chongqing, and Guizhou had a

positive EIE values that increased the CEAEC.

Table 4 Decomposition results for factors driving CEAEC in provinces in 2000 and 2017

Region ESE EIE EOE PE Total effect

2000 2017 2000 2017 2000 2017 2000 2017 2000 2017

Shanghai - 10.22 - 26.77 52.62 47.96 - 20.27 - 96.20 - 68.75 - 45.38 - 46.61 120.39

Jiangsu 0.08 - 2.43 - 36.00 - 18.46 32.65 37.16 40.51 69.67 37.24 85.94

Zhejiang - 5.18 - 4.50 44.67 106.22 19.72 - 32.97 - 7.40 7.16 51.81 75.90

Anhui 1.22 - 2.20 - 46.75 - 50.94 4.87 7.30 15.21 18.76 - 25.45 - 27.08

Jiangxi - 1.58 - 5.90 - 45.82 - 55.89 - 1.47 0.72 - 10.53 - 15.52 - 59.40 - 76.59

Hubei - 0.12 8.31 - 9.19 12.07 5.49 28.39 11.15 15.17 7.33 63.93

Hunan 12.48 41.30 6.97 54.08 - 1.19 8.21 29.32 44.58 47.59 148.18

Chongqing 12.69 - 0.97 98.03 - 45.28 - 25.79 - 13.92 - 55.80 - 44.91 29.13 - 105.08

Sichuan - 11.40 - 10.01 - 59.42 - 58.67 - 5.80 3.53 28.34 52.23 - 48.28 - 12.91

Guizhou 18.30 12.51 125.18 76.91 - 56.84 - 39.12 - 30.71 - 56.11 55.93 - 5.81

Yunnan 0.99 13.90 - 5.66 - 8.93 - 12.03 15.17 - 12.79 - 16.79 - 29.49 3.35

Table 5 Decoupling state of CEAEC in the YEB from 2000 to 2017

Time (Year) b Grades DC/C DGDP/GDP

2000–2001 - 0.074537 I - 0.002503 0.033577

2001–2002 1.084254 VII 0.040995 0.037809

2002–2003 2.445881 VI 0.070593 0.028862

2003–2004 1.364313 VI 0.091466 0.067042

2004 - 2005 3.590660 VI 0.156569 0.043604

2005–2006 0.275901 II 0.012866 0.046632

2006–2007 0.207379 II 0.008204 0.039561

2007–2008 - 0.282653 I - 0.014643 0.051804

2008–2009 0.624808 II 0.029291 0.046880

2009–2010 0.466689 II 0.019811 0.042450

2010–2011 1.161772 VII 0.048483 0.041732

2011–2012 1.536130 VI 0.072752 0.047361

2012–2013 - 2.528578 I - 0.091679 0.036257

2013–2014 0.319931 II 0.013596 0.042498

2014–2015 0.784598 II 0.029957 0.038181

2015–2016 - 0.403946 I - 0.014032 0.034739

2016–2017 0.135733 II 0.005115 0.037687
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Among them, Guizhou had the largest value of

125:18� 104t. The EIE of other provinces was

negative, indicating that the other six provinces’

energy utilization efficiency was higher than the

average level. In 2017, Shanghai, Zhejiang, Hunan,

Guizhou, and Hubei had positive values, which means

that the spatial differences in the energy intensity

effect have not yet been eliminated. The value of

Chongqing’s energy intensity effect changed from

98:03� 104t in 2000 to �45:28� 104t in 2017,

indicating that Chongqing’s energy utilization effi-

ciency improved significantly. Therefore, Shanghai,

Zhejiang, Hunan, Guizhou, and Hubei can introduce

Chongqing’s approach to reduce their difference from

the average level.

A positive value of the economic output effect

signified that the agricultural economic output scale of

the given province was above the YEB’s average

level. In 2000, there were four provinces with a

positive value, namely, Jiangsu, Zhejiang, Anhui, and

Hubei. The values for the other provinces’ economic

output effects were negative, indicating that the

others’ agricultural economic output scale was below

the average level. In 2017, Shanghai’s value was the

smallest because the proportion of Shanghai’s

agriculture in national GDP shrank, while Jiangsu’s

value remained the largest.

