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Abstract The source identification and apportion-

ment of heavy metals (HMs) is a vital issue for

restoring contaminated soil. In this study, qualitative

approaches [a finite mixture distribution model

(FMDM) and raster-based principal components anal-

ysis (RB-PCA)] and a quantitative approach [positive

matrix factorization (PMF)] were composed to iden-

tify and apportion the sources of five HMs (Cd, Hg,

As, Pb, Cr) in Wenzhou City, China, using several

crucial auxiliary variables. An initial ecological risk

assessment suggested that the ecological risk level in

the study area was generally considered low, with the

greatest contamination contributions coming from Cd

and Hg. The result of the FMDM showed that Cd and

Pb fit a single log-normal distribution, Hg fit a double

log-normal mixed distribution, and As and Cr pre-

sented a triple log-normal distribution. Each element

was identified and separated from its natural or

anthropogenic sources. A map of RB-PCA combined

with an analysis of corresponding auxiliary variables

suggested that the three main contribution sources in

the entire study area were parental materials, industrial

and agricultural mixed pollution, and mining explo-

ration activities. Each element was discussed, using

the PMF model, with regard to its quantitative

contributions. Parental materials contributed to all

elements (Cd, Hg, As, Pb, Cr) at 89.22%, 7.31%,

35.84%, 84.81% and 27.42%, respectively. Industrial

emissions and agricultural inputs mixed pollution

contributed 2.94%, 80.77%, 15.93%, 4.79%, and
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25.63%, respectively. Mining activities contributed

7.84%,11.92%, 48.23%, 10.40% and 46.95%, respec-

tively, to the five HMs. Such result could be used

efficiently to generate scientific decisions and strate-

gies in terms of decision-making on regulating HM

pollution in soils.

Keywords Source identification � Source
apportionment � Heavy metals � RB-PCA � FMDM �
PMF

Introduction

Heavy metals (HMs) are of great significance in soil

environments, owing to their high ecotoxicity and

degradation resistance once becoming excessively

persistent in soils (Hu et al., 2020; Marchant et al.,

2017; Saby et al., 2006; Xia et al., 2019; Xie et al.,

2018). Originally, HMs come from natural back-

grounds, i.e. so-called endogenous sources, which

refers to, e.g. a complex parental rock weathering

process (Hu et al., 2017; Ogunlaja et al., 2019;

Schneider et al., 2016). However, as industrialization

and urbanization has progressed, anthropogenic activ-

ities, known for ‘exogenous sources’ such as various

industrial enterprises emitting solid wastes and sew-

age, mines exploitation, fertiliser inputs, and traffic

emissions, have become major contamination sources

(Wei & Yang, 2010). The combined endogenous and

exogenous contaminations have resulted in complex

spatial variability, making soil remediation difficult to

carry out (Urı́a et al., 2009; Marchant et al., 2011).

Without having a knowledge of the contamination

sources, removing pollutants in the soil environment

can only be temporary and consumes significant time

and resources (Proshad et al., 2019; Song et al., 2018;

Sungur et al., 2019). Thus, identifying and apportion-

ing the contamination sources in a soil environment

can be necessary and highly valuable (Chen et al.,

2018; Dong et al., 2019).

Source identification and apportionment generally

refers to utilizing multivariate models to identify and

apportion the contamination sources of HMs in soils. It

can not only efficiently contribute to remediation of

soil contamination, but also assists in relevant man-

agement for decision-makers (Luo et al., 2015; Manoli

et al., 2002). The approaches can be divided into

qualitative and quantitative approaches, according to

recent research (Zhi et al., 2016). The qualitative

approaches include multivariate statistical analysis

techniques consisting of methods like principal com-

ponent analysis (PCA) (Dai et al., 2018; Gülten 2019),

cluster analysis (CA) (Facchinelli, et al., 2001), factor

analysis (FA) (Dong et al., 2019), a support vector

machine (SVM) (Chen et al., 2013), and tracing

techniques consisting of stable isotope ratio technique

(Glaser et al., 2005). Based on the various algorithms

for data analysis, multivariate statistical methods are

widely used, owing to their advantages in low costs

and easy employment (Davies, 1997; Nikos et al.,

2012). However, these models can also suffer flaws,

such as the negative effects of abnormal values, and

mismatches between the apportioned source and the

real emitting source (Huang et al., 2015). As for the

stable isotope ratio techniques, isotope tracing tech-

niques can accomplish a contamination circle for

determining integrated routes, but their application

can be limited by e.g. expensive costs, low concen-

trations of HMs, or minor differences between ratio of

isotopes (Zhu et al., 2017). As a result, more compre-

hensive profile analysis methods are required.

A finite mixture distribution model (FMDM) is a

stochastic approach which separates an entire inte-

grated data distribution into several subgroups of-

distributions, while also estimating the proportions of

natural and anthropogenic sources of HMs in soils

according to comparisons between the relevant

parameters of the subgroups of-distributions and soil

background values (Lin et al., 2009; Shao et al., 2018).

Raster-based principal components analysis (RB-

PCA) is an improved version of the PCA, and

combines geostatistical interpolation with a statistical

approach, instead of interpolating each component

through scores calculated by a dimensionality reduc-

tion (Wang et al., 2018). The RB-PCA replaces the

original points with each HM’s interpolation raster

map as a data source, and calculates the score of each

raster with a higher precision map, helping to identify

contribution sources more efficiently.

As a main type of quantitative apportion, receptor

models—including positive matrix factorization

(PMF) (Mehr et al., 2017), absolute principal compo-

nent score/multiple linear regression (Huang et al.,

2018), and ‘UNMIX’ (Liao et al., 2020)—do not need

to acquire prior knowledge regarding source profiles,

but quantitatively apportion contamination sources by
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outputting valid contribution values of every source

regarding every HM, which exactly compensates for

the drawbacks of the qualitative methods. A PMF

model considers the bias and uncertainties during the

entire calculation process (Liang et al., 2017). The

factor contributions’ and factor profiles’ non-negative

limitations also make it more plausible as compared to

other multivariate statistical models. Therefore, it can

be the prior choice for apportioning potential contam-

ination sources (Hu et al., 2019; Lv et al., 2018).

