Environ Geochem Health (2021) 43:5011-5024
https://doi.org/10.1007/s10653-021-01012-y

)

Check for
updates

ORIGINAL PAPER

Radiological risk assessment to the public due
to the presence of radon in water of Barnala district,

Punjab, India

Supriya Rani - Sandeep Kansal

+ Amit Kumar Singla - Rohit Mehra

Received: 24 November 2020/ Accepted: 14 June 2021 /Published online: 26 June 2021
© The Author(s), under exclusive licence to Springer Nature B.V. 2021

Abstract Various research studies have shown that
exposure to radon gas is a cause of concern for health
effects to the public. The present work has been
carried out for the radiological risk assessment to the
public due to the presence of radon isotopes in
drinking water of Barnala district of Punjab, India,
for the first time using scintillation-based radiation de-
tector. A total of 100 samples were collected from
different sources of water (canal and underground
water) from 25 villages on grid pattern of 6 x 6 km?in
the study area for uniform mapping. In situ measure-
ments were carried out to find out Rn-222 concentra-
tion in water samples. The measured values have been
found to vary from 0.17 £ 0.01 to 9.84 & 0.59
BgL ™! with an average value of 3.37 & 0.29 BqL ™,
which is well below the recommended limit of 100
BqL_l(WHO 2004). The annual effective dose due to
ingestion and inhalation of radon has also been
calculated for various age groups like infants, children
and adults to understand the age-wise dose distribu-
tion. The calculated values suggest that there is no
significant health risk to the general public from radon
in water.
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Introduction

Exposure of humans to radon gas is a cause of concern
and many pooled as well as individual studies have
been carried out to find the radiation levels and so the
radiological health risk to the general public. About
90% of radiation exposure to humans is from natural
sources like cosmic, terrestrial and internal (S Kansal
et al. 2015). Among the various sources of natural
ionizing radiations present on the earth, Rn-222 alone
contributes to more than 50% of the total dose received
by the general public(UNSCEAR, 2000; Parminder
Singh et al., 2015)and is known to be the second
largest cause of lung cancer after smoking (WHO,
2009; H. Al-Zabadi et al. 2015). Radon, a progeny of
uranium, is an inert, colourless and odourless gas
found in numerous kinds of rocks like granites,
metamorphic rocks and sedimentary rocks containing
phosphate (Errol Lowerence et al. 1991; Linda C.S.
Gunderson et al. 1992; Fernando P. Carvalho et al.,
2007). Radon gas is fifteen times more soluble than
other noble gases like helium and neon in water and is
dissolved and transported with the water when under-
ground water moves through radium-rich soil and
rocks. The existence of natural radioactivity in water is
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based on the local geological conditions of the source,
soil or rocks (Fatima et al., 2007). Dissolved radon in
water may enter into indoor air through de-emanation
when water is wused for showering, laundry
(UNSCEAR, 2000).

A report by the National Research Council of the
United States attributed 3,000 to 32,000 lung cancer
deaths per year (with a mean of about 19,000 deaths
annually) to Rn-222 and its short-lived progeny in
indoor air (NCBI, 1999). Furthermore, there is a
plethora of the literature suggesting that there is no
safe level for stochastic (probabilistic) effects to occur
(Tsoulfanidis et al. 2015). Several studies on radon and
its correlation with geology have been attempted in
different parts of the world (Choubey & Ramola, 1997;
Ramola et al., 1989; Tanner, 1986). From various
epidemiological combined investigation of seven
North American case—control studies, it was estab-
lished that radon in homes increases the risk of lung
cancer to the local population (Lubin et al. 1995, 1997,
D Krewski et al., 2005; Singla et al., 2021a). In a study
by Henshaw, it was revealed that indoor radon
concentration is related to leukaemia and certain
different malignancies (Henshaw et al. 1990). Accord-
ing to USEPA, 1991, consumption of water causes 168
cancer deaths every year, 89% of lung cancer deaths
were caused by breathing in radon released to the indoor
air from water and 11% of stomach cancer deaths were
caused by consuming water containing radon (USEPA,
1991; Rohit Mehra et al., 2015; Singla et al., 2021b).
Radioactive contamination can lead to various life-
threatening diseases like cancer and renal failures
(Paivi Kurttio et al., 2006; K Skeppstorm et al. 2007; S
Kansal et al., 2011). Radon progenies can also stick to
aerosol particles thereby exposing indoor occupants to
elevated radon exposure (Mishra et al. 2008). These
progenies deliver most of the dose to tissues, thereby
damaging the genetic material and leading to muta-
tions. ICRP recommends a threshold exposure limit of
1 mSv per year for general public and 20 mSv per year
for radiation workers for the total dose received for all
sources (ICRP 2010). However, as per the United States
Nuclear Regulatory Commission (US-NRC), exposure
levels to individuals must be kept ‘as low as reasonably
achievable’ (principle of ALARA). Besides acting as an
indicator for uranium deposits, Rn-222 has some
unique properties due to which it finds its use as a
geophysical tracer for locating faults and geological
structures (Tanner, 1986; Nazir et al., 2020a). However,
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the most important aspect of studying radon is the
radiological hazard it poses to general public (Bajwa
et al., 2005; Nazir et al., 2020b, c).

