
ORIGINAL PAPER

Spatial monitoring and health risk assessment
of polybrominated diphenyl ethers in environmental
matrices from an industrialized impacted canal in South
Africa

Chinemerem Ruth Ohoro . Abiodun Olagoke Adeniji . Anthony Ifeanyi Okoh .

Omobola Oluranti Okoh

Received: 4 May 2021 / Accepted: 22 September 2021 / Published online: 5 October 2021

� The Author(s), under exclusive licence to Springer Nature B.V. 2021

Abstract This study investigates the pollution of

Markman stormwater runoff, which is a tributary to

Swartkops River Estuary. Solid-phase and ultrasonic

extraction methods were utilized in the extraction of

water and sediment samples, respectively. The pH of

the sampling sites was above the EU guideline. The

ranges of concentration of R6PBDE obtained in water

and sediment samples for all the seasons were

58.47–1357 ng/L and 175–408 ng/g, respectively.

Results also showed that BDE-66 was the dominant

congener, specifically in the industrial zone, where its

concentrations ranged from 2 to 407 ng/g in sediment.

Consequently, the high concentration of BDE- 66 in

the sediment of stormwater calls for concern. Penta-

BDE suggests potential moderate eco-toxicological

risk, as evident in the calculated risk assessment. The

result showed possible photodegradation along the

contaminant’s travel time, as only 7% of the PBDE

was detected at the point of entry into the Swartkops

River Estuary. Markman stormwater may be con-

tributing heavily to the pollution load of Swartkops

River, as evident in the alarming concentrations of

PBDEs obtained. The industries at this zone should

eliminate the contaminants before discharging their

effluents into the canal.
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Introduction

Polybrominated diphenyl ethers (PBDEs) are bromi-

nated diphenyl ethers used extensively as additives in

wide-ranging end-user products in textiles, aircraft,

furniture, plastics, electronic appliances, etc. (Berg-

man et al., 2012; Ohoro et al., 2021). There are 209

different PBDE congeners grouped into ten categories

(mono-decabromodiphenyl ethers). Commercial prod-

ucts, however, do not contain compounds with less

than four bromine atoms (Darnerud et al., 2001).

PBDEs are persistent, bioaccumulative, toxic, and

have a long range of transport. These have made three

commercial PBDEs mixtures, i.e., penta-BDE, octa-

BDE, and deca-BDE, registered as POPs in the

Stockholm Convention (United Nations Environment

Programme, 2017). The higher congeners like BDE-

209 debrominate to lower congeners commonly found

in humans (Costa et al., 2008) and even in rats (Huwe

& Smith, 2007) by degradation of plant (Jiang et al.,

2019; Wang et al., 2012), and their degradation is an

essential process that governs their fate in the envi-

ronment (Rahman et al., 2001). PBDEs are of

environmental concern because they are hydrophobic

and persistent in the environments (Palm et al., 2002).

There is a dearth of experimental field studies on the

bioconcentration, bioaccumulation, fate and behavior

of PBDEs, regardless of the huge progress in research

(Akortia et al., 2016; Kelly et al., 2008; Martin et al.,

2004). However, partitioning behavior is mainly

dependent on the environment and may vary from

region to region (Gouin & Harner, 2003). Penta-BDE

tends to dominate in the atmosphere and aqueous

matrix, while BDE-209 is found in the soil, sediment,

and sludge. Howbeit, the soil is the least studied but

thus far the most major sink of PBDE in the

environment (Vonderheide et al., 2008). The persis-

tence of PBDEs is envisaged for many years to come

owing to new productions and recycling of PBDEs in

addition to improper disposal. The fate of PBDEs after

being released into the environment is not sure (Guan

et al., 2009). Lower brominated diphenyl ethers that

enter the atmosphere are likely to be eliminated by

photochemical degradation before adsorbing to sur-

face water and soil (Raff & Hites, 2007). The fate of

PBDEs has been reported elsewhere (Ohoro et al.,

2021). The exponential increase in the alarming rise of

PBDE in the Swedish breastmilk samples for over

25 years was influential in supporting EU lawmakers

to approve the ban of PBDE (Bush et al., 2001).

Likewise, Canadian Environmental Protection Act

banned the production and use of new products in

2009 (Abbasi et al., 2015). Deca-BDE mar-

ketable products are already barred in Europe and

the USA but still utilized in China (Ji et al., 2017).

Currently, there is a scarcity of information on the

production and use of deca-BDE in South Africa

(Daso et al., 2013a). However, Deca-BDE has been

detected in Rubik’s cube in South Africa (DiGangi

et al., 2017), which is suspected to be from the plastic

industry (Chokwe et al., 2019).

Discharges from unrestrained electronic waste

recycling in developing countries have been the

principal source of PBDEs in the global record (Bi

et al., 2007; Wong et al., 2007). They are not bonded to

materials chemically, that is why they can emanate

from polymers into the environment and convey

through dust, or in the course of the burning of plastic

waste in the domestic furnace or via open burning

(Pietron et al., 2019; Romanelli et al., 2017). They can

be transported to the marine environment from global

discharge sources, like surface runoff of polluted soils,

atmospheric deposition, direct industrial and domestic

wastewater discharges, and riverine inputs (Li et al.,

2018; Wang et al., 2019; Wu et al., 2020). BDE-209

and BDE-183 have been linked to work-related

exposure; higher brominated BDEs are frequently

eminent in electronics disassembling workers, while

BDE-153 is frequently the dominant PBDE congener

in non-occupationally exposed populations like in the

Netherlands, UK, Sweden, and China (Bi et al., 2007).