Overall, this study suggested an integrated proposal

combining qualitative and quantitative means to

identify and apportion potential contamination

sources of HMs (Cd, Hg, As, Pb, Cr) in soils in the

study area. The main objectives of this study were to:

(1) generally assess the ecological risk level of the

study area through a potential ecological risk index

(RI); (2) qualitatively identify the natural and anthro-

pogenic sources, and interpolate/map the spatial

location of each source using the FMDM and RB-

PCA, as assisted with natural and social auxiliary

datasets; and (3) quantitatively apportion each source

with factor contribution loadings of every HM, using

PMF.

Materials and methods

Sampling and chemical analysis

Located in the southeast of the Zhejiang province

(27�030–28�360 N, 119�370–121�180 E), Wenzhou City

covers a total land area of 11,784 square kilometres

(Fig. 1). With a topography that decreases from west

to east, Wenzhou City consists of low hills and plains

near the sea. Wenzhou City is a vital port, not only in

Zhejiang province but also across all over China,

which has a long history of industrial development and

business trade.

In this study, a total of 1474 topsoil (0–20 cm)

samples were collected in the study area. The collect-

ing process can be simply described as: (1) dividing

the study area into different strata according to land

use types; and (2) applying grid to set the sample sites

in each of strata. For land use types except residential

land, one sample point is collected within a square of

1 km 9 1 km, but for residential land areas where

enterprises were clustering, the number of samples

within a square are augmented to ensure that the

sample statistics are efficient. As for the sample

details, they obeyed a basic principle of setting a soil

sample at an intersection point, and combining it with

five subgroups of samples collected from five loca-

tions within 5 m. The specific coordinates of the

sampling locations were recorded with a GPS.

Auxiliary variables

Several types of auxiliary datasets were provided and

categorised, respectively, as natural environmental,

and economical social datasets. This study obtained

information regarding the soil parental material in the

study area from a 1:20,000 soil map of Zhejiang

Province published by the National Soil Survey of

China. For the anthropogenic factors, industrial

enterprises, ore mines generally have most serious

impacts, as they cause multi-environmental pollution

through contaminated airflows or sewage irrigations

during processing (Men et al., 2018; Tian et al., 2018;

Zhang et al., 2018). In this study, 1846 enterprises

within the study area were collected from the General

Survey of Key Pollution Sources in Zhejiang Province

in 2016, and were categorised into four main cate-

gories according to National Industry Classification

standard documents: GB/4754–2011. In addition, 285

mines were surveyed and divided into seven different

categories according to their quantity and impacts on

soil HMs.

Fertiliser inputs and traffic emissions also have vital

impacts on the HMs in soils. Different types of

fertilisers contain certain contents of HMs and can

influence the aggregation and transfer process, as well

as the forms in which the HMs exist in soil (Yan,

2008). In detail, nitrogen fertilisers such as urea

contain Cd, Pb, Cu and Zn; phosphate fertilisers such

as superphosphate involve Cd, Hg, As, Pb, and Cr,

while potash fertilizers such as potassium chloride

include Cd, Pb, Cu and Zn; Moreover, organic

fertilisers can also have impacts on HMs for it

interference the viability of HMs in the soil threfore

result in contamination. In this study, we collected the

fertiliser data from the Survey of Heavy metals in

Agricultural Products Areas in Zhejiang Province

along with sample points collection process and

calculated the contents of four fertiliser inputs (nitro-

gen fertiliser, phosphate fertiliser, potash fertiliser,

and organic fertiliser) on the farmland of each town or

village inWenzhou City. Moreover, particulate matter

123

Environ Geochem Health (2022) 44:579–602 581



such as dusts containing HMs generated by vehicle

fuels and brake pad wear can also enter the soil on both

sides of the road during vehicle driving (Aminiyan

et al., 2018; Li et al., 2017; Nabulo et al., 2006; Zhu

et al., 2015). In this study, traffic system vector

datasets including different levels of roads were

obtained from the Institute of Geography and Natural

Resources Research of the Chinese Academy of

Sciences for further analysis.

Methodology

Buffer areas and fishnets construction and analysis

As a prerequisite for the quantitative analysis of the

anthropogenic auxiliary datasets, fishnets and buffer

areas were constructed to help analyse the impacts of

potential contamination sources. For industrial

enterprises, firstly we created fishnets of 1.5 km

covering the study area and counted the samples

falling into the units and then implemented the HMs

contents of sample points spatially joined with each

unit; therefore, each unit can have the attributes of

every point falling within, and then the mean values of

HMs of each unit were calculated. Similar to ore

mines, we constructed buffer areas with a radius of

2 km (Kosharna & Korzhnev, 2018) and made the

HMs of the sample points spatial join with the buffer

areas of different kinds of ore mines as well, and then

the mean values of HMs were calculated in buffer

areas of different kinds of mines. As for traffic

emissions, we initially set different threshold distances

to different levels of road as the radius of the line

buffer polygons (Pirsaheb et al., 2016), then set the

HMs of the sample points spatial join with the buffer

polygons of different levels of road, and finally

Fig. 1 Maps of study area and sampling sites
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calculated the mean values of HMs in different levels

of roads.