Water, being a basic component of all life forms, is
essential for the survival of all living beings. It is
therefore imperative to test water for such toxic and
radiological components. Keeping in view the signif-
icance of the adverse health effects of radon, many
studies have been carried out worldwide for quanti-
fying radon in water. The present study in Barnala
district of Punjab, India, has been carried out for the
first time using Smart RnDuo to find the radiological
risk assessment to the public. The ingestion and
inhalation doses for various age groups like infants
(1-2 year), children (8-12 year) and adults (above
17 year) have also been calculated. The data obtained
in this study will add to the relevant scientific data pool
for the radon mapping of the country.

Study area

Figure 1 shows the study area with latitude of
30°22'28.24” North and longitude of 75°32'55.32"
East. The total geographical area of this district is 1410
km?. According to the Central Ground Water Board
(2013) the hydrogeology of the area, is occupied by
Indo Gangetic alluvial plain of quaternary age and falls
in Ghaggar sub basin. The groundwater occurs in
alluvium formations comprising fine to coarse sand
which form potential aquifer. The rocks of the
Aravalli- Delhi subgroup and the Malani igneous suite
comprise grey-wacke, ortho-quartzites, carbonate-
sediments, calcareous shale and slates and the high-
heat-producing granites and felsites from the basement
in region. There is no drainage system in the area
except the Dhuala drain which intersects its territory.
This drain carries flood water when heavy rainfall
occurs in the catchment area. Abohar branch of Sirhind
canal system passes in south-eastern part of the district.
The groundwater is alkaline in nature (H.S. Virk,
2019). The main sources for drinking water in the study
area comes from the canal and groundwater.

Methodology

The study area is divided into grid pattern of 6 x 6
km? for uniform mapping. A total of 100 water
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Fig. 1 Map of study area (grid pattern), Barnala district, Punjab

samples were procured from 25 different villages with
four samples (2 canal water, 2 underground water)
from each village in each grid. The samples were
collected in 60 mL airtight cleaned glass bottles. The
samples were collected underwater by putting the
sampling water bottles in the water container/ bucket
(Fig. 2) so that radon could not escape during the
sample collection. All sampling bottles were fully
filled up to the top ensuring no bubble formation in the
sample. The glass bottles have been preferred over
other materials as it has more radon retention

)

\
\ Bucket filled
\with water

\

Fig. 2 A schematic set up for water collection from source

ability than other materials (P. Vesterbacka et al.,
2010).