Humans’ exposure to PBDEs is through ingestion

of food (dietary intake and consumer products),

dermal contact, air and dust inhalation (Oloruntoba

et al., 2019; Sahlström et al., 2015; Trudel et al., 2011),

where their comparative influences to total exposure

show a discrepancy by sex, age, geographical region,

and congener (Sahlström et al., 2015; Trudel et al.,

2011). Some undesirable impacts of POPs and their

metabolites in humans include immunosuppression,

neurotoxicity, endocrine system damage, carcino-

genicity, and reproductive dysfunction (Oloruntoba

et al., 2019; Ontiveros-Cuadras et al., 2019; Parry

et al., 2018). BDE-47, BDE-99, and BDE-209 apply

genotoxic and cytotoxic impacts and play an acute role

in the destroying DNA, down-regulation of oxidative

stress, and the associated gene expression in bronchial

epithelial cells. Inhalation may also cause respiratory
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diseases in the regions of environmental effluence

(Montalbano et al., 2020). Some PBDEs have been

revealed to adversely influence the thyroid hormone

system regulation, influence liver enzyme activity,

influence neurological development at a delicate time

of brain growth, and instigate immunotoxicity (Dar-

nerud et al., 2001; De Wit, 2002; Söderström et al.,

2004).

Their pollution has drawn attention, especially in

marine sediments (Wang et al., 2019). Even in South

Africa, many researchers have documented PBDE

occurrence (Daso et al., 2012; Olisah et al., 2020),

though much work has not been done on the inves-

tigation of rivers and estuaries. Eastern Cape Province

hosts two significant seaports in Port Elizabeth and

East London, responsible for the region’s develop-

ment, urbanization, and heavy industrialization. Con-

sequently, aquatic environments are posed with threat

as some of the discharges from these industries find

their way to the surface waters. Olisah et al. (2020)

reported that the surface waters of Swartkops River in

this province are contaminated with PBDE, and the

source of this contamination is validated. Markman

Canal is a tributary and urban runoff that drains the

heavy industrial effluents and then empties into the

Swartkops River Estuary. At the upper reaches of the

canal is the highly polluted runoff, as reported by Lord

and Mackay (1991). However, the vegetation estab-

lished in the canal bed and the long travel time to the

estuary effectively remove most pollutants from the

runoff (Lord & Mackay, 1991). Markman stormwater

is a significant source of pollution of the Swartkops

River (Lord & Mackay, 1991), as sewage water from

various industrial zone activities and informal settle-

ments such as Aloes village are discharged without

purification (Papu, 2015). The pollution from Mark-

man runoff is a threat to the estuarine ecosystem,

which provides important refuge and feeding areas for

many species (Nel, 2014) and puts the neighborhood’s

health (Papu, 2015) threatening food security. There

has been pollution from lower heavy metal concen-

tration from the industrial area, fine chemicals from

guilty industry members (Nel et al., 2015), and 90%

increase in trace metals (Adams, 2019). However, no

study has investigated on the occurrence of PBDEs in

Markman Canal; therefore, the data generated from

this study will assist the managers in monitoring and

mitigating the PBDEs contaminants from reaching the

Swartkops Estuary. The stormwater under

investigation does not empty directly into the Indian

Ocean, but it discharges to Swartkops River, which

flows into the Indian Ocean (Adams et al., 2019). This

study validates the Swartkops River’s pollution from

Markman runoff and provides the risk evaluation of

PBDEs in surface waters of an industrial-based

environment.

Materials and method

Study area

Markman canal is a tributary of Swartkops River sited

Markman Industrial area, Port Elizabeth, Eastern Cape

Province, South Africa, which also traveled through

the Aloes community, a suburb with few residential

houses and a mini-relaxation center. This area is a

zoned industrial estate situated at 33.7987� S,

25.6332� E, with little animals’ grazing. The Markman

area population is 59 with 21.43 area km2, as stated in

census 2011 (https://census2011.adrianfrith.com/

place/299007). Industries situated in this area

include textile and automobile industries. Also, fruits

and vegetable mall that makes use of plastics is also

located in this area. Port Elizabeth has an annual

average precipitation of 47 mm (en.climate-data.org).

Several points of wastewater discharges were seen

running into Markman Canal from these industries.

The map (Fig. 1) and the coordinates (Table 1) are

shown.