Potential ecological risk index

The potential ecological RI was deemed as an accurate

approach for assessing the ecological risk caused by

HMs (Kashif et al., 2020). It considers the concentra-

tions, categories, levels of toxicity, and sensitivities of

HMs together, and classifies them into different

potential ecological levels using a quantitative

methodology. Therefore, it has been used in most

ecological studies. The calculation process can be

shown as in the equation below (Hakason, 1980):

RI ¼
Xm

i¼1

Ei
r ¼

Xm

i¼1

Ti
r �

Ci

Ci
n

ð1Þ

Ei
r is the potential ecological RI of the heavy HM i,

and Ti
r is the toxicity index of each HM. For Cd, Hg,

As, Pb, and Cr, their toxicity indexes are 30, 40, 10, 5,

and 2, respectively (Hakason, 1980). Ci denotes the

centration of HM i, Ci
n denotes the background value

of HM i, and m is the genre of HM. The classification

of the potential ecological risk (Ei
r) and hazard

quotients of the HMs can be seen in Table 1.

Finite mixture distribution model (FMDM)

Given that for a random variable x, a mixture

distribution consists of m components, and the distri-

bution of the ith individual component is determined

by a specific probability density function (i.e. pdf)

fi(x), we can express the general pdf f(x) for the

mixture distribution as (Lin et al., 2009):

f xð Þ ¼
Xm

i¼1

pif i xð Þ ¼ p1f 1 xð Þ þ . . .þ pmf m xð Þ ð2Þ

Xm

i¼1

pi ¼ 1 0� pi � 1ð Þ ð3Þ

Here, pi presents the mixed weights of every

subgroups of-distribution.

It is known that most natural processes, and

especially HMs in soils, usually express as a normal

distribution or a log-normal distribution (Zhi et al.,

2016). Therefore, we used the log-normal distribution

to describe the contents of HMs in soils coming from

different sources, which can be illustrated as follows:

fi x lm; rmjð Þ ¼ 1ffiffiffiffiffiffi
2p

p
rmx

e
� ln x�lmð Þ2

2r2m ; x[ 0 ð4Þ

In the above, lm and rm denote the mean and

standard deviation of every subgroups of-distribution,

respectively. Such parameters were calculated using

the expectation maximization algorithm. As a result,

we applied a Chi-square goodness-of-fit test to test the

null hypothesis H0, to ensure that the assumed model

could be fit with the observed distribution. In partic-

ular, the process of calculating the cut-off value

between the ith and (i ? 1) components can be

presented as follows:

pi

Zþ1

a0

fi xð Þdx ¼ piþ1

Za0

�1

fiþ1 xð Þdx ð5Þ

Raster-based principal components analysis (RB-

PCA)

Traditional PCA obeys a principle of using an

orthogonal transformation to convert a set of obser-

vations of variables that might be correlated with a set

of values of linearly uncorrelated variables (Shao et al.

2018). Here, we improved the accuracy of cluster

manipulation by replacing the original point variables

(which exactly referred to the content of each HM)

Table 1 Classification of

potential ecological risk

(Ei
r) and hazard quotient

(risk index, RI)

Ei
r

Classification RI Classification

\ 40 Low \ 150 Low

� 40 and\ 80 Moderate � 150 and\ 300 Moderate

� 80 and\ 160 High � 300 and\ 600 High

� 160 and\ 320 Serious � 600 Serious

� 320 Severe – –
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with inverse distance weighted (IDW) predictionmaps

(z1; z2; � � � ; zk). As the results of IDW prediction maps

tend to be the most authentic values within interpo-

lation methods, replacing individual points scores with

successive raster scores can prove to have high

validation accuracy.

f ¼ a1z1 þ a2z2 þ � � � þ akzk ð6Þ

Here, a1; a2; � � � ; ak denotes the respective coeffi-

cient of every cluster score.

Positive matrix factorization (PMF)

As a multivariate FA tool which is originally intended

to address chemical mass balance problems, the PMF

model can be summarised as (Pekey & Dogan, 2013):

X ¼ GFþ E or xij ¼
Xp

k¼1

gikfkj þ eij ð7Þ

In the above, Gðm� pÞ denotes the factor contri-

bution, and xij is one of the factors; G m� pð Þ
represents the matrix of the factor profile, whereas

gik represents the contribution from factor k to receptor

i, f kj represents the concentration of group j in factor k;

Eðm� nÞ is the residual error matrix, and eij repre-

sents every residual error item.

Q ¼
Xn

i¼1

Xm

j¼1

xij �
Pp

k¼1 gikfkj
uij

� �2
ð8Þ

PMF model uses parameter Q to minimize outputs

derived from factor contributions and profiles. There

can be two versions of Q, categorised as: (1) Q(true) is

the goodness-of-it parameter calculated by including

all points; and (2) Q(robust) is the goodness-of-it

parameter calculated excluding points not fit by the

model, but defined as samples in which the uncer-

tainty-scaled residual is above four.

Under the constraint of a non-negative condition,

the objective function Q could be minimised to

producemore precise factor contributions and profiles,

as enhanced by the ’Multilinear engine-20. In the

calculation process, the uncertainty could thus be

obtained based on an element-specific method detec-

tion limit, and the error percentage could be measured

using standard reference material (Norris and Duvall

2014).

Combined mechanism of three models

The three models interpret source identifications and

apportionments of the HMs in soil with different

mechanics; they are also complementary to each other.

The FMDM analysis process starts from the statistical

distribution analysis of each element (Hu & Cheng.,

2013). It sufficiently identifies contamination sources

for each HM, especially for dissociating between

natural and anthropogenic sources, whereas RB-PCA

conducts a qualitative approach to identify potential

contamination sources within the study area. By

combining the high scores in the spatial distribution

of each principal component and conducting auxiliary

multiple variables analysis, the sources could be

determined (Dong et al., 2018; Qu et al., 2013). In

this study, a combination of FMDM and RB-PCA

approaches will not only separate natural or anthro-

pogenic sources statistically within the study area, but

also can provide further qualitative insights into the

spatial patterns of different contamination sources.

Apart from first two approaches, PMF adds quantita-

tive results to the apportionment scheme, by out-

putting the defined sources’ contributions to every

element (Liang et al., 2017). As a result, an integrated

contamination source identification and apportion-

ment is achieved (Fig. 2).