Table 6 Decoupling results of 11 provinces in the YEB

Region Time 2000–2005 2005–2010 2010–2015 2015–2017

Province b Grade b Grade b Grade b Grade

Downstream Shanghai - 0.29 IV 12.24 III - 0.76 IV 0.99 VIII

Jiangsu 0.52 II 1.56 VI 0.90 VII - 0.03 I

Zhejiang 1.33 VI 0.57 II 1.31 VI 1.04 VII

Average 0.78 II 0.70 II 0.93 VII 0.44 II

Middle reaches Anhui 0.40 II 1.47 VI 0.47 II 0.80 VII

Jiangxi 6.87 VI - 1.27 I 0.00 I 1.01 VII

Hubei 3.00 VI 0.90 VII 0.87 VII - 2.31 I

Hunan 2.49 VI - 0.13 I 1.39 VI 0.62 II

Average 3.09 VI 0.20 II 0.87 VII - 0.43 I

Upstream Chongqing 0.75 II 0.86 II - 3.07 I 0.42 II

Sichuan 3.35 VI 2.00 II 0.96 VII - 2.01 I

Guizhou 0.66 II - 1.94 I 0.74 II 3.03 VI

Yunnan 2.93 VI 0.37 II 0.35 II - 0.55 I

Average 1.34 VI 0.00 I - 0.51 I 0.05 II

YEB average 1.76 VI 0.23 II 0.30 II 0.44 II

Table 7 Decomposition of decoupling effort indicators in the

YEB from 2000 to 2017

Time D Dm De Dp

2000–2001 1.10 - 0.40 1.71 - 0.22

2001–2002 - 0.54 0.09 - 0.41 - 0.22

2002–2003 - 1.41 0.52 - 1.67 - 0.26

2003–2004 - 0.95 - 0.05 - 0.74 - 0.16

2004–2005 - 1.66 0.29 - 2.12 0.17

2005–2006 0.64 0.07 0.67 - 0.10

2006–2007 0.87 0.13 0.84 - 0.09

2007–2008 0.95 - 0.17 1.22 - 0.10

2008–2009 0.31 - 0.07 0.49 - 0.11

2009–2010 0.42 - 0.07 0.70 - 0.20

2010–2011 - 0.32 0.04 - 0.23 - 0.13

2011–2012 - 0.74 0.05 - 0.67 - 0.12

2012–2013 4.29 0.44 4.03 - 0.18

2013–2014 0.14 - 0.27 0.52 - 0.12

2014–2015 0.22 0.20 0.21 - 0.19

2015–2016 1.51 - 0.16 1.90 - 0.23

2016–2017 0.69 - 0.06 0.95 - 0.21
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In 2000, Jiangsu, Anhui, Hubei, Hunan, and

Sichuan had a positive value for the population effect,

and the remaining provinces had a negative value. In

2017, Jiangsu, Anhui, Hubei, Hunan, Sichuan, and

Zhejiang had positive values, and the values of the

remaining five provinces were negative. This is

because these six provinces have large populations,

which promotes the increase in total CEAEC and is

higher than the average level. Shanghai and Chongq-

ing are municipalities and occupy a small area.

Guizhou, Yunnan, and Jiangxi are sparsely populated,

economically weak, and have a large net population

outflow, resulting in carbon emissions from the

population effect below the average level.

Decoupling analysis

Decoupling status of CEAEC and the economy

in the temporal dimension

According to Formula (15), Table 5 displays the

decoupling outcomes between CEAEC and GDP in

the YEB from 2000 to 2017. There were four

decoupling states between CEAEC and economic

output. The decoupling states of the whole YEB

alternated from decoupling to connecting and then to

negative decoupling. Additionally, since 2012, the

YEB has entered a relatively ideal state of strong or

weak decoupling, which also indicates that green

development practices helped to reduce carbon

emissions.

Decoupling the status of CEACE and the economy

in the spatial dimension

Table 6 displays the decoupling results according to

Formula (15) from the spatial dimensions in the YEB

from 2000 to 2017. Judging from the whole YEB, in

the 10th FYP, the decoupling elasticity index showed

an expansive negative decoupling state with a value of

1.76. The results showed that CEAEC increased faster

than economic growth. Namely, agricultural eco-

nomic development occurred at the cost of the

ecological environment. After entering the 11th

FYP, the decoupling elasticity index dropped signif-

icantly to 0.23, showing a weak decoupling status.

Compared with the 10th FYP, the 11th FYP brought a

higher proportion of agricultural added value while

emitting carbon dioxide. In the 12th FYP, the decou-

pling elasticity index was 0.30, showing a weak

decoupling status, and maintained a weak decoupling

state from 2015 to 2017. This indicated that during

these four periods, the agricultural emission reduction

policy and the continuous improvement of agricultural

machinery positively reduced CEAEC in the whole

YEB.