Standards and reagents

Standard mixtures (1.2 mL of 5 lg/L) of six PBDE

congeners (BDE-17, 47, 66, 100, 153, 183), purchased

from Bymax Pty, South Africa, constituting the most

bountiful PBDE congeners in the aquatic environ-

ment, were examined in all samples. Surrogate

standard PCB-209 was procured from Wellington

Laboratories, Ontario, Canada; Phenomenex—strata

C18—E (55 lm, 70A, 500 mg, 6 mL), from Separa-

tions Pty Ltd, South Africa. Pure sand (50–70 mesh)

was purchased from Sigma-Aldrich. At the same time,

glass wool and HPLC grade solvents: dichloro-

methane (DCM), hexane, acetone, ethyl acetate,

isooctane, acetonitrile, nonane, and toluene (Sigma-

Aldrich, Chemie GmbH, Steinheim, Germany), were

supplied by Merck, South Africa. Nitrogen gas
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(99.999% purity) was ordered from Afrox (Pty.),

Pretoria, South Africa. Silica gel (100–200 mesh),

Na2SO4, and copper powder (500 g) were bought from

SAINS Agencies, South Africa. All organic solvents

utilized during the experimental and instrumental

processes were of HPLC grade or equivalence.

Sampling and sample pre-treatment

Both water and sediment samples were collected in

triplicate from five points in each season across the

canal course between August and December 2020.

Approximately 40 rainfalls were recorded before

commencing the sampling (en.climate-data.org). Each

sediment and surface water sample were unique to a

sampling point, and discrepancies were avoided using

the global positioning system. Water samples (1 L)

were collected in amber glass bottles (formerly

washed with detergent and rinsed with acetone and

subsequently with the sample water). All samples

were retained in an icebox and transferred to the

laboratory. The filtration of the samples was done with

Whatman No. 1 filter paper (140 lm) within 12 h of

collection, and extraction was done immediately.

Sediment samples (0–40 cm depth) were collected

using a 2-L stainless Van Venn grab sampler. The

collected samples were separately enfolded in alu-

minum foil and conveyed to the laboratory. Large

stones and pieces of debris were removed from

sediment samples before they were air-dried in a dark

room, crushed, and homogenized thoroughly with

mortar and pestle, and sieved separately with 250-lm

mesh sieves and preceded for extraction and instru-

mental analysis.

Extraction and purification

Water extraction

Extraction was modified and carried out according to

Kowalski and Mazur (2014). Phenomenex—strata

C18—E (55 lm, 70A, 500 mg, 6 mL) was conditioned

with ethyl acetate (6 mL) and distilled water (6 mL) at

a flow rate of 1 mL min-1. After that, 500 mL of the

filtered water sample was passed over 10 mL min-1

flow rate, after which the column was dried for 3 h,

and then, the analyte was eluted with 2 9 2.5 mL of

ethyl acetate. The extract was evaporated to dryness

under a gentle stream of nitrogen and reconstituted

with acetonitrile (1 mL) before GC-lECD analysis.

Fig. 1 Map of Markman canal sampling points

Table 1 Sampling sites

description
Site code Latitude Longitude Description

MAK1 33�50034.7‘‘S 25�36002.5’’E Point of discharge to Swartkops River

MAK2 33�50035.7‘‘S 25�36012.5’’E Residential area under the bridge

MAK3 33�48017.0‘‘S 25�38017.6’’E High way

MAK4 33�48009.5‘‘S 25�38025.9’’E Industrial area

MAK5 33�47057.7‘‘S 25�38038.9’’E Industrial area

123

3412 Environ Geochem Health (2022) 44:3409–3424



Sediment extraction

Sediment extraction was done based on a modified

ultrasonically assisted extraction method reported by

Olukunle et al. (2015), and analytes were measured

using a gas chromatography–electron capture detector

(GC-lECD). Approximately 10 g sample was

weighed into a methodically cleaned amber bottle

(100 mL). Afterward, each of the samples was spiked

with 200 ll of 18 lg/L of surrogate standard PCB-209

and allowed to soak and equilibrate for 1 h. The

samples were washed overnight afterward with 20 mL

of n-hexane: acetone (2:1, v/v) in an airtight amber

bottle (100 mL), followed by extraction for 30 min at

45 �C in an ultrasonicator (LASEC South Africa Pty

Ltd, single frequency 40 Hz, 6 L). After sonication,

the sediment sample with extract was left to cool and

settle for 60 min at 0 �C before the extract was drawn

out of the vial using a Pasteur pipette into another

bottle. The extracts were centrifuged at 5000 rpm for

5 min. Extraction was done recurrently three extra

times on every single sample with fresh solvents per

group, and each of the extracts (about 60 mL) was

collected. The crude extracts’ volume containing

PBDEs was reduced by rotary evaporator to 1 mL

using a Büchi Rotavapor R-210 (vapor: 40 �C, bath

temperature: 40 �C, and cooling water temperature:

20 �C). The cleanup of crude extracts was achieved by

eluting with n-hexane. The chromatographic glass

column (10 mm 9 30 cm) used for cleanup was

packed with glass wool, 1 g of silica gel, 2 g of

copper in layers from the bottom with and topped up

with 0.5 g Na2SO4 (anhydrous), separating each layer

with glass wool to enhance cleaning. The packed

column was pre-saturated with DCM (8 mL) and then

n-hexane (8 mL). Approximately 1 mL of the sample

extract was put into the column and allowed to run.