Data analysis

In this study, all of the statistical analysis and

correlation tests were conducted using the Statistical

Package for Social Sciences (SPSS) Statistics 25 (IBM

Corp.; 2016; IBM SPSS Statistics for Windows,

Version 25.0. Armonk, NY: IBM Corp). The con-

struction of fishnets and buffer areas, expression of

spatial distribution, spatial join, and interpolation of

axillary variables were all accomplished by ArcGIS

10.3 (ESRI, ArcGIS 10.3, Redlands, CA, USA). In the

RB-PCA, the basic IDW interpolation of every

element was fulfilled using a gstat package, whereas

the PCA was conducted using a psych package in the

software R Studio. The FMDM was completed in R

Studio with the Mclust package, and the PMF model

was utilised based on the US-EPA PMF 5.0 program

(Norris and Duvall 2014).
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Results and discussion

Summary statistical analysis of heavy metals

(HMs) in soils

The basic summary of the statistical analyses of Cd,

Hg, As, Pb, and Cr from the 1474 sample points is

given in Table 2. The average concentrations of the

five HMs were 0.28, 0.16, 8.73, 37.13, and 59.09 mg/

kg, respectively. Except for Pb, the means of the other

HMs were all high above the background values

(Wang et al., 2007), indicating that apart from natural

factors such as parental materials, other anthropogenic

activities should have influences on the spatial

heterogeneity of HMs in soils. (Dong et al., 2018).

The coefficient of variation (CV) revealed the degree

of the dispersion of the statistics (Brock, 1953). The

CVs of Cd, Hg, and As all exceeded a value of 100%,

which reflected that there would be extreme high

values in these HMs.

Potential ecological risk assessment of HMs

in soils

The potential ecological coefficient Ei
r and hazard

quotient RI were calculated and are summarised in

Table 3. According to the mean value of Ei
r, the

potential ecological risk assessment can be ranked as

Hg[Cd[As[ Pb[Cr. In particular, the mean

values of Ei
r of Hg and Cd were 57.44 and 50.33,

Fig. 2 The flowchart of combination of models in the study
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respectively, accounting for 44.26% and 38.78% of

the RI, respectively. Thus, Hg and Cd can be

recognised as greater ecological contamination con-

tributors, with a moderate ecological risk in soils.

Apart from Hg and Cd, the other HMs were below the

threshold (40) and can therefore be treated as being of

low ecological risk in soils. The value of RI ranged

from 57.71 to 4192.53, with a mean value of 129.78.

According to the rule of hazard quotient classification,

the mean value was far below the first threshold value

of 150, indicating that the general ecological risk of

the entire study area was considered to be safe.

Nevertheless, special attention should be paid to the

maximum value of the RI, which reached a high value

of 4192.53, far above the highest threshold of 600. In

addition, the main contributors Cd and Hg had

respective contributions of 2865.17 and 881.89 to this

value, suggesting there should be abnormally extreme

high values of these two HMs. In that regard,

anthropogenic activities such as industrial emissions,

mine exploitation, urban life wastes, and agricultural

inputs could all be potential sources (Han et al. 2016)

(Table 4).

Auxiliary variables analysis

Natural variables analysis

Land use cover and population density The map

used for the land use cover and population density

distribution is shown in Fig. 3. As can be seen,

woodland and arable land predominantly covered the

entire study area, taken up the total areas of Wenzhou

City up to 62.15% and 23.33%, respectively.

Grassland scattered over the northwest areas,

commonly associated with woodland areas and taken

up 2.38% areas. The residential areas were located

mostly by the coast and near rivers, taken up 8.60%

areas. The P values of most HMs of different land use

cover showed significant differences. The quantitative

analysis showed the Cd in residential land were on

average higher than in other regions, which reflected

that anthropogenic influences, particularly from

human activities and life wastes, had certain impacts

on these values (Jiang et al., 2017).

Soil parental materials The parental materials’ and

subgroups of parental materials’ spatial distributions

are shown in Fig. 4. Slope wash was dominant within

the entire study area, whereas other parental materials

were mainly distributed in the coastal areas.

According to Table 5, the P values of Cd and Pb of

different parental materials showed significant

differences which indicates that the content of both

HMs varies evidently from different types of parental

materials. Particularly, Cd has a relatively high

content in fluvial faces deposit, lacustrine faces, and

slope washes, whereas Pb originates form mud faces

and channel faces with a higher content. Other

parental materials also had different contributions to

the various HMs. Slope wash, especially for sand

Table 2 Summary

statistics for HMs in topsoil

(mg/kg)

aSandard deviation,
b Coefficient of variation

Element Cd Hg As Pb Cr

Valid number 1474 1474 1474 1474 1474

Mean 0.28 0.16 8.73 37.13 59.09

Median 0.20 0.10 6.80 33.50 57.90

STDa 0.62 0.17 11.71 23.65 29.71

CVb 219.59% 105.60% 134.08% 63.69% 50.27%

Range 0–17.00 0–2.80 0.80–216.00 11.90–518.00 2.80–416.00

Background value 0.178 0.127 5.86 41.6 56.9

Background interval 0.095–0.260 0.029–0.225 3.67–8.04 31.0–52.3 3.6–110.2

Table 3 Potential ecological coefficient (Ei
r) and hazard

quotient (RI) of HMs

Ei
r of each HM RI

Cd Hg As Pb Cr

Mean 50.33 57.44 15.31 4.57 2.13 129.78

Min 16.85 31.5 1.36 1.72 6.28 57.71

Max 2865.17 881.89 368.6 62.25 14.62 4192.53
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shale, had the most multiple contributions for Hg, As,

and Pb.