To measure Rn-222 concentration in the collected
water samples in real time, a scintillation-based radon
monitor, Smart RnDuo developed by Radiation Pro-
tection & Advisory Division (RP&AD) at Bhabha
Atomic Research Centre (BARC), Mumbai, India (J.J.
Gaware et al., 2011), has been used. A complete set up
for radon monitoring is shown in Fig. 3. Prior to radon
estimation, the inbuilt pump was turned on for 5 min
to flush the air inside the detector in an open loop, and
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Fig. 3 A setup for measuring radon in water samples

afterwards, sample bottle was connected with bubbler
using rubber tubing. The pump was turned on in the
closed loop for 5 min for extraction of radon from
water. It has been done with the help of bubbler which
is fixed on the top of sampling bottle. One end of the
tube is connected with air inside the detector, and other
end is put inside water bottle through the bubbler in
such a way that when pump is in “ON” mode then air
moves from detector to the water sample and bubbles
are produced in it. The pump was turned off after
5 min and was given 5 min delay for thoron decay and
to avoid the impact of the thoron on the radon
estimation. The extracted radon (C,;) further flows
towards detector volume and gathered in scintillation
cell by passing through “progeny filters” and “thoron
discriminator” eliminating radon/thoron progenies
and thoron. The radon measurements in Smart RnDuo
are based on the detection of alpha particles emitted
from radon, and its decay products formed inside a cell
volume which are continuously counted by the PMT
and the associated counting electronics. The alpha
counts obtained are processed by a microprocessor
unit as per the developed algorithm the display the
concentration of radon. The sample was analysed in
continuous mode for 1 h of 15 min cycle each at
constant temperature. Smart RnDuo attains an effi-
ciency of 95% for radon within running time of
15 min. The instrument has minimum detection limit
of 8 Bqm™> at 1 sigma and 1 h counting cycle for
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radon, whereas the maximum detection limit is 10
MBgm > (Radon Hand Book developed by BARC,
Mumbai, India; Nazir et al., 2020b). The device was
calibrated using standard radon-thoron sources
(Model RN-1025 & TH-1025) procured from Pylon
Electronics Inc. Ottawa, Canada in a 0.5 m°> calibra-
tion chamber at laboratory facility of Bhabha Atomic
Research Centre (BARC), Mumbiai, India (B.K. Sahoo
et al., 2013; Singh et al., 2020).The scintillation
detector has two advantages, one is the least effect
of humidity and another is that the counting error is
less than the allowed limit of 10%(Jobbagy V et al.
2017).

For statistical analysis of the data, OriginLab 8.5,
IBM-SPSS and Microsoft Excel 2010 were used (Na-
zir, 2020).

Calculations
(i) Calculation for radon in water

The following formula is used to estimate the radon
concentration in liquid (Cjq) from the measured
concentration of radon in air (Cy;,) in water samples
is given by Smart RnDuo (J.J.Gaware et al., 2011):

Va“) (n

Cliq = Cair(k + Vw
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where C,;, is concentration of radon in air (qu73),-
Ciiqis concentration of radon in water (qu_3),

V.ir and V,, are the air and water volumes, and k
(= 0.25) is partition coefficient between air and water.

(i1) Estimation of annual effective dose due
to ingestion and inhalation

The dose exposure due to ingestion and inhalation
from the Radon in water has been calculated by the
parameters given in UNSCEAR report (2000).

(a) The ingestion dose due to radon concentration in
water is given by UNSCEAR, 2000:

ID = Cliq X ADWI x 365 x DF (2)

where I, is the ingestion dose per year (uSvy "), Ciig
is the radon concentration in water, Apwsy is the age-
wise daily water intake (for infants (0-2 year)(0.8 L),
for children (8—12 year)(2.5 L) and for adult (above
17 years) (3L) (WHO, 2004).

and DF is the dose conversion factor for radon (3.5
nSvBq ") for adults, (5.9nSvBq~") for children and
(23 nSqu_l) for infants (UNSCEAR, 2000).

(b) The inhalation dose due to consumption of
radon in drinking water is given by UNSCEAR, 2000:

Inhp = Ciiq X Ry, X Pg,,,, X 0 x DF (3)

where Inhy, is the inhalation dose per year (uSvy™),
Ciiq 18 the radon concentration in water,

R is the ratio of radon in air and water/ transfer
coefficient (107, ®Ruy, 15 the equilibrium factor
between radon and its progeny (0.4), (equilibrium
factor is when radon is secular equilibrium with its
progeny). o is the time of individual average indoor
occupancy (7000 hy™"), (ICRP assumes 80% annual
indoor occupancy (ICRP 1993) and DF is the dose
conversion factor for inhalation of radon (33nSv (Bq h
m )" for infants, (31.4 nSv (Bq h m—)~") for
children and (28.3 nSv (Bq h m™%)™") for adults
(Brudecki et al., 2014).