The adsorbed analyte was eluted with n-hexane

(6 mL) at 5 mL min-1 flow rate and transferred

carefully into uncontaminated tubes. Nitrogen gas

(N2) was fizzed through the eluate and then concen-

trated to dryness. About 1 mL n-hexane was intro-

duced to reconstitute, and N2 effervesced through to

reduce it to a final volume of 1 mL. After that, the

analyte extract was injected into the GC-lECD under

optimized instrumental conditions.

Instrumental analysis

The PBDEs were analyzed using a 7820A GC coupled

to a G239AE -lECD (Agilent Technologies, Santo

Clara, CA, USA). An HP-5 (Agilent Technologies,

Santo Clara, CA, USA—19091 J-413:1) capillary

column (30 m 9 320 lm 9 0.25 lm i.d. film thick-

ness) was used for congeners separations. The oven

temperature program was as follows: 100 �C with

1-min holding time, raised to 190 �C with no holding,

a second ramp to 255 �C at 5 �C/min with 0.5-min

holding time, and a final ramp to 310 �C at 2 �C/min

with 10-min holding time, giving a run time of

61.25 min. The injection and detection temperatures

were set to 230 �C and 325 �C, respectively, with

carrier gas pressure of 108.43 kPa with an average

velocity of 48.868 cms-1. The carrier gas used was

helium at a flow rate of 1.0 mL/min. All samples were

injected in splitless mode with a volume of 1 lL.

Quality assurance and quality control (QA/QC)

Before use, all glassware was soaked overnight with

acid, washed and rinsed with detergent, and lastly

rinsed with acetone (analytical grade); and heated at

105 �C for 4 h. Silica gel, copper powder, and

anhydrous Na2SO4 were baked at 350 �C before use

to eliminate impurities. Silica gel and Na2SO4 were

stored in a glass jar pre-cleaned and rinsed with a

solvent (n-hexane/acetone). Afterward, it was then

sealed to prevent contamination and absorption of

moisture. Procedural and solvent blanks were ana-

lyzed for every set of five samples to check for

interferences and cross-contamination. Surrogate

standard PCB-209 were spiked into each sample and

analyzed in triplicate for quality control and assur-

ance, and the mean concentrations were reported. The

GC syringe was automated to wash twice, each with

hexane and acetone, before and after sample injection

to prevent cross-contamination. The recoveries for the

analytes (45–123%) were within the standard range of

recovery (APHA, 2005), which indicated that this

method could simultaneously quantify PBDEs in

water. The external calibration method was used for

quantification, and a standard mixture with seven

concentration levels formed the calibration curves at

5–120 lg/L for all congeners of PBDEs diluted with

isooctane. LOD and LOQ were calculated using 3.3

(Sy/S) and 10 (Sy/S), respectively (Ibrahim et al.,
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2018; Olisah et al., 2019). The instrument’s precision,

estimated as the relative standard deviation (RSD),

was estimated from eight replicate injections of a

middle-level calibration standard following standard

methods (Caruso & Santoro, 2014). BDE- 66 did not

give a fair recovery for water, so it was not quantified

in the water samples. The recoveries and linearity are

represented in Table S1.

Statistical/data analysis

The following statistics: one-way ANOVA, regression

analysis, descriptive statistics, composition pattern of

PBDEs in surface water, Pearson correlation, and

distribution percentage were calculated using Micro-

soft Excel 2016. The percentage distribution of

PBDEs was calculated across all seasons; sample

below LOD was treated as zero all through the

statistical analysis. The concentrations were expressed

as ng/g dry weight (dw) for sediment and ng/L for

water samples.

Health risk assessment

Risk assessment was conducted for water and sedi-

ment samples using a model as shown in Eqs. (1) and

(2) (Olisah et al., 2020; Yin et al., 2019).

Estimated daily intake (EDI)
EDI ¼ C � IV=BW ð1Þ

where EDI is the estimated daily intake for target

PBDEs (ng/kg/day), C is the mean seasonal concen-

tration of PBDE in water (ng/L), BW is the body

weight of 60 kg (World Health Organization, 2010),

and IV is the ingestion volume of 2 L (Yahaya et al.,

2017).

Non-carcinogenic risk

Non-carcinogenic risks for water samples are calcu-

lated using Eq. (2):

HQ ¼ EDI=RFD ð2Þ

where HQ is the hazard quotients, and RfD values

(100 ng/kg bw/day for BDE-47 and 200 ng/kg bw/day

for BDE-100 and 153) are the USEPA values as

reported by USEPA 2019 (Wang et al., 2019).

Eco-toxicological risks posed by PBDE in sediment

samples were evaluated by employing the assessment

as given in Eq. (3) (Canada Environment Protection,

2006; Ge et al., 2018).

HQ ¼ C=PNEC ð3Þ

where C is the concentration of PBDEs in sediment,

PNEC is the predicted no-effect concentration below

which no adverse effect is envisaged. The concentra-

tions of 31 and 9100 ng/g dw were used for penta- and

octa-BDE, respectively (Chen et al., 2010; Wu et al.,

2017). Tri-penta-BDE (17, 47, 66, 100) and hexa-octa-

BDE (153, 183) were assumed to be penta- and octa-

BDEs, respectively, as classified by USEPA (Wu

et al., 2013a).