Anthropogenic variables analysis

Industrial enterprises and mines The map of

enterprises spatial distribution illustrated in Fig. 5

showed that most enterprises were clustered in the

coastal and main city areas. The map of kernel density

clearly showed the degree of aggregation status; the

highest density areas were also located along the

riverside and urban areas. Fishnet maps of the four

main categories, as shown as Fig. 6, delivered

accurate quantity aggregation information for the

different types of enterprises (Li et al., 2019).

Figure 6a shows that the chemical manufacturing

Table 4 Mean values for

HMs’ contents in diverse

land use cover (mg/kg)

c Kruskal–Wallis Test—P

value

Land use cover Area cover ratio Number Cd Hg As Pb Cr

Arable land 23.33% 714 0.283 0.165 8.730 37.132 59.135

Wood land 62.15% 197 0.288 0.166 8.799 37.150 59.090

Grass land 2.38% 20 0.286 0.161 8.814 37.358 58.233

Water areas 3.48% 0 – – – – –

Residential land 8.60% 226 0.319 0.165 8.784 37.070 58.489

Unused land 0.04% 0 – – – – –

Ocean areas 0.02% 0 – – – – –

P valuec – – 0.006 0.002 0.04 0.15 0.08

Fig. 3 Map of land use cover and population density in the study area
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enterprises were mainly distributed along the river and

the south coast areas, and between one and five

enterprises were mainly contained in each grid.

Figure 6b illustrates that metal products showed a

similar spatial distribution trend as in Fig. 6a, but with

additional enterprises in each grid. As for Fig. 6c, life

wastes enterprises were scattered in the entire study

area, whereas Fig. 6d shows that very few other

enterprises were clustered in the Middle East coastal

areas.

A statistical analysis of the HMs average contents

in different enterprise categories is given in Table 6.

The P values of most HMs within buffer areas of

different enterprise categories also showed great

Fig. 4 Maps of soil parental materials and subgroups of parental materials

Table 5 Mean values for HMs’ contents in different parental materials and their subgroups (mg/kg)

Parental material Number Subgroups of parental material Number Cd Hg As Pb Cr

Fluvial facies deposit 98 Flood plain 28 0.30 0.13 8.05 35.32 54.98

Oujiang River Estuarine facies 70 0.24 0.16 9.13 34.93 59.24

Lacustrine facies 345 Freshwater mire facies 11 0.16 0.19 8.45 34.55 66.35

Lagoon facies 334 0.30 0.16 9.80 36.10 55.41

Mud facies 102 silt 59 0.22 0.15 7.00 42.83 66.55

Mud facies 43 0.17 0.17 6.84 33.41 61.90

Slope wash 849 Granitic slope wash 87 0.24 0.15 7.77 34.68 66.01

Tuffaceous tuffs 723 0.31 0.17 8.70 37.63 58.84

Sandshale 39 0.20 0.19 9.95 46.28 63.54

Channel facies 5 Channel facies 5 0.16 0.14 7.54 27.08 62.16

Proluvium 36 Proluvium 36 0.26 0.14 7.92 36.98 56.98

Riverd 39 River 39 - - - - -

P Valuee – – – 0.012 0.327 0.189 0.039 0.256

d 39 sample points collected in 2016 were in the position where the soil map (1990) showed in the river
eKruskal–Wallis Test—P value

123

588 Environ Geochem Health (2022) 44:579–602



differences. As compared to 942 samples which had

no industrial influences, the average contents of HMs

in the chemical manufacturing, metal products, and

life wastes enterprises were all above the original

ones, confirming that enterprises with environmental

wastes had impacts on the HMs in soils. Besides, it

was also clear that with an increasing quantity of

enterprises in a cluster, the HMs aggregated more in

the soil. In particular, for metal products, the increas-

ing trend between enterprise quantity and HM content

was evident for Cd, Hg, and As, which were also the

main elements in the industrial emissions.

The map of mine distribution (Fig. 7) showed the

spatial location of every mine. As opposite from the

cluster conditions for enterprises, the mines in Wen-

zhou City were generally scattered in the west side of

the entire study area. Table 7 also shows that basically

each type of mines all had different levels of influences

on the HMs in soils, as the mean contents of HMs near

mines were generally high above those far frommines.

In particular, according to the largest value gaps

between the average contents near mines and those far

from mines, it was reasonable to believe mine

exploitation had the most impact on Cd, As, and Cr

(within the five elements).

Fertiliser inputs and traffic emissions The map of

different fertilisers inputs in all towns and villages

(Fig. 8) revealed that high inputs of four fertilisers

were basically centred in the north and middle

counties of the study area, except for the southwest

parts of the study area, with few little potash fertiliser

inputs. Table 8 validates the influences that the

fertiliser inputs have on the HMs in soils, since the P

values of HMs within regions of different kinds of

fertilisers inputs showed significant differences as

well. With increases in the value intervals of different

fertilisers, the contents of the HMs also increased. For

the factor of traffic emissions, as the sample numbers

falling into the line buffer areas were so limited, the

impacts that traffic emissions (Table 9) have on the

HMs in soils cannot be summarised clearly in our

study. Accordingly, we ignored this factor in the

discussion.

Source identification and apportionment

FMDM

The FMDM fitting results showed that Cd and Pb

conformed to a log-normal distribution, whereas Hg,

As, and Cr conformed to a log-normal mixture

distribution. All of the five HMs passed the signifi-

cance level test (P[ 0.05). Cd and Pb fit the single

log-normal distribution model shown in Fig. 9a, d.

They both presented as only one single group.

Fig. 5 Maps of enterprises’ spatial distribution and kernel density
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According to Table 10, for Cd, its mean value was

slightly higher than the background value but still

within the background interval, revealing that it was

basically coming from natural parental materials, but

might have been slightly influenced by other anthro-

pogenic activities (Hu et al., 2018). As for Pb, in cases

where its mean value was lower than the background,

it was believable that most Pb in such study areas

could be generally attributed to natural resources.