Results and discussion

Table 1 shows the measured radon concentration in all
100 water samples. The concentration varies from a
minimum value of 0.17 & 0.01 BqL ™" (Sehra, canal
water) to maximum value of 9.84 % 0.59 BqL™'

(Dhanula, canal water) with a mean value of
3.01 + 0.29 BqL™'. These values are lower than the
safe limit of 11 BqL™"' as recommended by USEPA
(1991), 100 BqL ™" by WHO (2004) and 4-40 BqL ™"
by UNSCEAR (2008). The average value in the
studied area is slightly more than the 2.72 BqL™" in
Bathinda district, India (Mehra et al., 2015) but less
than 3.63 BqL™' in Faridkot district, 4.7 BqL™'in
Mansa and Muktsar district (Mehra et al., 2015).
Figure 4 shows a frequency distribution graph for
radon concentration. It has been observed that con-
centration in 31% of the samples lies between 0-2
BqL ™', in 32% samples it lies between 2-4BqL ™', and
in 37% samples, it lies between 4-10 BqL ™"

Table 1 also shows the annual effective dose due to
ingestion and inhalation of radon in drinking water for
various age groups. The annual effective dose due to
ingestion for infants (0-2 year) lies in the range of
1.54 £ 0.09 to 90.89 + 5.41 pSvy ! with a mean
value of 31.13 £2.68 uSvy ', for children
(8-12 year) it lies in the range of 1.47 + 0.09 to
86.48 £5.15 pSvy ' with a mean value of
29.62 £+ 2.53 uSvyfI, and for adults (above
17 years), it lies in the range of 1.32 £ 0.08 to
77.94 4+ 4.64 uSvy ' with a mean value of
26.69 &+ 2.3 pSvy '. The annual inhalation dose
varies from 1.12 + 0.07 to 66.17 + 3.93 pSvy !
with a mean value of 22.66 + 1.95 pSvy ™' for infants,
0.9 4+ 0.05t052.95 & 3.15 uSvy ' with a mean value
of 18.14 + 1.56 uSvy ' for children and 0.64 + 0.04
to 37.7 £224 uSvy ' with a mean value of
12.91 & 1.11 uSvy ' for adults. The calculated dose
values are well below the annual effective dose of 100
uSvy ! recommended by WHO (2004, 2008).

From the measured values, a weak correlation
(R2 = 0.06) has been found for the radon concentra-
tion in groundwater samples with the depth of well
(24-153 m) as shown in Fig. 5. Table 2 shows the
descriptive statistics using SPSS, from which it has
been found that the underground water sources have
higher levels for Rn-222 than canal water sources and
the same is shown in Fig. 6. This may be because of
the reason that underground water directly encounters
U-238 rich rocks that release Rn-222in water and
cannot escape to atmosphere (Skeppstorm et al. 2007,
A.N. Voronov et al. 2004). Also, radon levels are
generally higher in underground water as compared to
canal water because of the presence of granite, sand
and gravel in the bedrock (Stojkovic et al. 2015). In
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contrast, Rn-222 in canal water samples can easily
escape to atmosphere due to aeration and agitation in
water. The variation in Rn-222 concentration in canal
water and underground water depends upon geological
factors and topography (Fonollosa E et al. 2016). The
results show that the average Rn-222 concentration in
underground water samples is 4.39 & 0.33 BqL ™'
which is higher than the average concentration of Rn-
222in canal water sources is 2.29 + 0.26 BqL ™.