HQ\ 0.1 specifies no eco-toxicological, HQ

between 0.1–1 shows low eco-toxicological risk, HQ

between 1–10 indicates moderate eco-toxicological

risk, and HQ[ 10 indicates high eco-toxicological

risk (Ge et al., 2018; Yin et al., 2020).

Result and discussion

Impact of physicochemical parameters

on concentrations of PBDEs in Markman Canal

The physicochemical parameters of the water and

sediment samples are summarized in Table 2. There is

no significant difference (p[ 0.05) in the properties

(Table 2) among the sampling points. There is higher

pH in spring than in any other season. The pH values

(6.82–9.76) were above EU guidelines (Department of

Environmental Affairs (DEA), 2012). However, the

chemical features of PBDEs are not affected by pH

(Fontana et al., 2009). EC, as well as TDS and TSS,

were highest in winter than any other season. EC

decreases with increasing altitude (Blais et al., 2006).

There was low turbidity in winter but very high in

spring (60.5 FNU). Turbidity evaluates the amount of

suspended solids in water. High turbidity can prevent

debromination (Rügner et al., 2013; Viganò et al.,

2011). The highest turbidity of 19.7 FNU was

observed in MAK4, which explains why there is a

high concentration of PBDE in the winter season. An

increase in turbidity always accompanies the persis-

tence of PBDE as it obstructs the penetration of light

and lowers photodegradation and debromination

(Fondriest Environmental, 2015; Zhang et al., 2008).
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The highest concentration of BDE-17, BDE-47, BDE-

100, BDE-153, and BDE-183 in water and sediments

were (723.47, 292.12, 835.11, 246.82 lg/L, and

27.53 ng/L) and (183 356, 407 870, 453 and 300 ng/

g), respectively. The temperature was unusually

higher in spring (24 �C) than in summer (20 �C).

High temperature promotes the degradation of higher

BDE to lower BDE. It also helps in transferring PBDE

via wet/dry deposition (Shao et al., 2018). There is a

paucity of information on the effects of temperature on

PBDE. However, an increase in temperature brings

about an increase in solubility of PBDEs (Kuramochi

et al., 2007). Spring season had the highest temper-

ature, and yet a high concentration of PBDE was

detected in summer. The high concentration in sum-

mer can be attributed to wet deposition (Shao et al.,

2018), as it was a rainy season.

Furthermore, salinity was also low in winter. Kim

et al. (2017) reported that the partition sorption

process of PBDE could be affected by salinity.

Contrastingly, reports showed that sorption is not

affected by salinity (Xu et al., 2019). DO for the winter

season was not measured due to logistics; however,

PBDEs can rapidly weaken DO and, consequently,

decrease in oxidation–reduction potential (Chen et al.,

2016). Moisture content was not measured in the

winter season.

Pearson correlation matrix among water quality

parameters

In water samples, BDE-17 correlates moderately with

BDE-100 (0.665; p\ 0.05) and BDE- 153 (0.577;

p\ 0.05), pH, EC, TDS, salinity, DO, moisture

content, and inversely moderate with temperature

and mVORP. BDE- 47 correlates strongly with BDE-

100 (0.756; p\ 0.05), moderately with 153 (0.628;

p\ 0.05), very strongly with 183 (0.939; p\ 0.05)

and recorded good correlation with all the physico-

chemical properties. BDE-100 correlates strongly

with BDE-183 (0.865; p\ 0.05), inversely moderate

with turbidity, and moderate with resistivity. BDE-153

strongly correlates with BDE-183 (0.838; p\ 0.05)

and inversely moderate with ORP. BDE-183 is

inversely moderately correlated with turbidity and

moderately correlated with resistivity. This implies

that an increase in turbidity will decrease the debromi-

nation rate of BDE-183.

In sediment samples, BDE-17 correlates very

strongly with BDE-47 (0.991; p\ 0.05), 66 (0.921;

p\ 0.05), 183 (0.994; p\ 0.05), strongly with BDE-

100 (0.885; p\ 0.05), and moderately with 153

(0.676; p\ 0.05). It correlates inversely moderate

with OM, OC and moderately with temperature. BDE-

47 correlates very strongly with BDE-100 (0.936;