In contrast, Hg exactly fit the double log-normal

mixed distribution model shown in Fig. 9b. The

FMDM model identified Hg as two main groups,

where one was accounted for 81%, and the other

accounted for 19%. As the result of the first group’s

mean value was 0.12, i.e. below the background value

as 0.13, this source can be identified as a natural

resource as well. For the other group, its mean value

was 0.36, which was not only higher than the

background value, but was also out of the range of

Fig. 6 Fishnet maps of enterprises divided as four main categories: a chemical manufacturing, bmetal products, c life wastes, d others
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background interval, showing that it was seriously

influenced by one possible anthropogenic source.

As and Cr were identified as triple-normal mixed

distribution models, as shown in Fig. 9c, e. There were

three groups both identified for these two elements.

For As, the account rate was 41%, 42%, and 17% for

each group. The same as in the previous analysis, three

potential sources could be identified (one natural

source and two anthropogenic sources). In addition, as

the second group’s mean value was still within the

background interval range, but the third one was out of

such range, the second group for As can be identified

as moderately polluted, whereas the third group can be

recognised as severely polluted. The same analysis can

also apply for Cr, i.e. it can be recognised as one

natural source accounting for 48%, and two moder-

ately polluting sources, each accounting for 26%.

RB-PCA

Obtained from HMs of 1474 sample points, the IDW

prediction map of five HMs provided reliable basis for

RB-PCA, as both low values of ME and RMSE of five

HMs revealed fine prediction accuracy (Huang, 2020).

The sum of the cumulative variance showed that the

five HMs could be divided into two main components

([ 85%) (Wang et al., 2018). However, such results

also showed that the contributions of Hg to both two

components were so minor that could be ignored. In

this case, here we justified two components to three,

and the rotation matrix is shown in Table 11. Three

components accounted for 35.46%, 55.38%, and

9.16% of the total, respectively.

The contribution of the first principle component

(PC1) had factor loadings of 0.79 for both Cd and Pb,

indicating that these two elements came from the same

pollution source. The OK spatial interpolation map

(Fig. 10a) showed that high scores of PC1 were

generally scattered all over the study area. The second

principal component (PC2) takes up 55.38%, with

high factor loadings of 0.83 and 0.63 for As and Cr,

respectively. Figure 10b shows that the high-scoring

clusters were mainly distributed in the west part of the

study area. With factor loadings of 0.90 and 0.48, the

Table 6 Mean values for HMs’ contents in buffer areas of different enterprise categories (mg/kg)

Categories Enterprises quantity Sample quantity Cd Hg As Pb Cr

Chemical manufacturingf 1–10 309 0.33 0.17 9.26 38.07 56.15

11–20 10 0.20 0.13 7.25 34.49 63.48

[ 20 9 0.33 0.20 9.69 37.79 60.34

total 329 0.33 0.18 9.21 37.95 56.49

Metal productsg 1–10 354 *0.28 *0.18 *8.73 37.15 59.06

11–20 7 *0.50 *0.20 *12.68 35.63 57.67

[ 20 25 *0.59 *0.24 *12.71 37.17 60.07

total 387 0.31 0.18 9.04 37.03 57.24

Life wastesh total (0–4) 40 0.29 0.18 8.73 37.28 58.72

Othersi total (0–4) 31 0.23 0.15 9.87 40.16 63.04

All categories 0 942 0.26 0.17 8.57 36.04 58.97

1–10 456 *0.32 *0.16 *8.10 *36.90 *58.16

11–20 41 *0.40 *0.17 *8.22 *37.52 *59.61

[ 20 35 *0.46 *0.27 *8.75 *42.31 *68.84

P Valuej – – 0.034 0.159 0.023 0.049 0.077

fSpecified as chemical fibre manufacturing, chemical raw materials and chemical products manufacturing, 0Leather and footwear

manufacturing, petroleum and gas engineering, pharmaceutical manufacturing
gSpecified as metal products industry, coloured metal smelting and rolling processing industry
hSpecified as public facilities management industry, environmental protection and renovation industry
iOnly refers to warehousing industry
jKruskal–Wallis Test—P value

*Indicates that with the increase in the quantity of enterprises, the contents of HMs also increase
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Fig. 7 The map of mine distribution of different categories

Table 7 Mean values for HMs’ contents in buffer areas of different mine categories (mg/kg)

Categories Mine quantity Sample number Cd Hg As Pb Cr

Copper mine 30 18 0.41 0.16 10.18 38.56 59.41

Iron mine 67 76 0.39 0.16 9.84 37.61 60.37

Lead mine 39 32 0.40 0.16 10.05 38.07 59.52

Zinc mine 22 10 0.40 0.15 11.21 35.27 60.69

Kaolin clay mine 46 47 0.40 0.16 10.02 38.16 59.48

Other metal minesk 47 21 0.39 0.16 9.96 37.89 60.14

Other clay mines 34 30 0.39 0.16 9.92 37.93 59.77

All 285 234 0.38 0.16 9.79 37.68 60.86

Far from mines (2 km) 0 1240 0.28 0.16 8.73 37.13 59.09

P Valuel – – 0.002 0.016 0.033 0.178 0.086

k Include Ti, Mn, Au, Ag, Nb, Y, Mo; Other metal mines include feldspar, mica, little clay, pyrophyllite, alunite, fluorite
lKruskal—Wallis Test—P value
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third component (PC3) contains Hg and Cr. Fig-

ure 10c shows high scores generally centred in the

north and middle parts of the study area, where the

residents and industrial enterprises were located.

PMF

Considering a few experiments results of setting the

factor number of PMF model from 1–5, and pairing

with the previous two model analysis, we set the factor

number to three in which the accuracy test shows the

highest, and then validated the model fitting status and

uncertainty. The basic model fitting parameters of the

PMF are shown in Table 12. Both the general linear

fitting status and the uncertainty diagnostics of the five

HMs were quite satisfactory, with the highest R2 (of

Hg) reaching 0.99, and the lowest (Pb) still above 0.73.