Judging from the regional perspective, during the

10th FYP, the Yangtze River’s upstream and middle

reaches presented an expansive negative decoupling

state, while the downstream reaches presented weak

decoupling. After entering the 11th FYP period, the

three regions’ decoupling elasticity index decreased,

all of them were decoupling, and the upstream region

presented a strong decoupling state. However, after

entering the 12th FYP, the decoupling elasticity

Fig. 7 Decomposition of decoupling effort indicators in the YEB

123

Environ Geochem Health (2022) 44:2987–3006 3001



indices of the middle reaches and downstream showed

expansive coupling. Since 2015, the three regions

have decoupled, and the middle reaches have strongly

decoupled. Decoupling was realized downstream first,

and decoupling in the middle reaches and upstream

followed gradually. The industrial adjustment in the

lower and middle reaches and the occupation of

agricultural arable land have resulted in slow growth

in the value of agricultural output and the state of

expanding connections during the 12th FYP.

Regarding provincial differences, the decoupling

state shows notable fluctuations among the 11

provinces. During the 10th FYP, Shanghai showed a

strong negative decoupling state, and Shanghai’s

agricultural output fell. This may mean that the

agricultural development policies adopted by Shang-

hai were not effective during this period. Then,

Shanghai entered a state of recessive decoupling,

indicating a decline in CEAEC. However, in the 12th

FYP, it again entered a strong negative decoupling

state, which indicates that Shanghai sacrificed sub-

stantial economic benefits to reduce CEAEC. After

2015, Shanghai showed expansive decoupling, and the

decoupling elasticity index improved. As a major

agricultural province, Hubei’s decoupling elasticity

index decreased during the 10th FYP. In 2015, the

decoupling index value showed the best performance

among all provinces, dropping to -2.31, which has

high significance for the potential of other provinces.

Analysis of the efforts to decouple CEAEC

and the economy in the YEB

According to Formulas (16) and (17), Table 7 and

Fig. 7 show the decoupling effort indicators at the

temporal and spatial scales. The decoupling effort

indicators are analyzed with the previous year’s data

as the base period. Varying decoupling efforts were

identified in the remaining years, except for the

periods of 2001–2004 and 2010–2011. Among them,

the greatest decoupling effort was made in 2012, while

the least was made in 2004. From various indicators of

decoupling efforts, the effect of the energy structure

was somewhat small, with an average value of less

than 0.2, and in nearly half of the years it inhibited the

realization of decoupling. The contribution of energy

intensity was relatively large. To a considerable

extent, the population has little effect on the

realization of total decoupling, with an average of

approximately -0.14.

As shown in Fig. 7, from the spatial dimension

perspective, there exists significant heterogeneity in

the decoupling effort indicators among provinces.

Decoupling efforts have been made in Shanghai,

Anhui, Jiangxi, Hunan, Chongqing, Guizhou, and

Yunnan, while strong decoupling efforts have been

made in Chongqing. In Shanghai, the decoupling

effort only came from the population scale, namely,

population control played an important role. Among

the 11 provinces, only the population size of Shanghai

and Guizhou made decoupling contributions, which

may be related to their population policies. In

Chongqing, energy intensity played the most signif-

icant role in realizing decoupling, indicating that

Chongqing had a high reference value for energy use

efficiency. While Zhejiang made the lowest decou-

pling effort, both energy intensity and population size

played a restraining role. Similar findings are dis-

cussed by Wang et al. (2019), in which different effort

characteristics were identified for regions in different

development phases. Karakaya et al. (2019) adopted

the decoupling effort indicator to study the temporal

distribution of decoupling status. To reduce the YEB’s

carbon emissions, changing the intraregional energy

consumption structure and differentiated reduction

policies have been proposed (Qi et al., 2021).

Discussion

In the past, some studies have been conducted in the

context of China that focus on the assessment of

carbon emissions, such as Li et al. (2014) and Xiong

et al. (2016). While most of them dealt with regional

(Ma et al., 2019) or sectoral (Peng & Wu, 2020) data,

few consider carbon emissions from agricultural

energy consumption. Long et al. (2018) investigated

carbon emissions from the agricultural sector and its

influencing factors in China, including three types of

carbon sources, namely, agricultural production activ-

ities, farming, and livestock. Therefore, there is a

research gap to be bridged, especially considering that

the YEB is prioritized as a new national strategy. In

this study, a process accounting for carbon emissions

from agricultural energy consumption is developed

based on the IPCC’s methods.