p\ 0.05) and BDE-183 (0.975; p\ 0.05), strongly

with BDE-66 (0.877; p\ 0.05), moderately with

BDE-153 (0.579; p\ 0.05), moderately, inversely

Table 2 Physicochemical

properties of surface water

and sediments

EC electrical conductivity,

RES resistivity, MvORP
oxidation–reduction

potential, DO dissolved

oxygen, TSS total

suspended solid, TDS Total

dissolved solid, MC
moisture content, OC
organic carbon, OM organic

matter

Seasonal variation

Parameters Winter Spring Summer

Mean ± STD Mean ± STD Mean ± STD Range

pH 8.7 ± 0.1 9.4 ± 0.3 8.8 ± 0.2 6.82–9.76

EC (mS/cm) 7.1 ± 0.5 2.9 ± 1.5 3.1 ± 0.9 0.41–7.9

TDS (g/L) 3.6 ± 0.2 1.5 ± 0.7 1.6 ± 0.5 0.2–4.0

Salinity (PSU) 4.0 ± 0.3 1.5 ± 0.8 1.6 ± 0.5 0.1–3.9

Turbidity (FNU) 9.8 ± 9.1 60.5 ± 62.1 46.9 ± 47.4 2.6–153.7

Temperature (oC) 16.30 ± 0.4 24.2 ± 0.3 21.5 ± 0.7 15.5–24.5

mVorp 17.8 ± 3.5 34.1 ± 18.1 112 ± 7.9 10.1–122.1

RES (Ohm-cm) 139.8 ± 8.4 715.7 ± 969.5 346.9 ± 115.4 125.0–2449.3

TSS 15.2 ± 2.7 21.8 ± 17.7 21.8 ± 17.7 7.0–50.0

DO (mg/L) – 7.2 ± 0.3 6.2 ± 1.0 5.0–7.8

% MC – 40.6 ± 18.64 40.4 ± 21.55 20.8–70.5

%OC 0.80 ± 0.56 0.84 ± 0.53 0.7 ± 0.35 0.2–1.5

%OM 1.40 ± 0.97 1.18 ± 0.91 1.2 ± 0.60 0.3–3.1
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moderate with OC and OM. BDE-66 correlates very

strongly with BDE-183 (0.957; p\ 0.05), strongly

with BDE-153 (0.885; p\ 0.05), moderately with

BDE-100 (0.656; p\ 0.05). BDE-66 and 153 did not

correlate with all the physicochemical properties. All

the physicochemical properties have a good correla-

tion with themselves. The summary of the Pearson

correlation is given in Tables S2 and S3.

Spatial distribution and seasonal variation

The PBDE concentrations of both matrices (Table S4)

showed no significant difference among the three

seasons (p-value[ 0.05). The total seasonal occur-

rence of both water and sediment samples was in the

order: Spring[winter[ Summer. The higher occur-

rence of PBDE concentrations in the spring season

could be attributed to the heavy rainfall experienced in

the spring season by South Africa. Heavy rain can

influence the concentrations of PBDE as a result of

runoffs from agricultural activities and atmospheric

wet deposition (Shao et al., 2018). The low concen-

tration of the contaminants in the summer season

(Fig. 2) can be attributed to attenuation caused by

heavy rainfall in the catchment area. The highest

detected PBDE congener in water samples is BDE- 17,

accounting for 48% (72.91–723.47 ng/L) in winter

and 0.30–48.63 ng/L in summer. Furthermore, the

trend of average congeners detected in water samples

in all the seasons is given as BDE- 17 (42%), followed

by BDE-100 (37%), BDE-47 (10%), BDE-153 (9%),

and BDE-183 (2%). BDE-17 being a lower bromi-

nated diphenyl ether is one of the significant debromi-

nated products of anaerobic dehalogenation process of

sediment samples (Trinh et al., 2019). Furthermore,

BDE-17, BDE-47, and BDE-100 were the dominant

congener, especially at MAK1 and MAK 2 (Fig. 3),

which are characterized by indiscriminate disposal of

waste and vehicular emission.

The highest detected concentration in sediments in

the winter season was BDE-153 (0.57–453 ng/L),

while BDE-100 was the least detected (BDL-8.64 ng/

L). This concentration was noticed in MAK 1. In

spring, BDE-66 and BDE-100 were the highest

detected at 14.23–407 and 0.22–533 ng/L, respec-

tively, followed by BDE-47 (0.22–356 ng/L). High

concentration was noticed, especially in MAK 4,

which is at the industrial area receiving effluent from

the industries. This agrees with the report of Muenhor

et al. (2017), in which BDE-66 was higher because of

the discharge from the industrial area, as also

confirmed by Hwang et al. (2012), who also detected

penta-BDE from industrial sludge samples at very

high concentrations. BDE-183 was the congener with

the highest concentration (0.54–299.86 ng/L) detected

in summer at MAK 4. The highest average congener

detected in sediment was BDE- 66 (41%), followed by

BDE-100 (23%), BDE-153 (19%), BDE-183 (18%),

BDE-47 (15%), and BDE-17 (9%) in that order.

Higher brominated congeners were detected more in

sediment because they are hydrophobic and tend to

attach more to sediment than dissolving in water

(Jiang et al., 2019). BDE-153 was relatively high,

which indicates possible debromination of BDE-183

(Robrock et al., 2008). In the summer season, BDE-17,

BDE-47, and BDE-66 were dominant in the sediment

matrix, BDE-17, and BDE-47 were dominant in water

samples because they are more persistent in the

environment (Yao et al., 2020). Though physicochem-

ical parameters played major roles, other factors such

as the day of discharge of effluents into the canal may

also affect the concentration of the PBDEs in the

Fig. 2 a Seasonal concentration in water and b sediment
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runoff water. Despite the highest temperature in the

spring season, the highest concentrations were noticed

at points MAK3, MAK4, MAK5. Temperature and

rainfall play a vital function in transporting PBDEs

from one environmental matrix to the other. Higher

ambient temperature was observed in spring, which

positively impacted the transportation of PBDEs from

air to water via dry/wet deposition. In addition, surface

runoff and wet deposition were the significant factors

affecting PBDEs’ concentration in water, transferring

a higher amount of PBDE from air and soil to aquatic

matrix. Higher temperature and strong sunshine may

promote photodegradation of higher brominated

diphenyl ethers to lower BDE (Shao et al., 2018).