The KS test P values were all above 0.05, indicating an

Fig. 8 The map of contents of different fertilisers in towns or villages
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accurate fit of the PMF modelling (Lv et al. 2018).

Within 50 Bootstrap runs, the DISP LD in Q and %dQ

remained pretty low level, revealing a stable model

output (Norris and Duvall 2014). In addition, to make

the contribution gap clearer, we rotated the positive

matrix, by setting the F peak = -0.5 (Han et al.,

2016).

According to the results from Table 13 and Fig. 11,

Hg was exclusively monopolised by factor 1 with the

highest contribution of 80.77%, and comparingly low

contributions of other factors. Factor 2 highly con-

tributed 89.22% and 84.81% for both Cd and Pb,

respectively, and contributed 7.31%, 35.84%, and

27.42% for Hg, As, and Cr, respectively. Factor 3 had

less than great contributions for each HM, but was

Table 8 Mean values for HMs’ contents in different fertilisers value interval (mg/kg)

Fertilizer categories Inputs interval Sample number Cd Hg As Pb Cr

Nitrogen 0–8.00 336 0.28 0.17 8.57 37.02 58.56

8.01–17.52 549 0.28 0.16 8.73 37.13 59.09

17.53–25.75 109 0.28 0.16 8.73 37.15 58.99

25.76–38.49 234 0.28 0.16 8.73 37.13 59.09

38.50–62.38 246 0.30 0.16 8.91 36.36 58.64

Phosphate 0–3.26 347 0.28 0.17 *8.57 37.02 *58.56

3.27–9.10 448 0.28 0.16 *8.63 37.13 *59.09

9.11–18.08 557 0.28 0.17 *8.73 37.07 *59.09

18.09–26.09 268 0.28 0.16 *8.73 37.13 *59.77

26.10–41.54 206 0.28 0.16 *8.84 37.13 *60.03

Potash 0–2.07 328 0.28 0.16 8.57 *36.02 58.56

2.08–5.18 232 0.28 0.16 8.67 *36.77 58.57

5.19–9.11 614 0.28 0.16 8.73 *38.13 59.09

9.12–16.63 103 0.28 0.17 8.73 *38.37 59.09

16.64–32.69 192 0.28 0.19 8.73 *38.39 59.09

Organic 0–2.78 923 0.28 0.16 *8.43 *37.02 *58.09

2.79–6.45 110 0.28 0.17 *8.57 *37.02 *58.56

6.46–10.00 165 0.28 0.17 *8.71 *37.85 *58.79

10.01–26.04 74 0.28 0.16 *8.73 *38.13 *59.79

26.05–88.82 202 0.28 0.16 *8.73 *38.13 *60.07

P Valuem – – 0.147 0.167 0.055 0.047 0.003

mKruskal–Wallis Test—P value;

* Indicates that with the increase in the value interval of different fertilizers, the contents of HMs also increase

Table 9 Mean values for

HMs contents in different

road thresholds (mg/kg)

nKruskal–Wallis Test—P

value

Road type Threshold distance Sample number Cd Hg As Pb Cr

Country road 200 27 0.32 0.21 8.52 37.48 68.05

Highway 150 9 0.27 0.29 7.67 37.44 69.39

Province road 100 29 0.23 0.20 7.78 37.53 62.48

Railroad 100 2 0.30 0.05 5.25 30.15 50.00

County road 50 62 0.28 0.16 9.44 36.24 58.40

None / 1345 0.28 0.16 8.74 37.17 58.82

P Valuen – – 0.332 0.432 0.161 0.250 0.552
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especially high for As and Cr, with contributions of

48.23% and 46.95%, respectively. In that regard, the

high contributions of each factor to the applied HMs

exactly matched the results of the previous two

models.

Fig. 9 Finite mixture distribution model (FMDM) fitting of Cd a, Hg b, As c, Pb d, Cr e in soils

Table 10 The parameters,

goodness of fit, and cut-off

values for finite mixture

distribution model (FMDM)

oMmeans mixed

proportions;
pMeans standard of

deviation;
qMeans degree of freedom;
rMeans background value,
sMeans background interval

Element Group MPo Mean Stdp DFq v2 P Value Cut-off BVr BIs

Cd 1 100% 0.21 0.446 4 53.64 0.16 / 0.18 0.09–0.26

Hg 2 81% 0.12 0.124 4 27.98 0.19 0.27 0.13 0.03–0.23

19% 0.36 0.159

As 3 41% 5.33 0.211 8 51.78 0.36 5.55 5.86 3.67–8.04

42% 7.65 0.091

17% 11.34 0.975 15.25

Pb 1 100% 35.20 0.119 5 46.32 0.14 / 41.6 31.0–52.3

Cr 3 48% 40.46 0.382 8 42.35 0.17 49.7 56.9 3.6–110.2

26% 59.50 0.028

26% 82.04 0.013 75.2
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Table 11 Raster-based principal component analysis (RB-PCA) rotation matrix parameters

Element IDW-raster Component matrix Rotated component matrix

MEt RMSEu PC1 PC2 PC3 PC1 (35.46%) PC2 (55.38%) PC3 (9.16%)

Cd 5.14E-03 0.67 0.63 -0.41 0.34 0.79 0.22 -0.11

Hg 9.87E-04 0.18 0.53 0.26 -0.69 0.12 -0.01 0.90

As 3.77 6.71 0.43 0.42 0.60 0.15 0.83 -0.10

Pb 2.01 1.28 0.64 -0.53 -0.16 0.79 -0.16 0.24

Cr 0.28 3.21 0.39 0.71 -0.03 -0.17 0.63 0.48

tMeans Mean Error;
uMeans Root Mean Square Error

Fig. 10 Raster interpolation maps of three principal components
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Table 12 The fitting parameters and uncertainty of the positive matrix factorization (PMF) model