Furthermore, this study makes up for the short-

comings of the traditional literature by expanding the
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framework to simultaneously cover the analysis of

influencing factors and decoupling analysis. In the

developed framework, the LMDI decomposition

method was adopted to identify the factors driving

carbon emissions, and the Tapio decoupling model

was used to explore the relationship between emis-

sions and economic development and test the effec-

tiveness of the government’s decoupling efforts. The

results are similar to the insights provided by previous

literature. Our findings show that carbon intensity has

a decreasing trend while total emissions are rising, and

the economic output effect is the largest driving factor,

which is consistent with the study of Ma et al. (2019).

A strong or a weak decoupling status has appeared

more commonly with strengthening environmental

regulations (Luo et al., 2017), and the similar results

were found in our study. The significant spatial

variations among provinces in our findings are also

supported by existing studies, such as Shi et al. (2019)

and Wang et al. (2018). Therefore, the results from the

study are reliable to support practical action and

recommendations.

At the application level, the developed analytical

framework helps to understand the carbon emissions

from agricultural energy consumption, which is the

basis for designing effective measures to reduce the

negative impact of carbon emissions on the environ-

ment. Therefore, this study adds something new to the

existing body of knowledge on carbon management

and sustainability.

Conclusions

This study investigated the drivers of carbon emissions

from agricultural energy consumption and examined

the decoupling status between carbon emissions and

economic growth with panel data between 2000 and

2017 in the Yangtze River Economic Belt. The major

conclusions can be summarized as follows:

(1) A significant spatiotemporal differentiation in

changing trends in CEAEC and energy con-

sumption structure was identified among the 11

provinces in the YEB. Coal and diesel were the

two primary energy sources overall, even

though the carbon emissions intensity appeared

to decrease to some extent. The above

phenomenon told that there remained significant

room for improvement on carbon management.

(2) Two types of decomposition analysis based on

LMDI were implemented to identify the factors

influencing carbon emissions, including tempo-

ral decomposition analysis and spatial decom-

position analysis. The results showed that the

total CEAEC of the YEB was mainly increased

by the economic output effect and decreased by

the energy intensity effect. The four effects were

identified to have different impacts on CEAEC

in the 11 provinces.

(3) In terms of decoupling in the YEB, there existed

an alternating change from negative decoupling

to decoupling from 2000 to 2017. The decou-

pling status for the 11 provinces was also

examined to recognize the existing spatial

variation and changing trend. Furthermore, the

decoupling effort indicators were calculated to

distinguish the decoupling efforts made by the

11 provincial governments. This could provide

useful input to the policy development.

Our findings in this study have several potential

implications for boosting the sustainable growth of the

agricultural sector in the Yangtze River Economic

Belt.

(1) Emissions reduction policies should be designed

according to the local conditions, considering

the significant variations in geographical envi-

ronment, economic status, and energy structure.

Regional governments should devote more

attention to the control of total carbon emissions

and carbon intensity in the agriculture sector.

Additionally, increasing policy support and

establishing a long-term coordination mecha-

nism are valuable tools to support low-carbon

agriculture development in the YEB through

effective national policy.

(2) It is necessary to implement differentiated

carbon policies according to the combined

effect of driving factors at the provincial level.

Notably, the YEB achieved the relatively ideal

status of strong decoupling and weak decou-

pling, although high-carbon energy sources

always dominated the agricultural energy struc-

ture. Optimizing the energy structure and

improving energy efficiency are attractive tools

for carbon management under the dual targets of
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carbon neutrality and emission peaks. More

targeted efforts should be made to promote

strong decoupling between carbon emissions

and agricultural output in all provinces.
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Wang, Y., Yan, Q., Li, Z., Baležentis, T., Zhang, Y., Gang, L., &

Streimikiene, D. (2020b). Aggregate carbon intensity of

China’s thermal electricity generation: The inequality

analysis and nested spatial decomposition. Journal of
Cleaner Production, 247, 119139. https://doi.org/10.1016/
j.jclepro.2019.119139

Xiong, C., Chen, S., Gao, Q., & Xu, L. (2020). Analysis of the

influencing factors of energy-related carbon emissions in

Kazakhstan at different stages. Environmental Science and
Pollution Research, 27(29), 36630–36638. https://doi.org/
10.1007/s11356-020-09750-9

Xiong, C., Yang, D., & Huo, J. (2016). Spatial-temporal char-

acteristics and LMDI-based impact factor decomposition

of agricultural carbon emissions in Hotan Prefecture,

China. Sustainability, 8(3), 262. https://doi.org/10.3390/
su8030262

Xu, B., Chen, W., Zhang, G., Wang, J., Ping, W., Luo, L., &

Chen, J. (2020). How to achieve green growth in China’s

agricultural sector. Journal of Cleaner Production, 271,
122770. https://doi.org/10.1016/j.jclepro.2020.122770

Xu, S.-C., He, Z.-X., & Long, R.-Y. (2014). Factors that influ-

ence carbon emissions due to energy consumption in

China: Decomposition analysis using LMDI. Applied
Energy, 127, 182–193. https://doi.org/10.1016/j.apenergy.
2014.03.093

Yu, Y., Jiang, T., Li, S., Li, X., & Gao, D. (2020). Energy-

related CO2 emissions and structural emissions’ reduction

in China’s agriculture: An input–output perspective.