@ Springer

Using data from table no.1, the whisker plot has
been drawn as shown in Fig. 7, in which minimum and
maximum value of radon concentration are repre-
sented by lower and upper whiskers, respectively,
while solid part in the box shows the mean concen-
tration. The upper and lower lines in the whisker box
plot represent the third and first quartile, whereas the
line in the middle in the box shows second quartile or
median.
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Table 2 Descriptive statistics using SPSS for samples collected from canal water and underground water

Radon concentration (BqL’l)

Sources of water N (no. of samples) Minimum Maximum Mean Std. Variance Skewness Kurtosis
with std.  Deviation with std. with std.
error error error

Canal water 50 17 9.84 229 27 194 3.77 1.66 .33 4.03 .66

Underground 50 1.40 9.54 439 29 2.06 4.25 S57 33 —.08 .66

water

Fig. 6 Intercomparison P

between canal and g’- 4.39

underground water samples B 4

s
% 2.29
Z -
4’3:;
o T T
Canal Water Underground Water
Sources of water
Fig. 7 Box whisker plot for
radon concentration e
—:‘_] 8 Max: 9.84
=
»E 6
:§ a 75% (4.71)
2 s50% (3.05)
S 2
25% (1.57)
o 4|— Min: 0.17

A normality test using Origin Lab 8.5, at a
significance level of 0.01, revealed that the canal
water data were not significantly drawn from a
normally distributed population, while the groundwa-
ter data were significantly drawn from a normally
distributed population. Table 2 shows a comparative
descriptive statistical analysis of drinking water from
canal and underground water (50 samples each) using
IBM-SPSS. The minimum and maximum radon-222
concentration in canal and groundwater ranged from
0.17 — 9.84 Bqm > and 1.40 — 9.54 Bqm ", respec-
tively, with a standard deviation of 1.94 Bqm > and
2.06 Bqm , respectively. The mean (+ SE) for canal
and groundwater was found to be 2.29 + 0.27 Bqm

Radon

and 4.39 + 0.29 Bqm™°, respectively. For canal
water, a positive value of 1.66 for skewness shows
that the distribution is highly skewed and a high
kurtosis value of 4.03 shows that the distribution is
leptokurtic. Compared to a normal distribution, its
tails are longer and fatter and often its central peak is
higher and sharper. Similarly, for groundwater, a value
of 0.57 for skewness shows that the data are moder-
ately skewed, while as a negative value of kurtosis
indicates that a distribution is platykurtic, that is, the
distribution is flat and has thin tails.

Table 3 shows the comparison of measured Rn-222
concentration in water samples in the studied area with

@ Springer
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Table 3 Worldwide comparison of radon (Rn-222) concentration in water samples

S. No Area Radon (Bqul) Reference
range Mean value
1 Iran 0.064 - 49.1 16.2 A. Banish et al., (2011)
2 Cyprus 0.3- 20 59 Dimitrious Nikolopoulos et al. (2008)
3 Greece 0.8- 24 54 Dimitrious Nikolopoulos et al. (2008)
4 Brazil 0.95- 36 36 Adilson Lima Marques et al., (2004)
5 Turkey 1.46-53.64 - U AkarTarim et al. (2012)
6 South Korea 0-300 - Cho et al., (2004)
7 China 0.71- 3735 - Zhuo et al., (2001)
8 Sweden 5-3470 - Salih et al., (2004)
9 Saudi Arabia 0.04-67.44 - Alabudula’aly et al. (2014)
10 Barnala District Punjab, India 0.17—9.84 3.01 Present study

worldwide values and has been found to be lesser than
these values.

Conclusion

e The measured values of Rn-222 concentration
have been found to be below the recommended
limit of 100 BqL™' by WHO (2004), 11 BqL™' by
USEPA, 1991 and 4-40 BqL™' by UNSCEAR,
2008.

e The annual effective dose due to ingestion and
inhalation for infants has been found to be higher
than the dose received by children and adults.
While overall dose is far well below the safe limit
of100 uSvy ' recommended by WHO (2008).

e The underground water samples have slightly
higher values of radon concentration than in canal
water because the radon easily escapes from
canals, while underground water retains.

e A weak positive correlation of radon in under-
ground water with depth has been found.

e As the measured values in the studied area are
below the recommended safe limits, so it can be
concluded that radon in water may not pose any
significant radiological risk to the public.
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