Elements Fitting parameters Uncertainty diagnostics

Intercept slope Pv R2 Bootstrap run DISP LD in Qw DISP %dQx

dCd 0.15 0.85 0.05 0.81 50 -3.93 -2.91

Hg 0.00 0.98 0.28 0.99

As 5.27 0.74 0.35 0.76

Pb 13.44 0.63 0.16 0.73

Cr 11.42 0.80 0.27 0.87

vMeans Kolmogorov–Smirnov Test—P value;
w Means DISP (Base Model Displacement) largest decrease in Q;
xMeans DISP (Base Model Displacement) [(Qrobust – Qtrue)/ QTrue]

Table 13 Source profile

and contribution of the

positive matrix factorization

(PMF) model

Elements Source Profile (mg/kg) Source Contribution (%)

Factor1 Factor2 Factor3 Factor1 Factor2 Factor3

Cd 0.01 0.08 0.08 2.94 89.22 7.84

Hg 0.11 0.01 0.06 80.77 7.31 11.92

As 0.34 0.90 4.45 15.93 35.84 48.23

Pb 1.78 20.37 15.02 4.79 84.81 10.40

Cr 3.35 4.41 51.70 25.63 27.42 46.95

Fig. 11 The contribution percentage stacked bar chart
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Comprehensive interpretation of contamination

sources

By combining the results of three models, we found

that there are mainly three contamination sources. The

first contamination source was identified as natural

lithogenic source with especially high contributions to

Cd and Pb. The qualitative results of the PCA

illustrated that the spatial distribution (Fig. 10a) of

PC1 was scattered all over the study area, meaning it

had no cluster trend, which was deemed as the symbol

of anthropogenic activities. Moreover, the quantitative

analysis (Table 5) also showed slope wash (containing

tuffaceous tuffs and sand shale) taking up the largest

parental materials portion of the study area (Fig. 4)

with high values of Cd and Pb, matching the spatial

analysis result. The results of the FMDM also showed

the single log-normal statistical status of these two

elements. As their mean values were close to the

background values, it was certified that the first

contamination source should be a natural lithogenic

source. Moreover, according to the quantitative results

of the PMF, the natural lithogenic source contributed

especially high for Cd and Pb as 89.22% and 84.81%,

respectively, and for Hg, As, and Cr as 7.31%,

35.84%, and 27.42%, respectively.

The second contamination source was attributed to

industrial and agricultural mixed pollution, especially

Hg-related pollution. As the results of the PCA

suggested, the OK score interpolation map of PC3

(Fig. 10c) clustered on the urban areas, which is

similar to the areas where most of the metal products

and chemical manufacturing enterprises were located

at (Fig. 6a and Fig. 6b); moreover, the distribution of

fertilisers inputs (Fig. 8) also presents similar distri-

bution as Fig. 10c. Besides, the corresponding quan-

titative statistical analysis of industrial enterprises

(Table 6) revealed that metal products enterprises had

severe impacts on Hg. The FMDM suggested that Hg

had two main sources: one was a natural source, as

discussed previously, and the other one was evidently

from industrial Hg contamination which is mostly

from enterprises of metal products, chemical manu-

facturing etc. In cases where the Hg was also

influenced by potash and organic fertiliser inputs

(Fig. 8c, d) and their high inputs areas also matched

the urban areas, it was probable that the fertiliser

inputs may also have had impacts associated with the

enterprise emissions effect. According to the

quantitative results of the PMF, industrial emissions

and fertiliser inputs mixed pollution contributed

particularly high for Hg at 80.77%, and comparingly

low for Cd, As, Pb, and Cr at 2.94%, 15.93%, 4.79%,

and 25.63%, respectively.

As for the third contamination source, it was

dominated by mine exploitation activities. The PCA

results suggested that according to Fig. 10b, the high

scores were mainly clustered in the west part of the

study area, generally matching the trend of where the

mines were located at in the study area, as shown in

Fig. 7. Table 5 also shows that mine exploitation had

significant impacts on As and Cr; therefore, PC2 can

be deemed as a main contribution from mine exploita-

tion. The FMDM results also illustrated that As and Cr

had a triple log-normal mixed distribution, which

would have been influenced by mine exploitation

activities, in addition to the natural source and

industrial emissions sources previously discussed.

The PMF results showed that this factor has a high

contribution for As and Cr at 48.23% and 46.95%,

respectively, and of 7.84%,11.92%, and 10.40% for

Cd, Hg, and Pb, respectively.

Conclusion

This study employed qualitative and quantitative

approaches (including FMDM, RB-PCA, and PMF)

and applied multiple auxiliary variables to identify and

apportion potential contamination sources of HMs

(Cd, Hg, As, Pb, and Cr) in soils in Wenzhou City,

China. The potential ecological risk assessment

showed that the general ecological risk level of the

entire study area was low, but Hg and Cd could be

threatening, as they were considered as the main

contributors and had extremely high values at the

maximum level. The results indicated that three main

sources had been identified and apportioned. Parental

materials contributed to all elements, and especially

for Cd and Pb, with high contributions up to 89.22%

and 84.81%, respectively, and contributions for Hg,

As, and Cr of 7.31%, 35.84%, and 27.42% respec-

tively. Industrial emissions mixed with fertiliser inputs

were another vital contamination factor in the study

area, owing to large proportions of metal products

enterprises and related fertiliser inputs. These con-

tributed to extremely high levels for Hg, with contri-

butions of 80.77%, 2.94%, 15.93%, 4.79%, and

123

598 Environ Geochem Health (2022) 44:579–602



25.63% for Cd, As, Pb, and Cr, respectively. Mine

exploitation was the third important contamination

source; it had high contributions for As and Cr at

48.23% and 46.95%, respectively, and at 7.84%,

11.92%, and 10.40% for Cd, Hg, and Pb, respectively.

Such results can help decision-makers in making more

efficient and scientific decisions in regulating HM

pollution.
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