Journal of Cleaner Production, 276, 124169. https://doi.
org/10.1016/j.jclepro.2020.124169

Zhang, L., Pang, J., Chen, X., & Lu, Z. (2019). Carbon emis-

sions, energy consumption and economic growth: Evi-

dence from the agricultural sector of China’s main grain-

producing areas. Science of the Total Environment, 665,
1017–1025. https://doi.org/10.1016/j.scitotenv.2019.02.

162

Zhang, S., Kharrazi, A., Yu, Y., Ren, H., Hong, L., & Ma, T.

(2021). What causes spatial carbon inequality? Evidence

from China’s Yangtze River economic Belt. Ecological
Indicators, 121, 107129. https://doi.org/10.1016/j.ecolind.
2020.107129

Zhao, R., Liu, Y., Tian, M., Ding, M., Cao, L., Zhang, Z., Chuai,

X., Xiao, L., & Yao, L. (2018). Impacts of water and land

resources exploitation on agricultural carbon emissions:

The water-land-energy-carbon nexus. Land Use Policy, 72,
480–492. https://doi.org/10.1016/j.landusepol.2017.12.

029

Publisher’s Note Springer Nature remains neutral with

regard to jurisdictional claims in published maps and

institutional affiliations.

123

3006 Environ Geochem Health (2022) 44:2987–3006

https://doi.org/10.1016/S2095-3119(13)60624-3
https://doi.org/10.1016/S2095-3119(13)60624-3
https://doi.org/10.1016/j.enpol.2017.05.034
https://doi.org/10.1016/j.enpol.2017.05.034
https://doi.org/10.3390/su8101059
https://doi.org/10.3390/su8101059
https://doi.org/10.1016/j.eiar.2019.106356
https://doi.org/10.1007/s13762-020-02903-w
https://doi.org/10.1016/j.jenvman.2019.109494
https://doi.org/10.1016/j.energy.2013.12.064
https://doi.org/10.1016/j.resconrec.2019.104509
https://doi.org/10.1016/j.resconrec.2019.104509
https://doi.org/10.1016/j.jclepro.2018.03.002
https://doi.org/10.1016/j.jclepro.2019.119139
https://doi.org/10.1016/j.jclepro.2019.119139
https://doi.org/10.1007/s11356-020-09750-9
https://doi.org/10.1007/s11356-020-09750-9
https://doi.org/10.3390/su8030262
https://doi.org/10.3390/su8030262
https://doi.org/10.1016/j.jclepro.2020.122770
https://doi.org/10.1016/j.apenergy.2014.03.093
https://doi.org/10.1016/j.apenergy.2014.03.093
https://doi.org/10.1016/j.jclepro.2020.124169
https://doi.org/10.1016/j.jclepro.2020.124169
https://doi.org/10.1016/j.scitotenv.2019.02.162
https://doi.org/10.1016/j.scitotenv.2019.02.162
https://doi.org/10.1016/j.ecolind.2020.107129
https://doi.org/10.1016/j.ecolind.2020.107129
https://doi.org/10.1016/j.landusepol.2017.12.029
https://doi.org/10.1016/j.landusepol.2017.12.029

	Decomposition and decoupling analysis of carbon emissions from agricultural economic growth in China’s Yangtze River economic belt
	Abstract
	Introduction
	Literature review
	Data and methodology
	Calculation of CEAEC
	LMDI method
	Time difference decomposition model
	Spatial difference decomposition model

	Decoupling model
	Data sources

	Results and discussion
	Spatiotemporal differentiation characteristics of CEAEC in the YEB
	Temporal change in CEAEC in the YEB
	Spatial change in CEAEC in the YEB
	Temporal--spatial changes in CEAEC in the YEB
	Agricultural energy consumption structure in the YEB

	Decomposition analysis
	Temporal differentiation
	Spatial differentiation

	Decoupling analysis
	Decoupling status of CEAEC and the economy in the temporal dimension
	Decoupling the status of CEACE and the economy in the spatial dimension
	Analysis of the efforts to decouple CEAEC and the economy in the YEB

	Discussion

	Conclusions
	Author contribution
	Data availability
	References