The high concentration in the spring season could also

probably result from high turbidity (60.5 FNU), which

prevents photodegradation (Viganò et al., 2011). Low

temperature and rainfall decrease diffusion of air–

water flux and volatilization, which in turn suppress

the transportation of PBDE from other environmental

matrices to the aquatic matrix and consequently give a

high concentration of PBDEs. A similar high concen-

tration was observed by Shao et al. (2018). Concen-

trations in summer were lower than those in winter,

possibly due to a a higher degradation rate in summer

and atmospheric volatilization/condensation/deposi-

tion cycle in different seasons (Ge et al., 2014a).

PBDE is hydrophobic and tends to sorb to high organic

matter content in particles in waste streams (Ge et al.,

2014a).

The seasonal concentrations of the water and

sediment spots (Table S4) showed a significant

difference among the sampling points (p-value\
0.05). The seasonal differences in the concentrations

of PBDEs may not only be attributed to climate

change. It could be because of variations in effluent

discharge frequency in the industrial zone and non-

point source of the contaminants into the canal.

Comparing the three seasons, MAK5 was the highest

contaminated point in winter and summer in the water

samples with RBDE at 49% and 42%, respectively.

MAK4 had the highest concentration in spring, with

RBDE at 44%. MAK3 was not affected by the seasons.

It was evident that MAK3, MAK4, and MAK5 had the

highest contamination. These are the three points with

direct effluent discharge from the industrial zone.

MAK1 and MAK2 were relatively the lowest in all the

seasons, as waste generated here is majorly domestic

waste and vehicular emission. From the results, only

7% R5BDE of water samples are emptying into

Swartkops River. The low concentration shows degra-

dation evidence, corresponding to Swartkops Estuary

report (Olisah et al., 2020). In winter, a high concen-

tration in sediment at BDL-452.69 ng/g was observed

at MAK1, which is the point of entry of the canal into

Swartkops River, followed by MAK2 at 3.80–

Fig. 3 Winter water sample a. Spring water samples b. Summer water samples c. winter sediment sample d. Spring sediment samples

e. Summer sediment samples
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10.92 ng/g, showing some pollution level from the

residential area. MAK4 has the highest contamination

in spring at 122.26–533.29 ng/g. MAK4 also had the

highest concentration at 31.62–299.86 ng/g. Gener-

ally, MAK4 has the highest concentration of RBDE at

55%. The high concentration of PBDEs is not out of

place as this point hosts many points of discharge from

the surrounding industries.

Comparison with other countries

Comparison of the RPBDE in this study with the

concentrations within South Africa and other countries

to evaluate PBDEs pollution status in the canal is

given (Table 3). This study recorded higher concen-

trations in water samples than other reported surface

water sites in South Africa (Daso et al., 2013a; Olisah

et al., 2020). The highest concentration came from a

water sample of MAK4 in the spring season marked

with high pollution and turbidity. It was observed that

at this point, the concentration in the water sample was

higher than in sediment. This can be attributed to the

fresh release of effluent from the industry on the

sampling day. The concentration of contaminants in

the sediment of this study (Table S4) was R6278 ng/g,

R6408 ng/g, and R6175 ng/g in winter, and spring,

summer, respectively, higher than the concentrations

detected (48 ng/g) by Chokwe et al. (2019) in South

Africa and 0.5–3 ng/g in the USA (Song et al., 2004).

The concentrations of R5PBDE in water samples of

winter and summer (Table S4) are BDL-724 ng/L

(R51061 ng/L) and 2.98–28.56 ng/L (R558.47 ng/L),

respectively. This is higher than the concentration

range (3–6 ng/L and 1–1.2 lg/L) in winter and

summer, respectively, reported in China (Ge et al.,

2014b). This could be due to new discharge from the

surrounding industries in addition to the runoff from

an industrial canal. However, the highest concentra-

tion in water samples in spring (R1357 ng/L) was

lower than the concentration detected in China by

Liang et al. (2019) at R9PBDE 1.85–7124 ng/L.

Markman canal is tributary stormwater coming

from an industrial zone that empties into Swartkops

River. Research carried out by Olisah et al. (2020)

showed Swartkops River was polluted by PBDE at a

concentration of 2.5–169 ng/L, validating that the

effluent from this canal contributes heavily to the

pollution of the waterbody.

Human risk assessment

The result of human risk assessment for water and

sediment samples was based on hazard quotients

(HQs), as shown in Tables S6 and S7, respectively. For

water samples, the highest HQ was 3.02 9 10–2,

which is below 0.1, although tetra-BDE, penta-BDE,

hexa-BDE, and hepta-BDE values were higher than

the Federal Environmental Quality Guideline (FEQG)

(Environment Canada, 2013) when compared as

shown (Table S6, supplementary information). How-

ever, no eco-toxicological risk is envisaged for water

samples. The literature has no RfD values for BDE- 17

Table 3 The

contamination level of

PBDEs in surface waters

and sediments compared

with other countries

N number of samples

Sampling sites N Year Mean References

South Africa

Gauteng 12 2010–2011 Sediment 39.87 ng/g Olukunle et al. (2012)

Cape Town 27 2010–2011 Water 320–485 ng/L Daso et al. (2013a)

Johannesburg 16 2017 Sediment 47.66 ng/g Chokwe et al. (2019)

Cape Town 7 2010–2011 Water 2560 ng/L Daso et al. (2013b)

Port Elizabeth 15 2017–2018 Water 13.8 ng/L Olisah et al. (2020)

Port Elizabeth 30 2020 Water 1357 ng/L This study

Other countries

San Francisco (USA) 33 2002 Water 0.51 ng/L Oros et al. (2005)

Hong Kong, China 5 2005 Water 0.23 ng/L Wurl et al. (2006)

Korea 24 2005 Sediment 32 ng/g Ramu et al. (2010)

Canada 6 2004–2007 Sediment 0.06 ng/g Cai et al. (2012)

Netherlands 44 1999 Water 18 ng/L De Boer et al. (2003)

South China 9 2013 Water 7.78 ng/L Yang et al. (2015)

123

3418 Environ Geochem Health (2022) 44:3409–3424



and BDE- 183, so the risks were not measured. The

sediment concentrations in different seasons were also

compared with the FEQG values (Environment

Canada, 2013), as grouped in Table S6. It was

observed that tetra-BDE and penta-BDE values for

all the seasons, including hexa-BDE in the winter

season, were higher than the FEQG values. The HQ

for penta- and octa-BDE from the sediment sample in

Markman Canal were 5.82 and 1.17 9 10–2. Tri-

penta-BDE (17, 47, 66, 100) and hexa-octa-BDE (153,

183) were assumed to be penta-BDE and octa-BDEs,

respectively, for hazard quotients as classified by

USEPA (Wu et al., 2013b). Notwithstanding, the high

values of tetra-BDE and penta-BDE were not high

enough to cause eco-toxicological risk. However, the

penta-BDE indicated potential moderate eco-toxico-

logical risk, while the octa-BDE shows no risk.

Although the water samples posed no risk, the runoff

stormwater is too turbid to be used for bathing.

Percentage distribution of PBDEs in the surface

water and sediment

The percentage distribution of the congeners in water

samples is summarized in Fig. 4a. Generally, the

highest contamination of PBDEs in water samples

emanated from MAK4 (34%). This point was associ-

ated with high turbidity, which could have contributed

to the slow degradation of PBDEs. The highest

concentrations of BDE- 17 were obtained from

MAK4 (35%). The highest concentrations of BDE-

47 were from MAK5 (56%). The highest concentra-

tions of BDE-100 were obtained from MAK5 (52%).

The highest concentrations of BDE-153 were obtained

from MAK5 (49%). MAK5 gave the highest concen-

tration of BDE-183 (39%).

In sediment samples (Fig. 4b), the highest detected

concentration of BDE-17 is at MAK4 (55%), followed

by MAK1 (30%). The highest concentrations of BDE-

47 were from MAK4 (66%), followed by MAK1

(26%). The highest detected concentrations of BDE-

66 were from MAK4 (45%) and then MAK1 (42%).

The highest BDE-100 concentration detected was

from MAK4 (88%); then, each of MAK 1, MAK2,

MAK5 was 4%. The highest concentrations of BDE-

153 found were from MAK1 (61%). The highest

concentrations of BDE-183 detected were from

MAK4 (57%). Most of the contaminations come from

MAK4 and MAK1.

Contamination pattern and source apportionment

of pollution in Markman Canal using

a dendrogram

Dendrogram establishing the categorized cluster

breakdown (Hellar-Kihampa et al., 2013) of PBDEs

of water and sediment samples from five sampling

points at the Markman Canal is illustrated (Fig. 5).

Locations in the same clusters display related pollu-

tion. The mean water samples (MAK1, MAK2,

MAK3, MAK4, MAK5) and sediment samples

(MAK1, MAK2, MAK3, MAK4, MAK5) across the

sites were represented. The cluster indicates that the

study site is grouped into three clusters. The first

cluster, which has the highest concentration, is divided

into two (MAK4 and MAK1). The second cluster

comprises MAK4, while the third cluster, which is

related to similar concentrations, comprises (MAK1,

MAK2, MAK3, MAK4, MAK5, MAK2, MAK5,

MAK3).

Fig. 4 Percentage distribution for a water and b sediment

samples
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Conclusion

Investigation of PBDEs (BDE-17, BDE-47, BDE-66,

BDE-100, BDE-153, BDE-183) was carried out using

SPE and USE for water and sediment extraction.

Analysis was carried out with GC-lECD. The highest

detected of all the congeners in sediment was BDE-

153. MAK5 was the highest contaminated in water for

summer, while MAK4 has the highest contamination

in spring. The three points of the industrial zone gave

the most increased pollution. The pollution state of the

stormwater runoff, based on this study’s findings,

poses a health risk to both its dependents and the

receiving water bodies. Consequently, the industries

emptying their effluents in the Markman canal should

continue to work on the elimination process to see that

these congeners are mitigated to a reasonable value so

that the receiving river (Swartkops River) is safe to the

public.
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